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Abstract

This paper presents approximate controllability results for impulsive stochastic integro-differential systems with state-
dependent delay in a Hilbert space. The use of the resolvent operator in the sense of Grimmer, as well as stochastic analysis
techniques, yields a new set of results. Finally, an example is given to show how the theory that has been worked out can be put
into practice.
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1. Introduction

Integro-differential equations can be used to describe a lot of natural phenomena arising from many
areas such as physics, population dynamics, electrical engineering, finance, biology, ecology, sociology,
and other areas of science and engineering. Most of these phenomena can not be described through
classical differential equations. That is why in recent years they have attracted more attention of several
mathematicians, physicists, and engineers. Qualitative properties such as existence, uniqueness, con-
trollability, stability, and optimal control for various integro-differential equations have been extensively
studied by many researchers with the help of revolvent operator theory, fixed point theorems, see for
instance [5, 15, 19, 28, 50, 51]. To build more realistic models in economics, social sciences, chemistry,
finance, physics, and other areas, stochastic effects need to be taken into account. Therefore, many real-
world problems can be modeled by stochastic integrodifferential equations. The deterministic models
often fluctuate due to noise, so we must move from deterministic control to stochastic control problems.
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In the last decades, many works have been done on the stochastic integrodifferential equations see for
example [16, 19].

Impulsive differential equations are vital to study evolutionary processes in chemical reactor systems,
electromagnetic waves, population growth models, and biological systems, etc. In such systems, the
state changes abruptly at some instants during the evolution process in comparison to the duration of
the whole process. Such sudden changes can be well approximated as being in the form of impulses
and these processes are more appropriate to be modeled by the impulsive differential equations, (see
[8, 24, 34, 43]). On the other hand, there are various real-world phenomena, for example, automatic
control systems, heat conduction in materials with fading memory, inferred grinding models and neural
networks etc, depending on the past states of the system and described by the delay differential equations
(see [22, 35, 42]). In addition, the state-dependent delay differential equations arise in numerous practical
models (see for example [4, 36], etc). But it appears that many authors considered the constancy of the
time delay as an extra assumption, which makes the study more accessible. Several authors contributed
towards the solvability and asymptotic analysis of these kinds of systems with state-dependent delays,
and the details can be found in various articles, see for instance, [7, 26, 27], etc and the references therein.

The problem with nonlocal condition, which is a generalization of the problem of classical condition,
was motivated by physical problem. The leading deal with nonlocal conditions due to Byszewski [10,
11]. Since it is demonstrated that the nonlocal problems have better effects in applications than the
classical Cauchy problem. Stochastic differential equations with nonlocal conditions were studied by
many authors and some basic results on nonlocal problems have been obtained. For more details about
nonlocal conditions see [3, 9, 31, 41].

One of the important fundamental concepts in mathematical control theory is controllability, it plays
a crucial role in both deterministic and stochastic control systems. Since, the controllability notion has
extensive industrial and biological applications, in the literature, there are many different notions of con-
trollability, both for linear and nonlinear dynamical systems. Controllability of the deterministic and
stochastic dynamical control systems in infinite-dimensional spaces is well-developed using a different
kinds of approaches. In the case of infinite dimensions, the notions of exact and approximate controlla-
bility are to be distinguished. Approximate controllability enables to steer the system into an arbitrarily
small neighborhood of the final state, whereas the exact controllability means that the system can be
steered to the desired final state. It has been observed in the literature on the infinite dimensional control
systems that the exact controllability rarely holds (see [6, 38, 46, 53], etc). Moreover, the approximately
controllable systems are more prevalent and adequate in applications, see for example, [32, 38], etc.
Therefore, it is important to investigate the problem of approximate controllability of nonlinear systems.
Approximate controllability of nonlinear stochastic differential and integrodifferential systems with and
without delay in infinite-dimensional spaces has been extensively studied (see [1, 2, 12, 17, 30, 41, 47]
for example). Recently, Muthukumar and Rajivganthi in [41] proved the approximate controllability of
control systems governed by a class of impulsive neutral stochastic functional differential systems with
state-dependent delay in Hilbert spaces. Ahmed [1] studied the approximate controllability of impulsive
neutral stochastic differential equations with fractional Brownian motion in a Hilbert space. Using the
Banach fixed point theorem, Chen [12] studied the approximate controllability for semilinear stochastic
equations driven by fractional Brownian motion in Hilbert spaces. Very recently, Huang and Fu [30]
focused on the approximate controllability for a class of semilinear stochastic integrodifferential equa-
tions. The approximate controllability of a new class of nonlocal and non-instantaneous impulsive Hilfer
fractional neutral stochastic integrodifferential equations with fractional Brownian motion was investi-
gated by Ahmed et al. [2]. The approximate controllability of Sobolev-type fractional control problems in
Hilbert spaces without uniqueness was demonstrated by Vijayakumar et al. in [48] by applying the fixed
point theorem to multivalued maps with nonconvex values. Very recently, authors in [18] established and
proved a set of sufficient conditions for the approximate controllability of an Atangana-Baleanu fractional
neutral stochastic system with infinite delay. They did this through the utilization of the theory of mul-
tivalued maps and the Bohnenblust-Karlin fixed point theorem. Sivasankar and Udhayakumar in [44]
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provided a set of appropriate conditions for the approximate controllability of second-order impulsive
neutral stochastic integro-differential evolution inclusions with infinite delay by employing concepts from
the cosine function, sine function, and the fixed point method.

