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Abstract

This paper aims to introduce the concept of (E,µ, κ)-convex function by using special inequality. Hadamard integral
inequality for this new class of geodesic convex function in the case of Lebesgue and Sugeno integrals is given.
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1. Introduction

It is commonly known that convexity is used in modern analysis, either directly or indirectly [18].
The idea of convexity has been developed and generalized in numerous directions due to its uses and
significance, see [7, 8, 15, 16]. E-convexity of sets and functions, which is a broader function than invexity,
was introduced in 1999 [28]. However, Young [27] claims that some of the results in [28] are inaccurate.
In [4], the E-convexity was expanded to a semi-E-convexity. See [5, 6, 23] for further information on the
E-convex or semi-E-convex functions. Furthermore, Youness and Emam in [29] discuss a novel class of
functions called as strongly E-convex functions. In particular, semi-strong E-convexity as well as quasi
and pseudo semi-strong E-convexity was added to this class of functions [30].

A manifold is not a linear space, and extensions of concepts and techniques from linear spaces to
Riemannian manifolds are natural. Many authors, including Udrist [24] and Rapcsak [20], have studied
generalized convex functions in Riemannian manifolds Geodesic E-convex sets and geodesic E-convex
functions on Riemannian manifolds are investigated in 2012 [10]. Moreover, geodesic semi E-convex
functions are introduced in [9]. Recently, geodesic strongly E-convex functions have been introduced, and
some of their properties [11].

Based on these ideas, a new class of functions, which are called geodesic semi strongly E-convex
functions, are defined and some of their properties are presented in [12]. A class of functions on Rieman-
nian manifolds, which are called geodesic semilocal E-preinvex functions, as a generalization of geodesic
semilocal E-convex and geodesic semi E-preinvex functions, are given in [13]. In [21], geodesic E-b-vex
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sets and geodesic E-b-vex functions on a Riemannian manifold are extended to geodesic strongly E-b-vex
sets and geodesic strongly E-b-vex functions.

Sugeno integrals are a type of nonlinear integral invented by Sugeno [22] to capture and integrate
interactions between criteria of various phenomena. The most well-known integral inequalities for Sugeno
integral have been proven, see [1, 25].

2. Preliminaries

In this section, we present some definitions and properties that can be found in many books on
differential geometry, such as [24].

Suppose that ℵ is a C∞ n-dimensional Riemannian manifold, and Ttℵ is the tangent space to ℵ at t.
Also, assume that µt(y1,y2) is a positive inner product on the tangent space Ttℵ ( y1,y2 ∈ Ttℵ), which
is given for each point of ℵ. Then, a C∞ map µ : t −→ µt, which assigns a positive inner product µt to
Ttℵ,∀t ∈ ℵ is called a Riemannian metric.

The length of a piecewise C1 curve η : [a1,a2] −→ ℵ which is defined as follows:

L(η) =

∫a2

a1

‖ή(y)‖dt.

We define d(t1, t2) = inf {L(η) : η is a piecewise C1 curve joining t1 to t2} for any points t1, t2 ∈ ℵ.
Furthermore, a smooth path η is a geodesic if and only if its tangent vector is a parallel vector field
along the path η, i.e., η satisfies the equation 5ή(t)ή(t) = 0. Every path η is joining t1, t2 ∈ ℵ, where
L(η) = d(t1, t2) is a minimal geodesic.

Finally, assume that (ℵ,µ) is a complete n-dimensional Riemannian manifold with Riemannian con-
nection 5. Let y1,y2 ∈ ℵ and η : [0, 1] −→ ℵ be a geodesic joining the points y1 and y2, which means that
ηy1,y2(0) = x2 and ηy1,y2(1) = y1.

A set A in a Riemannian manifold ℵ is called t-convex if A contains every geodesic ηy1,y2 of N whose
endpoints y1 and y2 belong to A.

