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Abstract

This paper aims to introduce the concept of (E, i, k)-convex function by using special inequality. Hadamard integral
inequality for this new class of geodesic convex function in the case of Lebesgue and Sugeno integrals is given.
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1. Introduction

It is commonly known that convexity is used in modern analysis, either directly or indirectly [18].
The idea of convexity has been developed and generalized in numerous directions due to its uses and
significance, see [7, 8, 15, 16]. E-convexity of sets and functions, which is a broader function than invexity,
was introduced in 1999 [28]. However, Young [27] claims that some of the results in [28] are inaccurate.
In [4], the E-convexity was expanded to a semi-E-convexity. See [5, 6, 23] for further information on the
E-convex or semi-E-convex functions. Furthermore, Youness and Emam in [29] discuss a novel class of
functions called as strongly E-convex functions. In particular, semi-strong E-convexity as well as quasi
and pseudo semi-strong E-convexity was added to this class of functions [30].

A manifold is not a linear space, and extensions of concepts and techniques from linear spaces to
Riemannian manifolds are natural. Many authors, including Udrist [24] and Rapcsak [20], have studied
generalized convex functions in Riemannian manifolds Geodesic E-convex sets and geodesic E-convex
functions on Riemannian manifolds are investigated in 2012 [10]. Moreover, geodesic semi E-convex
functions are introduced in [9]. Recently, geodesic strongly E-convex functions have been introduced, and
some of their properties [11].

Based on these ideas, a new class of functions, which are called geodesic semi strongly E-convex
functions, are defined and some of their properties are presented in [12]. A class of functions on Rieman-
nian manifolds, which are called geodesic semilocal E-preinvex functions, as a generalization of geodesic
semilocal E-convex and geodesic semi E-preinvex functions, are given in [13]. In [21], geodesic E-b-vex

Email address: wed_10_777@hotmail.com (Wedad Saleh)
doi: 10.22436/jnsa.015.04.03
Received: 2022-05-07 Revised: 2022-06-27  Accepted: 2022-07-02


http://dx.doi.org/10.22436/jnsa.015.04.03
http://dx.doi.org/10.22436/jnsa.015.04.03
http://crossmark.crossref.org/dialog/?doi=10.22436/jnsa.015.04.03&domain=pdf

W. Saleh, J. Nonlinear Sci. Appl., 15 (2022), 276-283 277

sets and geodesic E-b-vex functions on a Riemannian manifold are extended to geodesic strongly E-b-vex
sets and geodesic strongly E-b-vex functions.

Sugeno integrals are a type of nonlinear integral invented by Sugeno [22] to capture and integrate
interactions between criteria of various phenomena. The most well-known integral inequalities for Sugeno
integral have been proven, see [1, 25].

2. Preliminaries

In this section, we present some definitions and properties that can be found in many books on
differential geometry, such as [24].

Suppose that N is a C*° n-dimensional Riemannian manifold, and T;X is the tangent space to X at t.
Also, assume that 1 (y1,y2) is a positive inner product on the tangent space Ty X ( y1,yz € T¢X), which
is given for each point of X. Then, a C* map u: t — p, which assigns a positive inner product i to
T¢X,Vt € X is called a Riemannian metric.

The length of a piecewise C! curve n: [a;, a] — X which is defined as follows:

L) = J i(y) dt.

a

We define d(ty,t;) = inf{L(n):n is a piecewise C! curve joining t; to to} for any points t1,t; € X.
Furthermore, a smooth path n is a geodesic if and only if its tangent vector is a parallel vector field
along the path 7, i.e., n satisfies the equation 4 ()1(t) = 0. Every path n is joining t1,t2 € X, where
L(n) = d(ty, t2) is a minimal geodesic.

Finally, assume that (I, i) is a complete n-dimensional Riemannian manifold with Riemannian con-
nection v7. Let y1,y2 € N and n: [0, 1] — X be a geodesic joining the points y; and y», which means that
T]yl,yz(o) = x2 and Ny, 4, (1) = Y.

A set A in a Riemannian manifold X is called t-convex if A contains every geodesic 1y, y, of N whose
endpoints y; and y; belong to A.