Over the course of many years, a large number of high-quality papers of paramount importance have
been published. In contrast, the number of works involving state-dependent delay integro-differential
equations with impulses is still limited, and there are only a few excellent and interesting works to be
found in the literature. Taking into account the papers mentioned above, the limited number of works in
the area, and the desire to present new results, we present in this paper results on the approximate con-
trollability of impulsive stochastic integral-differential equations with state-dependent delay in a Hilbert
space of the form

dy(t) = [Ay(t) + [§T(t = s)y(s)ds + E(, Yo(uy,) + CV(D) at
+C(trycr[t,yt))dw(t)r te ] =[0,N], t 7& ti,

Ay(ty) = Li(y(ty)), i=1,...,m,
y(0) +ux) =yo=9 € B,

(1.1)

where the state variable y takes values in a Hilbert space X, Ay(t;) = y(tf) —y(t; ) represents the
jump in the state y at time ti, 0 < t; < t2 < --- < t;, < N. The history ys represents the function
defined by ys : (—o0,0] = X, ys(0) = y(s + 0) belongs to the some abstract phase space B described
axiomatically and o : ] x B — (—oo,N] is a continuous function. A is the infinitesimal generator of a
compact Cp-semigroup (T(t))¢>0 on the Hilbert space X, the control function v is given in L%F(],U), U
is a Hilbert space, and C is a bounded linear operator from U to X. Let Y be another Hilbert space,
suppose {W(t)}t>0 is a given Y-valued Brownian motion or Wiener process with a finite trace nuclear co-
varianve operator Q > 0 defined on a complete probability space (Q, F,IP). Further, let PC(], 12(Q,X)) =
{y(t) is continuous everywhere except for some t; at which y(t;") and y(t;") exist and y(t;) = y(ti)} be
the Banach space with the norm ||y[[pc = sup, ¢ ly(t)| < co. Denote by PC = PC(], L2) the closed subspace
of PC(J,L2(Q, X)) consisting of a measurable and F-adapted X-valued process y(-) € PC(J,L2(Q, X))
with the norm ||y||? = sup,¢; E[[y(t) |%- The functions &, ¢, I;, u are appropriate functions to be specified
later.

To the best of our knowledge, up to now no work has reported on the approximate controllability
of impulsive stochastic integral-differential equations with state-dependent delay and nonlocal initial
condition in Hilbert spaces (equation (1.1)) using the resolvent operator approach. It has been an untreated
topic in the literature, and this fact is the main aim and motivation of the present work.

The main contributions of this paper are summarized as follows.

e A new class of impulsive stochastic integro-differential equations with state-dependent delay and
nonlocal conditions in Hilbert spaces is formulated.

e The discussions are based on stochastic analysis theory, Krasnoselskii’s fixed point theorem and the
theory of resolvent operator in the sense of Grimmer.

e The result is extended to study the approximate controllability of nonlinear impulsive stochastic
integro-differential equations with state-dependent delay and nonlocal conditions in Hilbert spaces.

e Finally, an example is given to illustrate the proposed theoretical results.

We will firstly in Section 2 introduce some notations, concepts, and basic results which will be needed
in the sequel. The approximate controllability results for the system(1.1) are established in Section 3 by
using Krasnoselskii fixed point theorem. Finally, in Section 4 we apply the obtained results to (1.1) to
illustrate the applications.

2. Preliminaries

In this section, we recall some fundamental definitions, notations, and results, which will be used
throughout the work.
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Let (QQ,FF,IP) be a complete probability space furnished with a complete family of right continuous
increasing sub o-algebras {IFy, t € J} satisfying [F; C IF. An X-valued random variable is an IF measurable
function y(t) : Q — X and the collection of random variable S = {y(t, w) : Q — X|t € J} is a stochastic
process. Generally, we suppress the dependence on w € ) and write y(t) instead of y(t, w) and y(t) :
J] — X in the place of S. Let (yi)x>1 be the sequence of real valued independent Brownian motions. Set
W(t) = Y 2 Vokyk(tnk, t = 0, where {nx}x>1 is a complete orthonormal basis in Y and &, > 0,
(k=1,2,...) are nonnegative real numbers.

Let Q € L(Y,Y) be an operator defined by Qni = &xny with Tr(Q) = > 77, 8x < oo (Tr(Q) denotes
trace of Q). Then the above Y-valued stochastic process is called a Q-Wiener process. [Fy = o(W(s) :
0 < s < t) denotes the o-algebra generated by W and Fn = Fy. Let ¢ € L(Y,X) and define |@|%, =
Tr(eQe*) = > 5, I[VOkenk||? < oo, then ¢ is called a Q-Hilbert Schmidt operator and we denote its set
as Lg (Y, X) with the norm H(szQ = (@, P).

