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Abstract

A time-harmonic electromagnetic wave is scattered by a buried object. We assume that the scattering object has an
impedance boundary surface and it is embedded in a piecewise homogeneous isotropic background chiral medium. Using
a chiral reciprocity gap operator and appropriate density properties of chiral Herglotz wave functions we solve an inverse scat-
tering problem for reconstruction of the shape of the scatterer from the knowledge of the tangential components of electric and
magnetic fields, without requiring any a priori information of the physical properties. Furthermore, a characterization of the
surface impedance of the scattering object is proved.
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1. Introduction

The chiral media are characterized by two constitutive relations in which the electric and magnetic
fields are coupled via a material parameter, the chirality. In this work, Drude-Born-Fedorov constitutive
relations are used, because they are symmetric under time reversality and duality transformation [16].
Chiral materials are those which exhibit optical activity in the sense that the plane of vibration of linearly
polarized light is rotated on passage through an optically active medium. For details on the properties of
chiral media we refer to the books [16–18].

In recent years various papers have been written on direct and inverse electromagnetic scattering prob-
lems in chiral media. Indicatively we refer to the papers [1, 4, 6, 7]. In an isotropic homogeneous chiral
medium the electric and magnetic fields are composed of left-circularly polarized and right-circularly
polarized components which can both propagate with different phase speeds. So, in the applications we
can use the Bohren decomposition [16, 17] of electric and magnetic fields into suitable Beltrami fields,
which satisfy simple differential equations of first order.

In [6] the direct electromagnetic scattering problem by a mixed impedance screen in chiral media is
studied. Beltrami fields have been used for the uniqueness and a variational method has been employed
for the existence of solution. An inverse scattering problem for the same scattering model has been studied
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in [7] where a modified linear sampling method based on a factorization of the chiral far-field operator has
been used. In [1], Ammari and Nédélec have proved that the Silver-Müller radiation condition remains
valid for chiral media. In [2], the chirality is defined as a property of the far-field operator.

In this paper we consider the inverse scattering problem of determining both the shape and the sur-
face impedance of a buried object from the knowledge of the electric and magnetic fields measured on the
surface of the earth. We use a qualitative method [8], which is a modified version of the classical linear
sampling method. This method is based on the chiral reciprocity gap operator and was introduced by
Colton and Haddar in [15] for acoustic waves and by Cakoni, Fares and Haddar in [12] for electromag-
netic waves. Applications of this method we may find in medical imaging, ground imagery and target
identification (see [11]). In linear elasticity a reciprocity gap functional has been used for solving an in-
verse mixed impedance scattering problem [5]. In [3] a reciprocity gap functional for chiral media has
been defined in order an inverse scattering problem for a perfect conductor to be solved. In [9] the shape
and the surface impedance of a buried coated scattering object have been determined, while in [13] the
same method has been applied to solve an electromagnetic inverse scattering problem for an anisotropic
dielectric that is partially coated by a thin layer of highly conducting material. Using this method, an
inverse electromagnetic scattering problem for a perfectly conducting cavity with interior measurements
has been solved in [20]. In [22] an interior inverse scattering problem for a cavity with an inhomogeneous
medium inside has been studied. Also in [14], the boundary and the permittivity of the scattering ob-
ject in radar imaging have been calculated. For more details on the linear sampling and reciprocity gap
functional method we refer to the book [11].

In Section 2 we consider the basic equations of electromagnetic fields in chiral media and introduce
the function spaces which will be used to formulate the impedance scattering problem. In Section 3 we
define the reciprocity gap operator and prove that it is injective and has a dense range. Finally, in the
Section 4 we prove the main theorem that characterizes the shape of the scattering object as well as giving
an estimate of the surface impedance.