Note that the whole of the manifold ℵ is t-convex, and conventionally, so is the empty set. The
minimal circle in a hyperboloid is t-convex, but a single point is not. Also, any proper subset of a sphere
is not necessarily t-convex.

The following theorem was proved in [24].

Theorem 2.1 ([24]). The intersection of any number of t-convex sets is t-convex.

Remark 2.2. In general, the union of a t-convex set is not necessarily t-convex.

Definition 2.3 ([24]). A function g : A −→ R is called g-convex function on a t-convex set A ⊂ ℵ if for
every geodesic ηy1,y2 , then

g(ηy1,y2(γ)) 6 γg(y1) + (1 − γ)g(y2)

holds ∀y1,y2 ∈ A and γ ∈ [0, 1].

Now let M be a non-empty set and ξ be a σ- algebra of subsets of M.

Definition 2.4 ([19]). LetN : ξ −→ [0,∞) be a set function, thenN is called a Sugeno measure if it satisfies

1. N(φ) = 0;
2. if A,B ∈ ξ and A ⊂ B, then ξ(A) 6 ξ(B);
3. Ai ∈ N, where i ∈N, Ai−1 ⊂ Ai, then limi−→∞ ξ(Ai) = ξ(∪∞i=1Ei);
4. An ∈ ξ, where i∈N,Ai−1 ⊃ Ai, ξ(A1) <∞, then limi−→∞ ξ(Ai) = ξ(∩∞i=1Ei).

Assume that (M, ξ,N), which is said to be a sugeno measure space, is a fuzzy measure space. By
Hξ(M), then

χξ(M) = {h :Mξ −→ [0,∞) : h is measurable with respect to ξ} .
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Definition 2.5 ([17, 22]). Assuming (M, ξ,N) is a fuzzy measure space, h ∈ χξ(M) and X ∈ ξ, then the
Sugeno integral of h on A w.r.t. the N is defined by∫

X

hdN =
∨
α>0

(α∧N(X∩Hα)),

where Hα = u ∈M : h(u) > α, ∧ is the prototypical t-normal minimum and
∨

the prototypical t-conorm
maximum. If X =M, then ∫

X

hdN =
∨
α>0

(α∧N(Hα)).

Some properties of the Sugeno integral can be found in [17, 26] such as following.

Theorem 2.6. Assume that (M, ξ,N) is a fuzzy measure space, X, Y ∈ ξ, and h1,h2 ∈ χN(M), then

1.
∫
X h1dN 6 N(X);

2.
∫
X adN = a∧N(X), where a is non-negative constant;

3. if h1 6 h2 on X, then
∫
X h1dN 6

∫
X h2dN;

4. if X ⊂ Y, then
∫
X h1dN 6

∫
Y h1dN.

3. The main results

In this part of the paper, let us take (M, ξ) be a fuzzy measure space for a given h ∈ HN(M) and
X ∈ ξ, then

Γ =
{
α : α > 0,N(X∩ hα) > N(X∩ hβ) for any β > α

}
.

Moreover,
∫
X hdN =

∨
α∈Γ (α∧N(X∩ hα)) [2].

In the next definition, the concept of (E,µ, κ)-convexity is given.

Definition 3.1. Considering Y1 and Y2 are two E-convex sets, where E : R+ −→ R+ . Assume that
µE(u1),E(u2) : [0, 1] −→ Y1 is a geodesic arc joining the pointsu1,u2 ∈ Y1 and κE(v1),E(v2) : [0, 1] −→ Y2 is a
geodesic arc joining the points v1, v2 ∈ Y2 . A real calued function h : Y1 −→ Y2 is called a (E,µ, κ)-convex
if

h
(
µE(u1),E(u2)(λ)

)
6 κh(E(v1)),h(E(v2))(λ),∀u1,u2 ∈ Y1, λ ∈ [0, 1].

Remark 3.2.