Further in this paper, we will employ an axiomatic definition for the phase space B which is introduced
by Hale and Kato [29], also see [25] for details. The axioms of the space B are established for IFo-
measurable functions from (—oo, 0] into X, endowed with a seminorm || - || 5, which satisfies the following
fundamental axioms.

(A1) If y : (—oo,N) — X is continuous on [0,N) and yo € B, then for each t € [0,N) the following
conditions hold:

(i) yt € B;
(i) [yl < Allyells;
(i) [lyells < A2(t)|lyolls + Az(t) sup{||y(s)|;0 < s <N},

where Ay > 0 is a constant, A, Az : [0,00) — [0,00), A is locally bounded, A3 is continuous and
A1, A2, Az are independent of y.

(A;) For the function y(-) in (A1), y¢ is a B-valued continuous function on [0, N).

(A3) The space B is complete.

To prove the results, we mention the following essential properties.

Lemma 2.1 ([52]). Let y : (—oo, N] — X be an F-adapted measurable process such that we have the Fo-adapted
process yo = @(t) € [2(Q, B) and yly € PC(], X)), then

Elydld < A2E[l@]% +As sup {E|jy(s)|*},
0<s<N

where Ay = SUPy¢g Ao(t), Az = SUp¢; As(t).
The next lemma is proved using the phase space axioms.

Lemma 2.2 ([26]). Let ¢ € B and be such that ¢ € B for each t € R_. Assume that there exists a locally
bounded function J® : R_ — [0, 00) such that E|| @3, < J®(t)E| (% for t € R_. Let y : (—oo, N] — X be the
function such that yo = ¢ and y € PC(], 12), then

EllysllB < (A2 +J§)E|@||% + Assup {E|[y(B)||% B € [0,max{0,s}]}, s & (—oo,N],

where ] =sup, g J?(t), A2 = SUp ¢y No(t), Az = SUp ¢y As(t).
The theory of resolvent operator plays an important role in studying the existence of solutions of Eq.
(1.1). Next, we collect definitions and some basic results about this theory.

Let X and M be Banach spaces. We denote by £(X, M) the Banach space of bounded linear operators
from X to M endowed with the operator norm, and we abbreviate this notation to £(X) when X =M.



M. Fall, A. Mané, B. Dehigbe, M. A. Diop, J. Nonlinear Sci. Appl., 15 (2022), 284-300 288

In what follows, X; is a Banach space, A and B(t) are closed linear operators on Xj, X is the Banach
space D(A) endowed with the graph norm ||z||x, = [|Az|| + ||z]] for z € Xy and C(R™,X;) denotes the
space of continuous functions from R into X;. For further purposes, let us consider the following system

t

{y’(t) = Avy(t) +L B(t—s)y(s)ds fort >0, 2.1)

Y(0) =vo0 € X;.

Definition 2.3 ([21]). A bounded linear operator valued function R(t) € £(Xj), t > 0 is called the resolvent
operator for system (2.1) if it satisfies the following conditions:

(i) R(0) =1d and |[R(t) 5 (x,) < De®* for some constants D and &.
(ii) For all x € Xy, R(t)x is continuous for t > 0.
(iii) R(t) € £(Xp) for t > 0. For x € Xo, R(:)x € C (R4, X;) N C(R,,X,) and

t

B(t —s)R(s)xds = R(t)Ax—kJ R(t—s)B(s)xds, t > 0.
0

t

R'(t)x = AR(t)x + J
0

In the sequel, we assume that the following assumptions hold:

(C1) A is the infinitesimal generator of a Co-semigroup (T(t))¢>0 on Xj.

(Cp) Forall t >0, B(t) is a closed linear operator from X, to X; and B(t) € £(Xp,X;). For any x € Xj, the
map t — B(t)x is bounded, differentiable and the derivative t — B’(t)x is bounded and uniformly
continuous for t > 0. In addition, there is a function & : Rt — R™ which is integrable such that for

d
each x € Xy, the map t > B(t)x belongs to W (R*,X;) and HEB(UXH <A)|x]|, x € X1, t € RT.

Theorem 2.4 ([23]). Assume that (C1) and (Cy) hold. Then, Eq. (2.1) has a unique resolvent operator (R(t)) 30"

We have the following important estimate.

Lemma 2.5 ([14]). Let (Cy1) and (Cy) be satisfied. Then, for all t > O there exists a constant @ such that
[R(t+k) —R(KJR(t)|lc(x) S @k for 0 <k <t < N.

The following theorem establishes the equivalence between the operator-norm continuity of the Co-

semigroup (T(t)),-, and the resolvent operator for integral equations.

Theorem 2.6 ([20]). Let A be the infinitesimal generator of a Co-semigroup (T(t)),-, and let (B(t)), -, satisfy
(C2). Then, the resolvent operator (R(t)),, for Eq. (2.1) is operator-norm continuous (or continuous in the
uniform operator topology) for t > 0 if only if (T(t)) >0 18 operator-norm continuous for t > 0.