2. The scattering problem in chiral media

We consider the Drude-Born-Fedorov constitutive relations [16]:

D = ε (E+βcurl(E)) , B = µ (H+βcurl(H)) , (2.1)

where E, H are the electric and magnetic fields, D, B are the electric and magnetic densities, respectively,
β is the chirality measure, ε the electric permittivity and µ the magnetic permeability. In a source-free
region we have that

curl(E) − iωB = 0, curl(H) + iωD = 0, (2.2)

where we have suppressed a time dependance of e−iωt, ω > 0 being the angular frequency. From (2.1)
and (2.2) we get the following equations:

curl(E) = βγ2E+ iωµ
(γ
k

)2
H, curl(H) = βγ2H− iωε

(γ
k

)2
E, (2.3)

where k2 = ω2εµ and γ2 = k2(1−β2k2)−1. We note that E and H are divergence-free fields and k is not a
wave number but it is a shorthand notation without any particular physical significance. Moreover, it is
valid that |kβ| < 1 ([17, p.87]). From (2.3) we take

curl(curl(E)) − 2βγ2curl(E) − γ2E = 0. (2.4)

We note that the magnetic field satisfies the same equation. In a homogeneous isotropic chiral medium the
electric and magnetic fields are composed of left-circularly polarized (LCP) and right-circularly polarized
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(RCP) components with different wave numbers. To see this, we make use of the Bohren decomposition
of E and H into suitable Beltrami fields QL and QR [17],

E = QL +QR, H = −i

√
ε

µ
(QL −QR) ,

and hence

QL =
1
2
(E+ i

√
µ

ε
H), QR =

1
2
(E− i

√
µ

ε
H).

The Beltrami fields satisfy the equations

curl(QL) = γLQL, curl(QR) = −γRQR, (2.5)

as well as the equations

curl(curl(QL)) = γ2
LQL, curl(curl(QR)) = γ2

RQR, (2.6)

with
γL = k (1 − kβ)−1 , γR = k (1 + kβ)−1 ,

being the wave numbers for the LCP and RCP Beltrami fields, respectively, and satisfying the following
relations:

γL + γR = 2k−1γ2, γL − γR = 2βγ2, γLγR = γ2.

The equations (2.5) show that the homogeneous isotropic chiral media are circularly birefringent. For
details on the physical background for chiral media again we refer to the books [16–18].

We assume that a scatterer D with C2-boundary ∂D is embedded in a piecewise homogeneous
isotropic chiral medium with R3 \D to be connected. The boundary ∂D of D is a surface impedance
which is described by the positive constant λ.

We consider a bounded domain Ω, which contains D, with C2- boundary ∂Ω. We denote by ν = ν(x)
the outward unit normal vector at the point x of the corresponding surface. The mediumΩ \Dwhich will
be referred to as the background medium is characterized by the chirality βb, the electric permittivity εb
and the magnetic permeability µb. Also, let β0, ε0, and µ0 be the corresponding parameters in the exterior
R3 \Ω of Ω. All the physical parameters are assumed to be positive constants.

We consider that the incident field is an electric dipole located at x0 with polarization p ∈ R3 in a
chiral medium. The point x0 lies on an auxiliary close surface Λ contained in R3 \Ω. In particular, the
incident electric field is given by the formula [16, 17]

Ex0(x,p,γ0) =
k0

2γ2
0
p ·
{(
γ0LĨ+

1
γ0L
∇∇+∇× Ĩ

)
eiγ0L|x−x0|

4π|x− x0|
+

(
γ0RĨ+

1
γ0R
∇∇−∇× Ĩ

)
eiγ0R|x−x0|

4π|x− x0|

}
,

where Ĩ is the identity dyadic in R3 and γ0L and γ0R are the LCP and RCP wave numbers, respectively in
R3 \Ω with

γ0L = k0(1 − k0β0)
−1, γ0R = k0(1 + k0β0)

−1,

and γ2
0 = γ0Lγ0R, k2

0 ≡ k2 = ω2ε0µ0.
The electric wave Ei which is incident on the scatterer D is given by

Ei(x) ≡ Eix0
(x,p) = Ex0(x,p,γ0) + E

s,b
x0

(x,p),

where Es,b
x0

(x,p) is the scattered field due to the background medium. Also, the wave Ei in Ω \D is given
by