Note that the whole of the manifold N is t-convex, and conventionally, so is the empty set. The
minimal circle in a hyperboloid is t-convex, but a single point is not. Also, any proper subset of a sphere
is not necessarily t-convex.

The following theorem was proved in [24].

Theorem 2.1 ([24]). The intersection of any number of t-convex sets is t-convex.
Remark 2.2. In general, the union of a t-convex set is not necessarily t-convex.

Definition 2.3 ([24]). A function g: A — R is called g-convex function on a t-convex set A C X if for
every geodesic 1y, y,, then

9(My1,u. (V) <vg(y1) + (1 —v)g(y2)
holds Yy1,y> € A and v € [0, 1].

Now let M be a non-empty set and ¢ be a o0- algebra of subsets of M.

Definition 2.4 ([19]). Let N : £ — [0, 00) be a set function, then N is called a Sugeno measure if it satisfies

1. N(¢) =0;

2. if A,B € £ and A C B, then £(A) < &(B);

3. A; € N,wherei e N, A;_1 C Ay, thenlim;__, §(A;) = E,(UgozlEi);
4. A, € &, whereie N,Ai_1 D A, &E(A1) < oo, then limi__, o E(A;) = E(N

i=1

Ei).

Assume that (M, &, N), which is said to be a sugeno measure space, is a fuzzy measure space. By
H: (M), then
Xe(M) ={h: ME — [0,00) : h is measurable with respect to &}.
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Definition 2.5 ([17, 22]). Assuming (M, &, N) is a fuzzy measure space, h € xz(M) and X € &, then the
Sugeno integral of h on A w.r.t. the N is defined by

J hdN = \/(oc/\N(XﬂH(x)),
X >0

where Hy =u € M : h(u) > «, A is the prototypical t-normal minimum and \/ the prototypical t-conorm
maximum. If X = M, then

L hdN = \/ (¢ AN(H)).

x>0
Some properties of the Sugeno integral can be found in [17, 26] such as following.

Theorem 2.6. Assume that (M, &, N) is a fuzzy measure space, X,Y € &, and hy, hy € xn(M), then

1 [ dN < N(X);

2. fx adN = a AN(X), where a is non-negative constant;
3. ifhi <hgon X, then [y hidN < [y hadN;

4. if X C Y, then [, hidN < [, hydN.

3. The main results

In this part of the paper, let us take (M, &) be a fuzzy measure space for a given h € HN(M) and
X € &, then
= {oc: o> 0,N(XNhg) > N(XNhg) for any > oc}.

Moreover, [, hdN =\/ r(x AN(XNhy)) [2].

In the next definition, the concept of (E, y, k)-convexity is given.

Definition 3.1. Considering Y; and Y, are two E-convex sets, where E : RT — R* . Assume that
KE (w),E(u,) : [0,1] — Y7 is a geodesic arc joining the pointsuy, uy € Y1 and Kg(y,)E(v,) : [0,1] — Y2 isa
geodesic arc joining the points vi,v2 € Y, . A real calued function h : Y| — Y; is called a (E, p, k)-convex
if

R (KE (), E(u2) A) < KR(E(v)),h(E(va)) (M), Vur, w2 € Yi,A € (0,10,
Remark 3.2.

1. For a (E, u, k)-convex function h : [x1,x2] — [y1,y2] , then

—1 —1
h(u)=h (HE(le,E(xZJ (HE(Xl),E(XZ)(u))> S KR(E(x1)), R (E (x2)) (Hg(xl),g(xz)(u)) (3.1)

for all u € [x1,x,], then the inquality is sharp for all u € [x, x2].
2. If E = I, where I is the indenty mapping, then the inquality (3.1) becomes the inquality (2) in [2].

Next, some generalizations of Hadamard in inequality for different geodesic convex functions are
given.

Theorem 3.3. Assume that Yiand Y, are two E-convex subsets of R, x1,x2 € Y{ with x1 < Xz and yy,y2 € Y3
with yy < ya. For the particular geodesic arcs w : [0,1] — Y1 and « : [0,1] — Y2 defined by Qg (y, v,)(A) =
(1—=A)E(w) +AE(w2) and Ky, v, (A) = E(v1)1 "2 E(v2)?, then the next inqualities hold.