Let y(N;yo,v) be the state value of (1.1) at terminal time N corresponding to the initial value yo =
¢ € B. To define the notion of approximate controllability we introduce the following set:

R(N,yo) ={y(N;yo,v) : v € L*([0,N], U)},

which is called the reachable set of system (1.1) at terminal time N. Its closure in X is denoted by R(N, yo).
We next present the notion of approximate controllability.

Definition 2.7 ([39]). System (1.1) is said to be approximately controllable on the interval [0, N] if R(N,yo)

is dense in X, i.e., R(N,yo) = X.

To discuss the approximate controllability of system (1.1), we introduce the following operators:
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e The controllability Grammian ¥} is defined as
N
yN = J R(N —s)CC*R*(N —s)ds,
0

where R*(t) and C* denote the adjoints of the operators R(t) and C, respectively.
o TIA YY) = AT +¥)) 1,
In the sequel, we always assume that the operator TT(A, V) satisfies:
(Ho) ATT(A, W) — 0 as A — 07 in the strong operator topology.
From [13], hypothesis (Hp) is equivalent to the fact that the linear control system:
t
y'(t) = Ay(t) —i—J MNt—s)y(s)ds+ Cv(t) forte],
0 (2.2)
y(0) =yo € B,

corresponding to Eq. (1.1), is approximately controllable on J.
Furthermore, we have that

Theorem 2.8 ([6, 13]). The following statement are equivalent.

(a) The control system (2.2) is approximately controllable on [0, N].
(b) C*R*(t)y =0forallt € [0,N], =y =0.
(c) The condition (Hy) holds.

Lemma 2.9 ([37]). For any gn € 12(Q,X), there exists @ € 1%(Q, LZ(J,LQ(Y,X))) such that gn = Egn +

N
L @(s)dW(s).

Next, we give the following fixed point principle which will be used in the sequel to prove the existence
of mild solutions of Eq. (1.1).

Lemma 2.10 ([33, 45, Krasnoselskii fixed point theorem]). Let D be a closed, convex, and nonempty subset of
a Banach space X. Let F, G be the operators such that

(i) Fx+ Gy € D, wherever x,y € D;
(ii) Fis compact and continuous;
(iii) G is a contraction mapping.

Then, there exists z € D such that z = Fz + Gz.
Finally, we end this section by presenting the mild solutions of system (1.1).

Definition 2.11. A stochastic process y : ] x (O — X is said to be a mild solution of Eq. (1.1) if

(@) y(t) is measurable and Fi-adapted for each t € J;
() yo(-) = @ € B on (—oo,0] satisfying || ¢||s < oo;
(c) y(t) € X satisfies the following integral equation:

t

R(t —$)&(s, Yo(s,ys))ds + L R(t—s)Cv(s)ds

t
+J R(t—$)(s, Yo(oy,))dW(s) + Y R(t—t)T (y(t))).

o<ti<t



M. Fall, A. Mané, B. Dehigbe, M. A. Diop, J. Nonlinear Sci. Appl., 15 (2022), 284-300 290

3. Approximate controllability results

In this section, we prove the approximate controllability of system (1.1). To this end, we introduce the
following hypotheses.

(Hy) The function t — ¢ is well defined from =Z(c~) = {o(s, $);(s,$) € ] x B,o(s,$) < 0} into B

and there exists a continuous and bounded function J® : Z(c~) — (0,00) such that E[jy|3 <
J¢ (t)E| |3 for every t € Z(o).

(H;) The resolvent operator (R(t)) . is compact and there exists a constant My > 1 such that ||[R(t)| <
M, for all t > 0. -

(H2) The function & : ] x B — X is continuous and there exist two constants Tz and S; such that

E[E€(ty)I> < Te(1+yl3),  EJ&(ty) — &t 2)|* < Selly — z[3-

(H3) The function C: ] x B — X is continuous and there exist two constants T; and S; such that

Ellc(ty)I? < Te(@+yllR),  Ellc(ty) =t 2)l* < Sclly — 25

(Hyg) The functions I; : X — X are continuous and there exist nondecreasing continuous functions Ty, :
[0,00) — [0, 00) such that for each y € X,

Ty
7IL(T) = 61 < 0.
T

E|L(y)]> < Ty Elly|? and lim

(Hs) pis continuous and there exists a constant T,, satisfying

Elln(w)? < Tu( + lyl3).

(He¢) C is a bounded linear operator from U into X such that ||C|| = Mc, for a constant M¢ > 0.
(H7) The functions & and ¢ are bounded uniformly.
For any N € [%(FF,X) and A > 0, we define the control function as follows.

N

Egn + L o(s)dw(s) — R(T) (9(0) — u(y))

VA (t) = C*R*(N —t)TT(A, W)

N N
- | ROV sl ot yadls) — | RIN=)cls ol aw(s) - 3 R(t—ti)h(y(ti))].