Ei(x) ≡ Eix0
(x,p) = p · B̃(x, x0), (2.7)
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where B̃(x, x0) is the dyadic Green’s function of the chiral background medium. We define η(x) = ηb =
(εbµb)(ε0µ0)

−1 for x ∈ Ω \D and η(x) = 1 for x ∈ R3 \Ω as well as β(x) = βb for x ∈ Ω \D and
β(x) = β0 for x ∈ R3 \Ω, then B̃(x, x0) satisfies the equation(

k−2 − η(x)β2(x)
)

curl(curl(B̃(x, x0))) − 2β(x)η(x)curl(B̃(x, x0)) − η(x)B̃(x, x0) = Ĩδ(x− x0), (2.8)

with respect to x. In order to formulate the general impedance boundary value problem in chiral media
we need the following function spaces:

H(curl,D) =
{
u ∈

(
L2(D)

)3
: curl(u) ∈

(
L2(D)

)3
}

,

L2
t(∂D) =

{
u ∈

(
L2(∂D)

)3
: ν · u = 0 on ∂D

}
,

X(D,∂D) =
{
u ∈ H(curl,D) : ν× u|∂D ∈ L2

t(∂D)
}

,

with the norm
||u||2X(D,∂D) = ||u||2H(curl,D) + ||ν× u||2L2(∂D).

Also, we define the space of solutions

H(Ω) =
{
u ∈ H(curl,Ω) : uT ∈ L2

t(∂D), curl(uT ) ∈ L2
t(∂D), curl(curl u− 2βbγ2

bcurl u− γ2
bu = 0

}
,

where uT = (ν× u)× ν. For the traces ν× u|∂D and ν× (u× ν)|∂D of u ∈ H(curl,D) we have

H
− 1

2
div(∂D) =

{
u ∈

(
H− 1

2 (∂D)
)3

: ν · u = 0, div∂Du ∈ H− 1
2 (∂D)

}
,

H
− 1

2
curl(∂D) =

{
u ∈

(
H− 1

2 (∂D)
)3

: ν · u = 0, curl∂Du ∈ H− 1
2 (∂D)

}
,

where with div∂D and curl∂D we denote the surface div and the surface curl, respectively. Finally, for
the exterior domain R3 \D we define the spaces Hloc(curl, R3 \D), Hloc(R

3 \D,∂D) and Xloc(R
3 \D,∂D)

considering the domain (R3 \D)
⋂
BR, where BR is a ball of arbitrary radius R.

The exterior impedance boundary value problem in chiral media is formulated as follows: given
f ∈ L2

t(∂D) find Es ∈ Xloc(R
3 \D,∂D) such that:(

k−2 − η(x)β2(x)
)

curlcurl Es − 2β(x)η(x)curl Es − η(x)Es = 0 in R3 \D, (2.9)

ν× curl Es − ik−1
b γ

2
bλ(ν× Es)× ν−βbγ2

bν× Es = f on ∂D, (2.10)

x̂× curl Es −β0γ
2
0x̂× Es + ik−1

0 γ2
0E
s = o

(
1
|x|

)
, |x|→∞ (2.11)

uniformly in all directions x̂ =
x

|x|
∈ S2.

If f = −ν× curl Ei + ik−1
b γ

2
bλ(ν× Ei)× ν+βbγ2

bν× Ei on ∂D then the problem (2.9)-(2.11) describes the
direct impedance scattering problem in chiral media and Es is the corresponding scattered field which is
connected to the total field E and the incident field Ei with the relation

E = Ei + Es. (2.12)

The direct scattering problem can be studied as in [6]. The uniqueness of solution has been proved via
the Beltrami fields, while for the existence of solution the variational method has been employed using
a Calderon type operator [19] for chiral media. The corresponding inverse scattering problem is the
determination of the unknown boundary of D from the knowledge of the tangential components ν× E
and ν×H on the boundary ∂Ω for all points x0 ∈ Λ as well as the evaluation of the surface impedance λ.
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Let z ∈ D and Ez ∈ H(curl,D). We consider the following chiral interior impedance boundary value
problem corresponding to (2.9)-(2.12); given f ∈ L2

t(∂D) find Ez ∈ H(curl,D) such that:

curl curl Ez − 2βbγ2
bcurl Ez − γ2

bE
z = 0 in D, (2.13)