1. For a (E,µ, κ)-convex function h : [x1, x2] −→ [y1,y2] , then

h(u) = h
(
µE(x1),E(x2)

(
µ−1
E(x1),E(x2)

(u)
))

6 κh(E(x1)),h(E(x2))

(
µ−1
E(x1),E(x2)

(u)
)

(3.1)

for all u ∈ [x1, x2], then the inquality is sharp for all u ∈ [x1, x2].
2. If E = I, where I is the indenty mapping, then the inquality (3.1) becomes the inquality (2) in [2].

Next, some generalizations of Hadamard in inequality for different geodesic convex functions are
given.

Theorem 3.3. Assume that Y1and Y2 are two E-convex subsets of R, x1, x2 ∈ Yo1 with x1 < x2 and y1,y2 ∈ Yo2
with y1 < y2. For the particular geodesic arcs µ : [0, 1] −→ Y1 and κ : [0, 1] −→ Y2 defined by µE(u1,u2)(λ) =

(1 − λ)E(u1) + λE(u2) and κv1,v2(λ) = E(v1)
1−λE(v2)

λ, then the next inqualities hold.

1. If h : Y1 −→ Y2 is a (E,µ,µ)- convex function, then

1
x2 − E(x1)

∫E(x2)

E(x1)
h(E(u))dE(u) 6

h(E(x1)) + h(E(x2))

2
, ∀u ∈ [x1, x2].
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2. If h : Y1 −→ Y2 ⊆ (0,∞) is a (E,µ, κ)-convex function with h(E(x1)) 6= h(E(x2)), then

1
E(x2) − E(x1)

∫E(x2)

E(x1)
h(E(u))dE(u) 6

h(E(x1))

ln
(
h(E(x2))
h(E(x1))

) (h(E(x2))

h(E(x1))
− 1
)

.

3. If h : Y2 ⊆ (0,∞) −→ Y1 is a (E, κ,µ)-convex function, then

1
E(y1) − E(y2)

∫E(y2)

E(y1)
h(E(u))dE(u) 6 h(E(y1)) +

h(E(y2)) − h(E(y1))

ln
(
h(E(y2))
h(E(y1))

)
E(y2) ln

(
E(y2)
E(y1)

)
E(y2) − E(y1)

− 1

 .

4. If h : Y2 : (0,∞) −→ Y2 : (0,∞) is a (E, κ, κ)-convex function with h(E(y1)) 6= h(E(y2)), then

1
E(y1) − E(y2)

∫E(y2)

E(y1)
h(E(u))dE(u) 6

E(y1)h(E(y1))

E(y2) − E(y1)


(
E(y2)
E(y1)

)logE(y2)
E(y1)

(
h(E(y2))
h(y1)

+1)

− 1

logE(y2)
E(y1)

(
h(E(y2))
h(E(y1))

)
+ 1

 .

Proof. The first inequality is the well-known Hadamard’s inequality for E-convex functions. If we use the
inequality (3.1), then we have the following inequalities.

1. The function h : [x1, x2] −→ [x1, x2] is (E,µ,µ)-convex iff

h(u) 6 h(E(x1)) +
u− E(x1)

E(x2) − E(x1)
(h(E(x2)) − h(E(x1))), ∀u ∈ [x1, x2]. (3.2)

2. The function h : [x1, x2] −→ [y1,y2] is (E,µ, κ)-convex iff

h(u) 6 h(E(x1))

(
h(E(x2))

h(E(x1))

) u−E(x1)
E(x2)−E(x1)

, ∀u ∈ [x1, x2]. (3.3)

3. The function h : [y1,y2] −→ [x1, x2] is (E, κ,µ)-convex iff

h(u) 6 h(E(y1)) + logE(y2)
E(y1)

u

h(E(y1))
(h(E(y2)) − h(E(y1))), ∀u ∈ [y1,y2]. (3.4)

4. The function h : [x1, x2] −→ [y1,y2] is (E,µ, κ)-convex iff

h(u) 6 h(E(y1))

(
h(E(y2))

h(E(y1))

)logE(y2)
E(y1)

u
h(E(y1))

, ∀u ∈ [y1,y2]. (3.5)

If we integrate the inequalities (3.2), (3.3), (3.4), and (3.5) from both sides over [x1, x2] or [y1,y2], we obtain
the results in the theorem.