1. Ifh: Yy — Yaisa (E, u, pw)- convex function, then

E(x2)
Xz_lE(Xl)J R(E(u)dE(w) < MECDNFRERR)) o,

E(x1)
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2. Ifh: Y] — Y2 C (0,00) is a (E, u, k)-convex function with h(E(x;1)) # h(E(x2)), then
1 E(x2) h(E(x
ST | BER)ER) <

))
h(E(x3)
E(x1) ln<h(E(xi))

3. Ifh:Yy C (0,00) — Y1 is a (E, k, w)-convex function, then

(y2)
1 R h(E(y) — h(E@) (w2 in (£5)
T Je ) "EOE) < RiE)+ 25 (M) | Ew—Ew) )
4. Ifh:Yy:(0,00) — Y2 :(0,00) is a (E, k, k)-convex function with h(E(y1)) # h(E(yz)), then

h(E(yp))

logE(yz]( h(y7) +1)
E(va)) End 1 _
1 e dE(w) < EDREw) () ™ 1
Elyr) — E(2) (BB S Fru— Er) A
Y1 Y2) JE(yy) Y2 Y1 108 £y, (h(E(yz)])Jrl
Eluq) 1

E(yy)

Proof. The first inequality is the well-known Hadamard’s inequality for E-convex functions. If we use the
inequality (3.1), then we have the following inequalities.

1. The function h: [xq,x2] — [x1, %x2] is (E, w, w)-convex iff

u—E(Xl)

m(h(E(Xz)) —h(E(x1))), Yu € [x1,x]. (3.2)

h(u) < h(E(x1)) +

2. The function h: [x1, x2] — [y1, Y2l is (E, u, K)-convex iff

u—E(xq)

h(E(xz))> T ol (33)

h(w) < h(E(x1)) <M

3. The function h: [y1,ya] — [x1,x2] is (E, k, pw)-convex iff

h(u) < h(E(y1)) +logew, (R(E(y2)) —h(E(y1))), Yu € ly1, Y2l (3.4)

v
E(yq) h(E(yl))

4. The function h : [x1,x2] — [y1,y2] is (E, u, K)-convex iff

h(E(yz)))logE(HZ’ RTE(577)

h(u) < h(E — Ely1) , Yu € [y, yal. 3.5
() < (et (g 2 y1, 02 65)
If we integrate the inequalities (3.2), (3.3), (3.4), and (3.5) from both sides over [x1, x2] or [y, y2], we obtain
the results in the theorem. O

Theorem 3.4. Let (R, &, N) be the fuzzy measurement space . Assume that w:[0,1] — [xq,x2] and « : [0,1] —
[y1, Y2l are two invertible geodesic arcs. If h : [x1,x2] — [y1,y2] is a (E, u, k)-convex function, then

1
V e lh(E(x1)),h(E(x2))] (O‘/\ N ( [HE(le,E(Xz) (KR (E (xg)), R (E (x2)) (2)): E(Xz)} )) ,

X2 if w, k are comonotone,
J han <! T

-1
x1 Vaem(E (xa)h(E(x0))] (“AN ([E(Xl)'“Eb«l),E(xz)(Kh(E(xl)),h(E(xZ))(“))D))'
if W, K are countermonotone.



W. Saleh, J. Nonlinear Sci. Appl., 15 (2022), 276-283 280

Proof. Since his a (E, u, k)-convex function and by using the property (3 in Theorem 2.6) of fuzzy measure,
we get

X2 X2
—1
[N = [ e (e oy (0N
e o (3.6)

X2
—1
<J KE (x1),E (x2) (M (B (1)), R (E (x2)) (W) AN

X1

1

If p and k are comonotone, then ko L™ is an increasing function, then by Definition 2.5