ν× curl Ez − ik−1
b γ

2
bλ(ν× Ez)× ν+βbγ2

bν× Ez = f on ∂D. (2.14)

The values of k for which the corresponding homogeneous boundary value interior problem admits a
nontrivial solution will be referred to as chiral Maxwell eigenvalues for D.

In chiral media, a Stratton-Chu type exterior integral representation for a radiating solution of equation
(2.4) is the following

Es(r) = −2βγ2
∫
S

B̃(r, r ′) ·
[
ν× Es(r ′)

]
ds(r ′)

+

∫
S

{
B̃(r, r ′) ·

[
ν× curl Es(r ′)

]
+
[
curlrB̃(r, r ′)

]
·
[
ν× Es(r ′)

]}
ds(r ′).

(2.15)

3. The chiral reciprocity gap operator

Let E = Ex0(·,p) be the solution of the scattering problem (2.9)-(2.12). Then for W ∈ H(curl,Ω) we
define the chiral reciprocity gap functional

R(E,W) =

∫
∂Ω

[(ν× E) · curl W − (ν×W) · curl( E]ds− 2βbγ2
b

∫
∂Ω

[(ν× E) ·W]ds. (3.1)

We note that the integrals are interpreted in the sense of the duality between H− 1
2

div(∂Ω), H− 1
2

curl(∂Ω). In
particular, if W ∈ H(Ω) ⊂ H(curl,Ω), then we define the chiral reciprocity gap functional operator
R : H(Ω)→ L2

t(Λ) given by

R(W)(x0) = R (Ex0(·,p(x0)),W)p(x0), x0 ∈ Λ. (3.2)

The method is based on the solvability of an integral equation for the reciprocity gap functional, which
contains an appropriate family of solutions in H(Ω). For this family of solutions we use the chiral
Herglotz wave functions. In [4] the electric Eg and magnetic Hg chiral Herglotz wave functions have been
defined as

Eg = EgL + EgR , Hg = −i

√
ε

µ
(EgL − EgR) ,

where the LCP and the RCP Beltrami Herglotz fields EgL and EgR with kernels gL and gR, respectively
are given by

EgL(x) =

∫
S2
gL(d̂L)e

iγLd̂L·x ds(d̂L), EgR(x) =

∫
S2
gR(d̂R)e

iγRd̂R·x ds(d̂R), (3.3)

with d̂L, d̂R ∈ S2. For the kernels we have gA : S2 → T 2
A(S

2), A = L,R, where

T 2
L(S

2) =
{
bL ∈

(
L2(S2)

)3
: ν · bL = 0, ν× bL = −ibL

}
,

T 2
R(S

2) =
{
bR ∈

(
L2(S2)

)3
: ν · bR = 0, ν× bR = ibR

}
.

Also, we define the following space

T 2
LR(S

2) =
{
b = bL + bR : bL ∈ T 2

L(S
2), bR ∈ T 2

R(S
2)
}

,
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with the inner product
< b,h >T 2

LR(S
2)= (bL,hL)T 2

L(S
2) + (bR,hR)T 2

R(S
2),

where bA, hA, A = L,R, are the Beltrami fields of b and h, respectively and (bA,hA)T 2
A(S

2) =
∫
S2 bA ·hAds

[4].
We consider the electric dipole

Ez(x,q,γb) =
kb

2γ2
b

q ·

{(
γbL Ĩ+

1
γbL
∇∇+∇× Ĩ

)
eiγbL |x−z|

4π|x− z|
+

(
γbR Ĩ+

1
γbR
∇∇−∇× Ĩ

)
eiγbR |x−z|

4π|x− z|

}
,

located at z with polarization q ∈ R3 corresponding to γb, where γ2
b = γbLγbR = k2

b

(
1 − k2

bγ
2
b

)−1, with
k2
b = ω2εbµb. We investigate the solvability of the integral equation

R(E,Eg) = R(E,Ez(·,q,γb)), (3.4)

with respect to g in T 2
LR(S

2). The determination of D is based on the behavior of g for different sampling
points z ∈ Ω.