Theorem 3.4. Let (R, ξ,N) be the fuzzy measurement space . Assume that µ : [0, 1] −→ [x1, x2] and κ : [0, 1] −→
[y1,y2] are two invertible geodesic arcs. If h : [x1, x2] −→ [y1,y2] is a (E,µ, κ)-convex function, then

∫x2

x1

hdN 6



∨
α∈[h(E(x1)),h(E(x2))]

(
α∧N

([
µE(x1),E(x2)(κ

−1
h(E(x1)),h(E(x2))

(α)),E(x2)
]))

,

if µ, κ are comonotone,∨
α∈[h(E(x2)),h(E(x1))]

(
α∧N

([
E(x1),µE(x1),E(x2)(κ

−1
h(E(x1)),h(E(x2))

(α))
])

)
)

,

if µ, κ are countermonotone.
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Proof. Since h is a (E,µ, κ)-convex function and by using the property (3 in Theorem 2.6) of fuzzy measure,
we get ∫x2

x1

hdN =

∫x2

x1

h(µE(x1),E(x2)(µ
−1
h(E(x1)),h(E(x2))

(u)))dN

6
∫x2

x1

κE(x1),E(x2)(µ
−1
h(E(x1)),h(E(x2))

(u))dN.
(3.6)

If µ and κ are comonotone, then κ ◦ µ−1 is an increasing function, then by Definition 2.5∫x2

x1

κE(x1),E(x2)(µ
−1
h(E(x1)),h(E(x2))

(u))dN

=
∨
α>0

(
α∧N([E(x1),E(x2)]∩ µE(x1),E(x2)(κ

−1
h(E(x1)),h(E(x2))

> α))
)

=
∨
α>0

(
α∧N(u > µE(x1),E(x2)(κ

−1
h(E(x1)),h(E(x2))

(α)))
)

=
∨
α>0

(
α∧N

([
µE(x1),E(x2)(κ

−1
h(E(x1)),h(E(x2))

(α)),E(x2)
]))

.

(3.7)

Since κ ◦ µ−1 is increasing, we get

E(x1) 6 µE(x1),E(x2)(κ
−1
h(E(x1)),h(E(x2))

(α)) < E(x2)

=⇒ κE(x1),E(x2)(µ
−1
h(E(x1)),h(E(x2))

(E(x1))) 6 α < κE(x1),E(x2)(µ
−1
h(E(x1)),h(E(x2))

(E(x2)))

=⇒ κE(x1),E(x2)(0) 6 α < κE(x1),E(x2)(1)

=⇒ h(E(x1)) 6 α < h(E(x2)).

(3.8)

Thus, Γ = [h(E(x1)),h(E(x2))] and we only need to consider α ∈ [h(E(x1)),h(E(x2))]. It follows from (3.6),
(3.7), and (3.8), that∫x2

x1

κE(x1),E(x2)(µ
−1
h(E(x1)),h(E(x2))

(u))dN

6
∨

α∈[h(E(x1)),h(E(x2))]

(
α∧N

([
µE(x1),E(x2)(κ

−1
h(E(x1)),h(E(x2))

(α)),E(x2)
]))

.