0 0 o<ti<t

Theorem 3.1. Assume that hypotheses (C1), (C2), (He), (H1)-(He) hold. Then, Eq. (1.1) with v = v*(t,y) has at
least one mild solution provided that

6M3

m 4 4N2

_ 7MAMEN

(T + N2Te + N2T¢ ) Az +m ) Th] x (1 + C}\20> <1, (3.1a)
i=1

S* 1= 2MZN?(Sg + S¢)A; < 1. (3.1b)
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Proof. Let K ={y € PC(],L?) : y(0) = ¢(0)} be the space endowed with the uniform convergence topology.
Using the control vA(t), we define the operator ¥V : K — K by

t t

R(t —s)&(s, Yo(s,y,))ds —i—J R(t—s)Cv(s)ds

Yy(t) = R()[(0) — p(y)) +J 0

0

t
—i—J R(t—$)C(s, Yo(sy,) ) AW(s) + Z R(t—ti)Li (y(ty)).

0 o<ti<t

It is clear from the definition of Y, for A > 0, that the fixed point of Y is a mild solution of system (1.1).
Thus, to prove the existence of mild solutions, it suffices to prove that Y has a fixed point. For each T > 0
let E; ={y € K: E|jy||?> < t}. Then, E. is a bounded closed convex subset in K.

For convenience, we split the proof into a sequence of steps.

Step 1: We can claim that YE; C E;. Assume that our claim is not true, then there exists a constant A > 0
such that for every T > 0, there exists a function y* € E. and t* € | such that E||Yy*(t7)||*> > T. From
Lemma 2.2, it follows that E|lyg ||2 < (A2 +J9)E| |3 + Azt := T*, then we obtain

’ tT

N

CRYN =0T\ [Egn + | (s)dw(s) —R(T)(0(0) — ufy)

E[v(t%,y7)|* =E

N N
—J R(N —s)&(s, o(s,ys))d(s) —J R(N —s){(s, o(s,ys))dW(s)

> RE-tIL(y(t)] H

< S Ejlgn P+ JO EJ[(5)]2ds + MEE 0 (0)]2 + M3E lu(y™) |

tT

-
N L 1E||R(t—s)a(s,y;(s,y@nﬁd(s)+TT(Q)NL E[R(t—$)0(s, Y% (s yr))IPd(s)

mZIEIII )ls

7M2 M2

N
E|[gnlf* + L E||®(s)*ds + MZE||@(0)]* + ME[ (y™) |

t’lf

t'T
" M%NL €05, 051 2A8) + THQIMEN | B,y 05 P9

mZIEHI IP

7M2 M2

0| Eflgn|P + L E||(s)|2ds + M2E|@(0)]? + M3T, (1 +7°)

m
+ MEN?TE (14 7%) + MGN2Tr(Q) T (1+T) + Mm > TIiT] ,
i=1

and
T < E[[vyT(t9)|?
2

;
MB(E (@ (0) % + E[|u(y™)[*) + 6 L R(t™ —s)Cv(s)ds
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2

2
+ 6E +6E

tT
[REGEREETR S

t’T
J R(tT = $)&(s, Yg(syr))ds 0

0

+6M mZIEHI ))|1?

t’T

tT
< 6ME[E||(0)| + Tu(1 +7%)] + 6MZMEN L E[[v}(s)[2ds + 6M2N JO EllE(s,y% o)) IPds

tT m
+6M3NTT(Q) J E[[C(s, Y3 (o) IPds +6MGm Y Tr T
0 s —
< 6MG[E(@(0)[* + Tu(1 + )] + 6MGMENE VA () |2

m
+ 6MENT (14 7) + 6MN T (1+ %) + 6Mfm ) _ Ty .
i=1

Dividing both sides by T and taking the limit as T — co, we get

1<6M;j

— i 7TMAMAN?2
(TPL+N2TE.+N2TC>A3+mZTL] X (1—|—C}\20 ,
i=1

and this contradicts (3.1a). Hence, for each T > 0, there exists some positive number T such that YE C E.
Next, we set Y := Y7 + Y5, where

t t

Yy(t) = .[0 R(t —s)&(s, Yo(sy,))ds + L R(t —8)C(s,Yo(s,y,))dW(s),
t

Yzy(t):R(t)[cp(O)—u(y)]JrJ R(t—s)CvM(s)ds+ > R(t—t)Li(y(ty)).

0 o<ti<t

Step2: Yi(y) is a contraction. Let y,z € E+, then

2

t
E[Y1y(t) — Yiz(t)|? < 2E JO R(t—s) [a(s,yg(s,ys]) _ a(s,zc,(s,zs))] ds

2

+2E th(t—s)[as,yg(s,ys)) (5 Zo(520)) | AW(5)

0

t
< 2M2N L E|I&(s, Yo(sye)) — &S, Zo(s,20)) P ds

t
+2M§NJ E|IC(s, Yo(s,ye)) — G5, Zo(s,20))||*ds

<2M2N SEHUG (s,ys) — %o (s,zs) H +2M2N SCHUO‘ (s,ys) — Z0o(s,zs) ||2
<2

MZN?(Sg +Sc)M; sup ly(s) —z(s)|?
0<s<N

<2MEN(Se + S IMslly —zlfBc = $*|ly —zllbc

Therefore, by (3.1b), we conclude that Y is a contraction mapping on E-.
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Step3: Y, maps bounded sets to bounded sets in E. Let y € E1, we have