Lemma 3.1. The operator R : H(Ω)→ L2
t(Λ) defined by (3.2) is injective.

Proof. Let RW = 0. Then R (Ex0(·,p),W) = 0 for all x0 ∈ Λ and p ∈ R3. In (3.2) we apply the second
vector Green’s theorem for the first integral and Gauss’ theorem for the second integral in Ω \D for E
and W. Taking into account that both E and W are solutions of (2.9) in Ω \D and using the impedance
boundary condition on ∂D we take

0 =

∫
∂D

[(ν× E) · curl W − (ν×W) · curl E]ds− 2βbγ2
b

∫
∂D

(ν× E) ·Wds

=

∫
∂D

E ·
[
ν× curl W − ik−1

b γ
2
bλ(ν×W)× ν−βbγ2

b(ν×W)
]
ds.

(3.5)

We denote by Ĕ the unique solution of the following boundary value problem:(
k−2 −β(x)2η(x)

)
curl curl Ĕ− 2β(x)η(x)curl Ĕ− η(x)Ĕ = 0 in R3 \D, (3.6)

ν× curl
(
Ĕ−W

)
= ik−1

b γ
2
bλ
[
ν×

(
Ĕ−W

)]
× ν+βbγ2

bν×
(
Ĕ−W

)
on ∂D , (3.7)

x̂× curl Ĕ−β0γ
2
0x̂× Ĕ+ ik−1

0 γ2
0Ĕ = o

(
1
|x|

)
, |x|→∞,

uniformly in all directions of
x

|x|
∈ S2.

Substituting the tangential component of curl W from (3.7) into (3.5) we have that

0 = −

∫
∂D

E ·
[
ν× curl Ĕ− ik−1

b γ
2
bλ(ν× Ĕ)× ν−βbγ2

b(ν× Ĕ)
]
ds. (3.8)

In view of (2.12) and (2.7) the total electric field E is given by

E = p · B̃(·, x0) + E
s. (3.9)

From (3.8) and (3.9) we get

0 =

∫
∂D

[(
ν×

(
p · B̃(·, x0) + E

s
))
· curl Ĕ−

(
ν× Ĕ

)
· curl

(
p · B̃(·, x0) + E

s
)]
ds

− 2βbγ2
b

∫
∂D

[(
ν×

(
p · B̃(·, x0) + E

s
))
· Ĕ
]
ds.
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Taking into account that Ĕ and Es are both radiating solutions to equation (3.6) we have

−p ·
{∫
∂D

[
B̃(·, x0) · (ν× curl Ĕ) + (curl B̃(·, x0)) · (ν× Ĕ)

]
ds− 2βbγ2

b

∫
∂D

B̃(·, x0) · (ν× Ĕ)ds
}

= 0

and from the Stratton-Chu type formula (2.15) for chiral media we get

p · Ĕ(x0) = 0,

for arbitrary polarization p. Therefore ν× Ĕ(x0) = 0 for x0 ∈ Λ. Then, by the uniqueness of the electro-
magnetic scattering problem for a perfectly conducting obstacle in a chiral environment [1], we conclude
that Ĕ = 0 outside the surface Λ. By the unique continuation we have Ĕ = 0 outside D and therefore

ν× curl W − ik−1
b γ

2
bλ(ν×W)× ν−βbγ2

bν×W = 0 on ∂D.

From the uniqueness of the interior impedance chiral electromagnetic boundary value problem it implies
that W = 0.

Lemma 3.2. The operator R : H(Ω)→ L2
t(Λ) defined by (3.2) has dense range.