If µ and κ are countermonotone, then κ ◦ µ−1 is a decreasing function. Then, by Definition 2.5, we get∫x2

x1

κE(x1),E(x2)(µ
−1
h(E(x1)),h(E(x2))

(u))dN

=
∨
α>0

(
α∧N([E(x1),E(x2)]∩ µE(x1),E(x2)(κ

−1
h(E(x1)),h(E(x2))

> α))
)

=
∨
α>0

(
α∧N(u 6 µE(x1),E(x2)(κ

−1
h(E(x1)),h(E(x2))

> α))
)

=
∨
α>0

(
α∧N

([
E(x1),µE(x1),E(x2)(κ

−1
h(E(x1)),h(E(x2))

(α))
]))

.

(3.9)

Since κ ◦ µ−1 is decreasing, we get

E(x1) 6 µE(x1),E(x2)(κ
−1
h(E(x1)),h(E(x2))

(α)) < E(x2)
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=⇒ κE(x1),E(x2)(µ
−1
h(E(x1)),h(E(x2))

(E(x1))) 6 α < κE(x1),E(x2)(µ
−1
h(E(x1)),h(E(x2))

(E(x2))) (3.10)

=⇒ κE(x1),E(x2)(0) 6 α < κE(x1),E(x2)(1)

=⇒ h(E(x1)) 6 α < h(E(x2)).

Thus, Γ = [h(E(x2)),h(E(x1))] and we only need to consider α ∈ [h(E(x2)),h(E(x1))]. It follows from (3.6),
(3.9), and (3.10) that∫x2

x1

κE(x1),E(x2)(µ
−1
h(E(x1)),h(E(x2))

(u))dN

6
∨

α∈[h(E(x1)),h(E(x2))]

(
α∧N

([
µE(x1),E(x2)(E(x2), κ−1

h(E(x1)),h(E(x2))
(α))

]))
.

Remark 3.5. Consider h : [x1, x2] −→ [y1,y2] is a (E,µ, κ)-convex function, ξ is the Borel field, and N is the
Lebesgue measure on R. Then

∫x2

x1

hdN 6



∨
α∈[h(E(x1)),h(E(x2))]

(
α∧ (E(x2) − µE(x1),E(x2)(κ

−1
h(E(x1)),h(E(x2))

(α))
)

,

if µ, κ are comonotone,∨
α∈[h(E(x2)),h(E(x1))]

(
α∧ (µE(x1),E(x2)(κ

−1
h(E(x1)),h(E(x2))

(α)) − E(x1))
)

,

if µ, κ are countermonotone.

In the following corollaries, consider that ((R), R, ξ,N) is the fuzzy measure space.

Corollary 3.6. Let h : [x1, x2] −→ [x1, x2] be a (E,µ,µ)-convex function, hence

∫x2

x1

hdN 6



∨
α∈[h(E(x1)),h(E(x2))]

(
α∧N

([
E(x1) + (E(x2) − E(x1))

α−h(E(x1))
h(E(x2))−h(E(x1))

,E(x2)
]))

,

if h(E(x1)) < h(E(x2)),
h(E(x1))∧N(E(x1),E(x2)), if h(E(x1)) = h(E(x2)),∨
α∈[h(E(x2)),h(E(x1))]

(
α∧N

([
E(x1),E(x1) + (E(x2) − E(x1))

α−h(E(x1))
h(E(x2))−h(E(x1))

]))
,

if h(E(x1)) > h(E(x2)).

If we take

µE(x1),E(x2)(µ
−1
h(E(x1)),h(E(x2))

(α)) = E(x1) + (E(x2) − E(x1))
α− h(E(x1))

h(E(x2)) − h(E(x1))

in Theorem 2.6, then the Corollary 3.6 can be proved.

Corollary 3.7. Let h : [x1, x2] −→ [y1,y2] be a (E,µ, κ)-convex function. Then

∫x2

x1

hdN 6



∨
α∈[h(E(x1)),h(E(x2))]

(
α∧N

([
E(x1) + (E(x2) − E(x1)) logh(E(x2))

h(E(x1))

α
h(E(x1))

,E(x2)

]))
,

if h(E(x1)) < h(E(x2)),
h(E(x1))∧N(E(x1),E(x2)), if h(E(x1)) = h(E(x2)),∨
α∈[h(E(x2)),h(E(x1))]

(
α∧N

([
E(x1),E(x1) + (E(x2) − E(x1)) logh(E(x2))

h(E(x1))

α
h(E(x1))

]))
,

if h(E(x1)) > h(E(x2)).