¢ 2 m 2
E[[V2y(t)[? < 3E[R(t)[@(0) — u(y)]|]* +3E L R(t—s)Cv (s)ds|| +3E|| Y R(t—t)Ii(y(tf )
i=1
t
MBE[ @ (0)|* + E[u(y)|*] + 3MIMZN L E|[|v*(s)|*ds + 3M mZ E||T; (y(tF ) |12

MGIE(|@(0) ]I + T (1 + )] + 3MGMENE[|V | + 3M%mZ Tit=T" < co.
i=1

Consequently, Y2E: C 13

Step 4: Y, is continuous. In factlet 0 <t < t+¢ < N, where t, t+ € and |¢] is sufficiently small, we have

E|[ Yoyt + ) — Yoy(t)|?
2

<AE[|R(t +€) — RO [@(0) — w(y)l|2 +4E| Y R(t+ e —t;) — R(t — t)]T; (y(tF )
i=1
t 2 t+e 2
+4E J[R(t—l—s—s)—R(t—s)]Cv}‘(s)ds +4E J R(t+ ¢ —s)Cv (s)ds
0 t

< 8[|R(t+ &) —R(O)IMBl@(0)* + Tu(T+T) +4 ) [R(t+e—ti) —R(t—t)[* Ty,
. e

+J IR(t4 e —s) —R(t—s)|*E||Cv*(s)||*ds +J [R(t+ & —s)||%E||Cv*(s)||*ds.

0 t

By the continuity of (R(t))t>0 in the operator-norm topology and the dominated convergence Theo-

rem, we see that the right hand side of the above inequality tends to zero as ¢ — 0. Thus, Y(E.) is
equicontinuous on J.

Step 5: F(t) = {Yoy(t),y € E} is relatively compact in Er. We decompose Y, as P; + P, where P; and P;
are the operators on E; defined, respectively, by

t

Py(t) = R(t)[@(0) — p(y)] + JO R(t —s)CvA(s)ds

and

Pyt Z R(t— )L (y(t))).

t

We now prove that F;(t) = {Gy(t),y € E<}, where Gy(t) = J R(t —s)Cv(s)ds. For this purpose, for any
0

n € (0,1) we define the following operators

t-—m t—m
R(t—s—n)Cv (s)ds, G*My(t) :J R(t —s)Cv(s)ds.
0

GMy(t) = R(n)J

0

It follows from the compactness of R(n) that the set {G"y(t), y € E+}is relatively compact in E.. Moreover,
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using Lemma 2.5 and Holder inequality for each y € E, we have

t—n t—n 2

J R(n)R(t—s—n)Cv)‘(s)ds—J R(t—s)Cv(s)ds
0 0

E||GMy(t) — G™My(t)|* = E

t—
<MEt| T IRMIR(E =1 —9) = R = 9)PE[5) s
t—
< M%t(Ln)? Jo E|[v*(s)|*ds — 0 asn — 0.

Therefore, the set {G*y(t), y € E+} is relatively compact in E. by using the total boundedness.
Applying this method again, we get

2
t t-—m
E|Gy(t) — G*”y(t)H2 =E J R(t—s)Cv(s)ds —J R(t—s)Cv(s)ds
0 0
t 2 t
=E J R(t—s)Cv(s)ds|| ds < M%Mzcnj E|v*(s)||*ds — 0 asn — 0.
t-— t—

Hence, G*"(y) converges uniformly to G(y) and then F(t) is relatively compact in E+.
To prove the compactness of Py, note that

O, te[oztl]/
R(t—t1)T1 (y(ty)), t e (ty, o,
Pay(t) = Y R(t—t)Li(yty)) =
o<ti<t m
D Rt—t)L(y(ty)), te (ti,N],
i=1

and that the interval [0, N] is divided into finite subintervals by ti,i = 1,2,..., m. Thus, we only need to
prove that

Ot) = R(t—t)li(y(t;)), te (t,tl,y€Ed
is relatively compact in E, as the cases for other subintervals are the same.

Indeed, from (H;) and (Hy), it follows that the set {R(t —t1)I1(y(t1)),y € E+} is relatively compact in E
for all t € [tq,tp]. Then, F(t) ={Y2y(t),y € E+} is relatively compact in E;. By the Arzela-Ascoli theorem,
Y5 is completely continuous. Finally, by means of the Krasnoselskii fixed point theorem, the operator Y
has a fixed point, which is a mild solution of system (1.1). The proof is complete. O

We are now on the position to prove the approximate controllability of system (1.1).

Theorem 3.2. Assume that (Ho), (Hy), and the assumptions of Theorem 3.1 are satisfied. Then, system (1.1) is
approximately controllable on J.