Proof. Assume that q ∈ L2
t(Λ) such that (RW,q)L2

t(Λ) = 0 for all W ∈ H(Ω). In view of the bilinearity of
functional R and the definition of operator R, we have that

(RW,q)L2
t(Λ) =

∫
Λ

R (Ex0(·,α(x0)),W)ds = 0, (3.10)

where α = (p · q)p. Setting

E(x) =

∫
Λ

Ex0 (x,α(x0))ds(x0),

then from (3.10) we have that
R(E,W) = 0.

Applying the Green’s and Gauss’ theorems for W, E in Ω \D as in Lemma 3.2 and taking into account
the boundary condition on ∂D, we conclude that

R(E,W) = −

∫
∂D

E ·
[
ν× curl W − ik−1

b γ
2
bλ(ν×W)× ν−βbγ2

b(ν×W)
]
ds = 0,

for all W ∈H(Ω). The Beltrami Herglotz fields EgL and EgR given by (3.3) solve the equation (2.4) as well
as (2.5) and (2.6), respectively. In addition taking into account that the interior problem (2.13)-(2.14) is
well-posed we can conclude that the set {ν× curl W − ik−1

b γ
2
bλ(ν×W)× ν− βbγ2

b(ν×W) |∂D} is dense
in L2(∂D) (see [4, 10]). Therefore, ν× E = 0 and ν× curl E = 0 on ∂D. Hence E has zero Cauchy data on
∂D and therefore E = 0 in the domain between Λ and ∂D. Finally, taking into account the jump relations
[1] of curl E across Λ we arrive at α = 0 on Λ. Therefore (p ·q)p = 0 for all p ∈ L2

t(Λ) and hence q = 0.

4. Determination of the shape and surface impedance

The determination of the shape of the unknown scattering object is based on the solvability of the
integral equation (3.4). In particular we have the following theorem.

Theorem 4.1. If R is the reciprocity gap functional corresponding to (2.9)-(2.12), then we have following.

(i) Let z ∈ D. Then for a given ε > 0 there exists a gεz ∈ T 2
LR(S

2) such that

||R(E,Egεz ) −R(E,Ez(·,q,γb))||L2(Λ) < ε

and the chiral Herglotz wave function Egεz converges to the solution of the interior boundary value problem in
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X(D,∂D) as ε→ 0. Moreover,

lim
dist(z,∂D)→0

||Egεz ||X(D,∂D) =∞, lim
dist(z,∂D)→0

||gεz ||T 2
LR(S

2) =∞.

(ii) Let z ∈ R3 \D. Then for a given ε > 0, if gεz ∈ T 2
LR(S

2) satisfies

||R(E,Egεz ) −R(E,Ez(·,q,γb))||L2(Λ) < ε,

we have that
lim
ε→0

||Egεz ||X(D,∂D) =∞, lim
ε→0

||gεz ||T 2
LR(S

2) =∞.

Proof.

(i) Let z ∈ D. From the definition (3.1), taking into account that E is the total field and W and Ez(·,q,γb)
are solutions to equation (2.9) in Ω \D and using the boundary condition on D, we have that

R(E,W) −R(E,Ez(·,q,γb)) = −

∫
∂D

[ν×W − ν× Ez(·,q,γb)] · curl E ds.

Taking into account that the chiral Herglotz functions are dense with respect to the H(curl,D) norm in
H(Ω) and using the trace theorem it follows that for every ε > 0 there exists a chiral electric Herglotz func-
tion Egεz such that ν× curl Egεz − ik

−1
b γ

2
b(ν× Egεz )× ν−βbγ

2
bν× Egεz approximates ν× curl Ez(·,q,γb) −

ik−1
b γ

2
b(ν×Ez(·,q,γb))×ν−βbγ2

bν×Ez(·,q,γb) with respect to L2
t(∂D). Also gεz is an approximate solu-

tion to (3.4) and Egεz converges to the solution of the chiral interior boundary value problem (2.13)-(2.14).
Moreover, since Ez(·,q,γb) with respect to the X(D,∂D) norm blows up as z approaches the boundary
∂D from inside, we obtain that for a fixed ε > 0,

lim
dist(z,∂D)→0

||Egεz ||X(D,∂D) =∞ and lim
dist(z,∂D)→0

||gεz ||T 2
LR(S

2) =∞.