W. Saleh, J. Nonlinear Sci. Appl., 15 (2022), 276–283 282

If we take

µE(x1),E(x2)(κ
−1
h(E(x1)),h(E(x2))

(α)) = E(x1) + (E(x2) − E(x1)) logh(E(x2))
h(E(x1))

α

h(E(x1))

in Theorem 2.6, then the Corollary 3.7 can be proved.

Corollary 3.8. Let h : [y1,y2] −→ [x1, x2] be a (E, κ,µ)-convex function. Then

∫x2

x1

hdN 6



∨
α∈[h(E(x1)),h(E(x2))]

(
α∧N

([
E(x1) + (

E(x2)
E(x1)

)
α−h(E(x1))

h(E(x2))−h(E(x1)) ,E(x2)

]))
,

if h(E(x1)) < h(E(x2)),
h(E(x1))∧N(E(x1),E(x2)), if h(E(x1)) = h(E(x2)),∨
α∈[h(E(x2)),h(E(x1))]

(
α∧N

([
E(x1),E(x1)(

E(x2)
E(x1)

)
α−h(E(x1))

h(E(x2))−h(E(x1))

]))
,

if h(E(x1)) > h(E(x2)).

If we take

κE(x1),E(x2)(µ
−1
h(E(x1)),h(E(x2))

(α)) = E(x1)(
E(x2)

E(x1)
)

α−h(E(x1))
h(E(x2))−h(E(x1))

in Theorem 2.6, then the Corollary 3.8 can be proved.

Corollary 3.9. Let h : [y1,y2] −→ [y1,y2] be a (E, κ, κ)-convex function. Then

∫x2

x1

hdN 6



∨
α∈[h(E(x1)),h(E(x2))]

(
α∧N

([
E(x1)(

E(x2)
E(x1)

)
logh(E(x2))

h(E(x1))

α
h(E(x1))

,E(x2)

]))
,

if h(E(x1)) < h(E(x2)),
h(E(x1))∧N(E(x1),E(x2)), if h(E(x1)) = h(E(x2)),∨
α∈[h(E(x2)),h(E(x1))]

(
α∧N

([
E(x1),E(x1)(

E(x2)
E(x1)

)
logh(E(x2))

h(E(x1))

α
h(E(x1))

]))
,

if h(E(x1)) > h(E(x2)).

If we take

κE(x1),E(x2)(κ
−1
h(E(x1)),h(E(x2))

(α)) = E(x1)(
E(x2)

E(x1)
)

logh(E(x2))
h(E(x1))

α
h(E(x1))

in Theorem 2.6, then Corollary 3.9 can be proven.

Example 3.10.

1. If E : R −→ R is E(x) = x2, then the function h : [1, 3] −→ [0,+∞], which is defined as h(x) = 1
ln2(x+1)

is (E,µ,µ)-convex function.
2. If E : R −→ R is E(x) = xx, then the function h : [1, 2] −→ [0,+∞], which is defined as h(x) = x is

(E,µ, κ)-convex function.
3. If E : R −→ R is E(x) = x, then the function h : [π4 , π2 ], which is defined as h(x) = xsin2 x is

(E, κ,µ)-convex function.
4. If E : R −→ R is E(x) = 2x, then the function h : [1, 2] −→ [0,+∞], which is defined as h(x) =

(cosh(x))
1
4 is (E, κ, κ)-convex function.

4. Conclusion

This paper introduces a new class of geodesic convex functions, namely (E,µ, κ)-convex function, and
considers and generalizes the Hadamard inequality for (E,µ, κ)-convex function.
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