Proof. Let y” be a solution of (1.1), then it is not difficult to see that

N
Y (N) = gn — AT\ W) | Eg N +JO ®(s)dw(s) — R(N)[e(0) — p(y*(N))]
N N
+J0 R(N —s)E(s,yﬁ(S,yé))ds+L RIN = 5)C(5, b (g 42y ) AW(S) (3.2)

+ D R(t_ti)li(y(ti))]~

0<ti<N
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By the uniform boundedness of & and (, there exist subsequences still denoted by {E(s,yﬁ (s A))};\ and
{C(s,yg (s,y)‘))b" which converge weakly to &(s) and ((s), respectively. Therefore, by (3.2), (Hp), the

Lebesgue dominated convergence theorem, and the compactness of R(t), it follows that

N

Egn + L &(s)dw(s) — RON)[0(0) — u(y(N))]

E[y*(N) —gn/* = E|[ATT(A, W5

N

N
+J R@*—ﬂﬂ&yQ&%ﬂds+J RIN = 5)C(5, Y (g 1)) AWI(S)

0 0
N

Egn + L #(s)aw(s) — RON)[@(0) — u(y™(N))]

+ Z R(t—ti)Li(y(ty))

O<ti<N

2

< 6E||ATT(A, W)

N 2
+6E <m()\,w§;‘) JO IRIN = $)&(s, Y (5 ) — &(5)] \d8>

N 2
+6E <m(7\,%N ) L IRIN = )G (s, (¢ ya)) — C(s)] udW(s))

+EE[ATA YY) > RIN—t)L(y () |* = 0, as A — 0%

0<ti<N

Hence, y*(N) — gn holds in X and then we obtain the approximate controllability of system (1.1). O

4. Example

To illustrate our main results, we consider the following control system governed the stochastic partial
integro-differential equation with state-dependent delay

2 t 2
dz(t,x) = | =—=z(t,x) +J v(t—s)=5z(s,x)ds +AS(t,x) | dt
6x2 0 6x2
1 [t _ 1+2[z(t)|
+— sin(s —t)eS 'z(s —t—————dsdt
5| sinls — e tels =ty
1t 1+2|z(t
—i—J eSz(s —twdsdw(t), t e [0,N]\{t1,t2,...,tm},
36 | 1+ 4z(t)||
4.1)
z(t,0) = z(t, ) =0,
z(0,x) + i cos(z(tj,x)) = @(6,x), 6 € (—00,0], x € [0, 7,
1 (&
Az(ty,x) = 18J eStiz(s,x)ds, i=1,2,...,m,
where 0 < t; < -+ < tjn < N are prefixed numbers, w(t) is a one-dimensional standard Brownian

motion defined on the filtered probability space (Q,TF,P) and  is bounded and C!-function such that v’
is bounded and uniformly continuous.
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Let X = U = L%([0,71]) and define the operator A : D(A) C X — X as

62
Ak = QK.

{D(A) = H2([0, 7d) N Hy ([0, 7d),
Then, Ak == 4 n%(K, sn)sn, where s, (x) = \/zsin nx, n =1,2,...is the orthogonal basis of eigen-

vectors of A.
Theorem 4.1 (Theorem 4.1.2, p.79 of [49]). A is the infinitesimal generator of a Co-semigroup on 12([0, 7).

A generates a Co-semigroup (T(t)) >0 ON L2([0,7]). Hence, (C;) holds. Furthermore, the above Cop-

semigroup (T(t)),, is compact for t > 0 and then it is operator-norm continuous for t > 0.
Next we define the operator I': D(A) C X — X by

MNt)z=v(t)Afort>0and z € D(A).

Lett >0, g > 1and let p: (—oo, —t] — R be a non-negative measurable function which satisfies the
conditions (g —5), (g — 6) in the terminology of Hino et al. [29]. Briefly, this means that p is locally inte-
grable and there is a non-negative, locally bounded function o on (—oo,0] such that p(&+58) < o(&)p(d)
for all £ < 0 and & € (—oo,—1] \ Ng, where Ng C (—oo,—1] is a set whose Lebesgue measure equals
zero. We denote by PC. x L9(p, X) the set consists of all classes of functions ¢ : (—oo,0] — X such that
@l € PC([—7,0],X), @(-) is Lebesgue measurable on (—oo, —T), and pllol? is Lebesgue integrable on
(—o0, —T). The seminorm is given by

—T 1/q
lolls = sup ||@(6)||+(J p(s)|r<p||qd6) .

—T<LoL0 —00

The space B = PCr x L9(p, X) satisfies axioms (A1)-(A3). Moreover, when T = 0 and q = 2, we can take
0
AL =1,A(t) = o(—t)/2 and Az(t) =1+ (J p(&)dé)l/z for t > 0 (see [29, Theorem 1.3.8] for details).