(ii) Let z ∈ Ω \D. From (3.1) substituting E = Ei + Es and (3.9) we take

R(E,Ez(·,q,γb)) = I1 + I2,

where

I1 =

∫
∂Ω

[(
ν× Esx0

(x,p)
)
· curl Ez(x,q,γb) − (ν× Ez(x,q,γb)) · curl Esx0

(x,p)
]
ds(x)

− 2βbγ2
b

∫
∂Ω

(
ν× Esx0

(x,p)
)
· Ez(x,q,γb) ds(x),

I2 =

∫
∂Ω

[(
ν× Eix0

(x,p)
)
· curl Ez(x,q,γb) − (ν× Ez(x,q,γb)) · curl Eix0

(x,p)
]
ds(x)

− 2βbγ2
b

∫
∂Ω

(
ν× Eix0

(x,p)
)
· Ez(x,q,γb) ds(x),

By making use of the reciprocity properties [16],

B̃(x, x0) =
[
B̃(x0, x)

]>
, curlxB̃(x, x0) =

[
curlx0B̃(x0, x)

]>
,

where > denotes transposition, we can consider that the background dyadic Green’s function solves (2.8)
with respect to x0. Hence Esx0

(x,p) satisfies the same equation with respect to x0. Therefore the integral
I1 gives a solution W(x0) of (2.8). The function Ez(x,q,γb) is the fundamental solution of

curl curl E− 2βbγ2
bcurl E− γ2

bE = 0 (4.1)
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and Eix0
(x,p) = p · B̃(x, x0), x ∈ Ω \D, is a solution of (4.1). Hence I2 is an integral representation Stratton-

Chu type in chiral media (2.15) for −p · B̃(z, x0), z ∈ Ω \D. Let Egεz be a chiral electric Herglotz function
such that

||R(E,Egεz ) −R(E,Ez(·,q,γb))||L2(Λ) < ε. (4.2)

From the definition (3.1) and the boundary condition we obtain

R(E,Egεz ) = −

∫
∂D

E ·
[
ν× curl Egεz − ik

−1
b γ

2
bλ(ν× Egεz )× ν−βbγ

2
b(ν× Egεz )

]
ds.

Therefore

R(E,Egεz ) −R(E,Ez(·,q,γb))

= −W(x0) + p · B̃(x, x0) −

∫
∂D

E ·
[
ν× curl Egεz − ik

−1
b γ

2
bλ(ν× Egεz )× ν−βbγ

2
b(ν× Egεz )

]
ds.

(4.3)

We assume that ||Egεz ||X(D,∂D) < c with c being a positive constant independent of ε. Applying the trace

theorem we take that ν× Egεz is also bounded in the H− 1
2

div(∂D) norm. Therefore there exists a weakly

convergent subfamily converging to a function V ∈ H− 1
2

div(∂D) as ε→ 0. For x0 ∈ Λ we set

U(x0) = −

∫
∂D

E ·
[
ν× curl V − ik−1

b γ
2
bλ(ν× V)× ν−βbγ2

b(ν× V)
]
ds. (4.4)

From (4.2), (4.3), and (4.4) we obtain

U(x0) =W(x0) + p · B̃(z, x0), x0 ∈ Λ. (4.5)

Taking into account that the functions U(x0) and W(x0) are radiating solutions of (2.8) and using the
unique continuation principle we conclude that (4.5) holds true in R3 \

(
D∪ {z}

)
. If we now let x0 → z,

then we arrive at a contradiction.