X2
—1
J KE (x1),E(x2) (F (E (x1)), R (E (x)) (W) AN

X1

= \/ (OC/\N([E(Xl)/E(XZ)] N HE(Xl]/E(XZ)(K;%E(Xl)),h(E(Xz)) > OC)))

x>0
(3.7)
-1
= \/ (“AN(u? HE(xl),E(Xz)(Kh(E(xl)),h(E(xz))(‘Xm>
x>0
-1
= \/ ((X/\N (|:HE(X1),E(X2)(Kh(E(Xl)),h(E(XZ))(OC))/E(XZ)]>> .
=0
Since k o u~! is increasing, we get
—1
E(Xl) < FLE(xl),E(XQ)(Kh(E(Xl)),h(E(XZ))(“)) < E(XZ)
-1 —1
= KE(XIJIE(XZ)(uh(E(Xl)),h(E(Xz))(E(Xl))) Sa< KE(Xl)rE(XZ)(Hh(E(Xl)),h(E(Xz))(E(XZ))) (3.8)

= KE (x1),E (x2) (0) < & < KE(x),E () (1)
= h(E(x1)) < &« < h(E(x2)).

Thus, I' = [h(E(x1)), h(E(x2))] and we only need to consider « € [h(E(x1)), h(E(x2))]. It follows from (3.6),
(3.7), and (3.8), that

X2
—1
J KE(x1),E (x2) (M (E (1)), R (E (x2)) (W) AN

X1
1
< \/ (“AN ([P"E(xl),E(xz)(Kh(E(X])),h(E(XZ))(“))/E(XZ)])) .
a€[h(E(x1)),h(E(x2))]

1

If p and k are countermonotone, then k o p™" is a decreasing function. Then, by Definition 2.5, we get

~
s
2

X2
—1
J (1), E (x2) (P (E () R (E () (W AN

X1

R
>
z

—1
([E(Xl)/ E(XZ)] N l’lE(Xl)rE(XZ)(Kh(E(Xl)),h(E(xz)) = “)))

R
WV
=}

(3.9)
1
N(u < “E(xl),E(Xz)(Kh(E(xl)),h(E(xZ)) 2 o‘)))

R
V
=}

I
/N /; /N
>

1
a AN ([E(Xl)r HE (x1),E(x2) (Kh(E(xl]),h(E(xz))((x))])) .

R
WV
=}

1

Since k o pu~* is decreasing, we get

E(x1) < uE(Xl),E(Xz)(K}:(lE(xl)),h(E(xz))(o‘)) < E(x2)
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-1 —1
== KE(x1),E(x2) (M (B (x0)), R (E (x2)) (EO)) S0 <RE (), B (32) (B (B () ) (B (%)) (E(X2))) (3.10)

= KE(x1),E (x2) (0) < & < KE(x),E () (1)
= h(E(x1)) < a < h(E(x2)).

Thus, I' = [h(E(x2)), h(E(x1))] and we only need to consider « € [h(E(x2)), h(E(x1))]. It follows from (3.6),
(3.9), and (3.10) that

X2
—1
J KE (1), E (x2) (B (E (1)) (E (7)) (W) AN

X1
1
< V (e AN ([ e e e (EO2), K e ()] ) )
R (E (x1)), R (E (x2))]

O

Remark 3.5. Consider h : [x1,x2] — [y1,y2l is a (E, i, k)-convex function, & is the Borel field, and N is the
Lebesgue measure on R. Then

—1
Vaelh(Exi)h(E(x))] ("‘/\ (E(x2) = 1 (1), E (x2) (KR (B (1), R (E (x2)) (0‘))) /

X2 if u, k are comonotone
J hdN < H, ) »

x Vaem(E (xa))h(E(x))] (“A (KE (x1),E (x2) (K ( (1)), (E (x2) () — E(Xl))) ,
if 1, k are countermonotone.

In the following corollaries, consider that ((R), R, &, N) is the fuzzy measure space.