—t
To transform system (4.1) in the abstract form, we define

y(t)(x) = z(t,x) fort >0 for x € [0, 7], @(0)(8) =yo(6,x) for 0 € (—o0,0] and x € [0, 7,

7 sl _ L+2po)]
E,(t,ﬁ) (X) = E JOO Sln(S)e Sds, O-(t,S) = tm,
1 (° 1 (°
C(t,‘S) (X) = % J’_Oo esl()ds, 11(19) (X) = E J_Oo esﬂds,

Let C: U — X be defined by Cv(t)(x) = 8(t,x), 0 < x < 7,v € U, where § : ] x [0, 1] — X is continuous.
Therefore, under the above definitions, we can represent the system (4.1) in the abstract form

t

ylt) = [Ay(t) + | T(E=slyls)ds + 0t ooy, )+ Cvit)]at

+C(t/yo(t,yt))dw(t)/ te ] = [0, N]/ t 7é ti,
Ay(tl) = Il(y(t:))/ i= 1/"-/Tn/
y(0) + u(x) =yo = ¢ € B.
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Moreover, I'(t) fulfils (C2). Consequently, in virtue of Theorem 2.4, Eq. (2.1) has a unique resolvent
operator (R(t)) >0 on X, which is also operator-norm continuous for t > 0 thanks to Theorem 2.6.
For any (t,y) € [0, N] x B, we compute

J: (JOOO | Sin;;)esylldsy(ix]
2
< ;;IE [(JOOO ;(2:) d8>l/z(Jooop(s)\lyHZdS)l/z]

2 0 2s 0
s ;25@00 pe(s)dS)E(J

—00

E[&(ty)|% <E

p(s)[[ylPds) < Te(1+ ylf),

2 0 e2s
here Ts = — =
where Tz 25 JOO (s) ds,

0 s 2 - 0 o2s 12, (0 12 2
J, (] 15gutas) d"] <3621E[(Jmp(s)ds) (] _ptsiyipas) ]

2 0 2s 0
S 1;96(J00 pe(s)ds)IE<J

—00

E[¢(t,y)|k <E

p(s)[ylPds) < Te(1+ yl),

S,

,7.[2 0 eZs
here T — = [ €=
WHEEE 16 = 1906 Jmp(s)

E[L(ty)k <E

where T —T[ZJO 2sq
ere 11—1296 _Ooe S.

On the other hand, for all (t,yi) € [0,N] x B, i =1,2, we estimate:

[([ oy, _UZ||>2dx]

2 0 2s 0

<5 (e ([
2

0 2s 0
Tt e
< ds | E _ 2 < . 2’
625(J_mp(s) 5) (J_OOP(S)HW W[2ds) < Sellyr —va %

E[&(t,y1) — &(t,y2)|% < E

2
1/2
pls)lly1 — yalPds) ]

S,

2 0 2s
where S£:6T[25J I%d

E|[¢(t,y1) — ¢(ty2) |k < E

[, (] s _92||>2dx]
2 0 s 0
< |([ o) (]

—00

2
1/2
p(s)ly1 —valds) ]

7.[2 0 eZS 0 ) )
< — < _
< 25| S a)E ([ plsilyr —ualPas) < el el
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2 0 2s
where S; = T[J e—ds. Hence, the functions &, ¢, and I; satisfy hypotheses (H), (H3), and (Hy),
1296 J_ p(s)

respectively. Similarly we can show that the function p satisfies (Hs). Also, & and ¢ are bounded linear
operators, ||&|| < Tg, ||¢]] < T¢ and therefore (Hy) is verified. It remains now to check that (Hp) is fulfilled.
To this end, we have the following result:
Lemma 4.2 ([40]). Let y(t) € LY(RT) N CYHIR™) with primitive ©(t) € L}, .(R™") such that ©(t) is non-positive,
non-decreasing and ©(0) = —1. If operator A is self-adjoint and positive semi-definite, then the resolvent operator
R(t) associated to (1.1) is self-adjoint as well.

By Lemma 4.2 above, the resolvent operator R(t) of Eq. (4.1) is self-adjoint. Therefore it follows that
C*R*(t)x = R(t)x, for any x € X.

Let now C*R*(t)x = 0 for every t € [0, N]. Then, R(t)x =0, for any t € [0, N]. Since R(0) = Id, we deduce
that x = 0. Hence, from [13, Theorem 4.1.7], we conclude that the linear control system corresponding
to Eq. (4.1) is approximately controllable on [0, N], and then (Hy) is satisfied. Thus, all the conditions of
Theorem 3.2 hold, and so we conclude that the system (4.1) is approximately controllable on [0, N].

5. Conclusion

In this manuscript, we investigated the approximate controllability for a class of impulsive stochastic
integro-differential equations with nonlocal conditions and state-dependent delays. Using the resolvent
operator in the sense of Grimmer, stochastic analysis theory, and fixed point techniques (Krasnoselskii’s
fixed point theorem), we were able to accomplish the proposed results. In conclusion, an example is given
to illustrate how our findings can be applied to real-world situations. In addition, fractional Brownian
motion can be used to model the behavior of certain phenomena that occur in economics and the financial
markets. There are two direct issues that call for additional research to be done. In the first step of this
process, we will investigate the approximation of controllability for stochastic neutral integro-differential
equations that have state-dependent delay and non-instantaneous impulses. In the second step of this
process, we are going to look into whether or not there are optimal controls for stochastic neutral integro-
differential equations that have state-dependent delays and nonlocal conditions.
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