Remark 4.2. The determination of the boundary ∂D of the scatterer is based on the integral equation (3.4)
which contains chiral Herglotz functions in H(Ω). In particular, if Egεz is a solution of (3.4) then the
boundary ∂D of the scatterer is reconstructed from points z with limε→0 ||g

ε
z ||T 2

LR(S
2) = ∞. It is obvious

that the boundary ∂D cannot be found from limε→0 ||Egεz ||X(D,∂D) = ∞ since the corresponding norm is
defined on the unknown scatterer D. Alternatively one can use instead of the chiral Herglotz functions
appropriate potentials, [1, 12].

Finally, assuming that the shape of the scatterer is known, we will establish an expression for the
surface impedance λ. In particular we prove the following theorem.

Theorem 4.3. Let Ez be the solution of (2.13)-(2.14) for a fix point z ∈ D. Then, the surface impedance λ is given
by

λ =
kb

2γ2
b

Im(q · Ez(z)) + Iz(Ω,q,γb)∫
∂D |ν× (Ez − Ez(·,q,γb))|2ds

, (4.6)

where the integral

Iz(Ω,q,γb) = −i

∫
∂Ω

[
(ν× Ez(·,q,γb)) · curl Ez(·,q,γb) − (ν× Ez(·,q,γb)) · curl Ez(·,q,γb)

]
ds

+ 2iβbγ2
b

∫
∂Ω

(ν× Ez(·,q,γb)) · Ez(·,q,γb)ds

is depended on z,Ω, and q.
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Proof. Let z ∈ D. We consider the unique solution Ez of the interior mixed boundary value problem
(2.13)-(2.14) and we define the function

Uz(x) = Ez(x) + Ez(x,q,γb), x ∈ D.

Taking into account the boundary conditions

ν× curl Uz = ik−1
b γ

2
bλ(ν×Uz)× ν+βbγ2

bν×Uz on ∂D,

the integral

I =

∫
∂D

[
(ν×Uz) · curl Uz − (ν×Uz) · curl Uz

]
ds− 2βbγ2

b

∫
∂D

(ν×Uz) ·Uzds

gives

I = 2ik−1
b γ

2
bλ

∫
∂D

|ν×Uz|2ds.

Furthermore, in view of the bilinearity of the integral I we have

I = I1 + I2 + I3 + I4, (4.7)

where

I1 =

∫
∂D

[
(ν× Ez) · curl Ez − (ν× Ez) · curl Ez

]
ds− 2βbγ2

b

∫
∂D

(ν× Ez) · Ez ds,

I2 =

∫
∂D

[
(ν× Ez) · curl Ez(·,q,γb) − (ν× Ez(·,q,γb)) · curl Ez

]
ds− 2βbγ2

b

∫
∂D

(ν× Ez) · Ez(·,q,γb)ds,

I3 =

∫
∂D

[
(ν× Ez(·,q,γb)) · curl Ez − (ν× Ez) · curl Ez(·,q,γb)

]
ds− 2βbγ2

b

∫
∂D

(ν× Ez(·,q,γb)) · Ez ds,

I4 =

∫
∂D

[
(ν× Ez(·,q,γb)) · curl Ez(·,q,γb) − (ν× Ez(·,q,γb)) · curl Ez(·,q,γb)

]
ds

− 2βbγ2
b

∫
∂D

(ν× Ez(·,q,γb)) · Ez(·,q,γb)ds.

In the integral I1, we apply the second vector Green’s theorem for the first integral and the Gauss’ theorem
for the second integral for Ez and Ez in D and taking into account that Ez, Ez are solutions of (2.13) we
get I1 = 0. A similar application in Ω \D for Ez(·,q,γb) and Ez(·,q,γb) gives

I4 =

∫
∂Ω

[
(ν× Ez(·,q,γb)) · curl Ez(·,q,γb) − (ν× Ez(·,q,γb)) · curl Ez(·,q,γb)

]
ds

− 2βbγ2
b

∫
∂Ω

(ν× Ez(·,q,γb)) · Ez(·,q,γb) ds.

Taking into account that Ez = q · B̃(·, z) and using the representation (2.15) we get I2 = −q · Ez and
I3 = q · Ez. Substituting the values of the integrals in (4.7) we obtain (4.6).
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