Corollary 3.6. Let h: [x1,xp] — [x1,x2] be a (E, u, p)-convex function, hence

vae[h(www (e AN (B0 + (Bx2) = B e et E02)] ) )
. if N(E(x1)) < h(E(x2)),
J hdN < < h(E(x ))/\N( (x1), E(x2)), if h(E(x1)) = h(E(x2)),
! Voce[h(E(xz)) h(E(x1))] <OC/\N [E(Xl)/ E(Xl) + (E(XZ) - E(Xl))h(]giZ%@y&T?&ﬂ)})) ’
if R(E(x1)) > h(E(x2)).
If we take

HE(xl),E(xz)(H;(lE(xl)),h(E(XZ))((X)) = E(x1) + (E(x2) — E(x1))

in Theorem 2.6, then the Corollary 3.6 can be proved.

Corollary 3.7. Let h: [x1,x2] — [y1, Y2l be a (E, u, k)-convex function. Then

Voce[h(E(Xl)Jh(E(Xz ) (“/\N <[E(X1) * (Ebe) = Eba))logneray ‘“Ec{x"l”'E(xz)D> '
. if h(E <hm(n
J]MNg h(E(x UAME E(x2)), if h(E(x1)) = h(E(x2)),

(x
1 vwm&mmmam](aAN<FumEuu+wug Efcu) og e et ) )
iFR(E(x)) > h(E(x)
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If we take
-1 X
HE (x1),E(x2) (Kh(E(Xl)),h(E(Xz)) (a)) = E(x1) + (E(x2) — E(x1)) 10gm§2“ m
in Theorem 2.6, then the Corollary 3.7 can be proved.
Corollary 3.8. Let h: [y1,y2] — [x1,%2] be a (E, k, p)-convex function. Then
E(x2) \ RET oty
VaemEmannEma)) [ ®AN | ECa) + (grgy) M VLR )
. iFR(E(x1)) < h(E(x)),
J hdN < ¢ h(E(x1)) AN(E(x1), E(x2)), if h(E(x1)) = h(E(x2)),
X1 E ocfh(E(xl)J
V xemh(E (x2))h(E(x1))] <°</\N ({E(Xl)rE(Xl)(EEZ%)"(E 2—R(E]) ,
if h(E(x1)) > h(E(x2)).
If we take Elxy) .
~1 X2) \ wrerg Rk
KE(Xl)rE(XZ)(}'Lh(E(Xl)],h(E(Xz))(“)) = E(Xl)(E(Xl))h(E 2))—h(E(x1))
in Theorem 2.6, then the Corollary 3.8 can be proved.
Corollary 3.9. Let h: [y1,y2] — [y1,y2] be a (E, k, k)-convex function. Then
[ ) (Bl e e ]
VeaemEma x| AN Ex) (g ' RO ]
o if h(E(x1)) < h(E(x2)),
J hdN < ¢ h(E(x1)) AN(E(x1), E(x2)), if h(E(x1)) = h(E(x2)),
x1 [ 108 1(E (xp)) RTECTT) |
E(x2)y "REG) !
Vaem e neea | AN | ECa), Bba) (gr)) /
if h(E(x1)) > h(E(x2)).
If we take L «
B E(x2) OB h(E(x2)) R{E(x7))
1 X
KE(Xl)rE(Xz)(Kh(E(xl)),h(E(xz)]((X)) = E(Xl)(E(Xl)) R{E())
in Theorem 2.6, then Corollary 3.9 can be proven.
Example 3.10.
1. If E: R — Ris E(x) = X2, then the function h : [1,3] — [0, +o0], which is defined as h(x) = ln2(>l<+1)

is (E, i, n)-convex function.

2. fE:R — Ris E(x) = x¥%, then the function h : [1,2] — [0, +o0], which is defined as h(x) = x is

(E, 1, k)-convex function.

3. If E: R — Ris E(x) = x, then the function h : [T, 7], which is defined as h(x)
(E, x, w)-convex function.

.2 .
— Xsm X is

4. If E: R — R is E(x) = 2x, then the function h : [1,2] — [0, +o0o], which is defined as h(x) =

(COSh(X))% is (E, k, K)-convex function.

4. Conclusion

This paper introduces a new class of geodesic convex functions, namely (E, u, k)-convex function, and

considers and generalizes the Hadamard inequality for (E, p, k)-convex function.
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