New Hadamard-type inequality for new class of geodesic convex functions

Wedad Saleh
Department of Mathematics, Taibah University, Al-Medina 20012, Saudi Arabia.

Abstract

This paper aims to introduce the concept of $(\mathrm{E}, \mu, \mathrm{K})$-convex function by using special inequality. Hadamard integral inequality for this new class of geodesic convex function in the case of Lebesgue and Sugeno integrals is given.

Keywords: Convex function, geodesic, Riemannian manifolds.
2020 MSC: 39B62, 31C12, 37D40.
©2022 All rights reserved.

1. Introduction

It is commonly known that convexity is used in modern analysis, either directly or indirectly [18]. The idea of convexity has been developed and generalized in numerous directions due to its uses and significance, see $[7,8,15,16]$. E-convexity of sets and functions, which is a broader function than invexity, was introduced in 1999 [28]. However, Young [27] claims that some of the results in [28] are inaccurate. In [4], the E-convexity was expanded to a semi-E-convexity. See [5, 6,23$]$ for further information on the E-convex or semi-E-convex functions. Furthermore, Youness and Emam in [29] discuss a novel class of functions called as strongly E-convex functions. In particular, semi-strong E-convexity as well as quasi and pseudo semi-strong E-convexity was added to this class of functions [30].

A manifold is not a linear space, and extensions of concepts and techniques from linear spaces to Riemannian manifolds are natural. Many authors, including Udrist [24] and Rapcsak [20], have studied generalized convex functions in Riemannian manifolds Geodesic E-convex sets and geodesic E-convex functions on Riemannian manifolds are investigated in 2012 [10]. Moreover, geodesic semi E-convex functions are introduced in [9]. Recently, geodesic strongly E-convex functions have been introduced, and some of their properties [11].

Based on these ideas, a new class of functions, which are called geodesic semi strongly E-convex functions, are defined and some of their properties are presented in [12]. A class of functions on Riemannian manifolds, which are called geodesic semilocal E-preinvex functions, as a generalization of geodesic semilocal E-convex and geodesic semi E-preinvex functions, are given in [13]. In [21], geodesic E-b-vex

[^0]sets and geodesic E-b-vex functions on a Riemannian manifold are extended to geodesic strongly E-b-vex sets and geodesic strongly E-b-vex functions.

Sugeno integrals are a type of nonlinear integral invented by Sugeno [22] to capture and integrate interactions between criteria of various phenomena. The most well-known integral inequalities for Sugeno integral have been proven, see [1, 25].

2. Preliminaries

In this section, we present some definitions and properties that can be found in many books on differential geometry, such as [24].

Suppose that \mathbb{X} is a $C^{\infty} n$-dimensional Riemannian manifold, and $T_{t} \mathbb{K}$ is the tangent space to \mathbb{K} at . Also, assume that $\mu_{t}\left(y_{1}, y_{2}\right)$ is a positive inner product on the tangent space $T_{t} \aleph\left(y_{1}, y_{2} \in T_{t} \aleph\right)$, which is given for each point of $\mathbb{\aleph}$. Then, a $C^{\infty} \operatorname{map} \mu: t \longrightarrow \mu_{t}$, which assigns a positive inner product μ_{t} to $\mathrm{T}_{\mathrm{t}} \mathbb{K}, \forall \mathrm{t} \in \mathbb{N}$ is called a Riemannian metric.

The length of a piecewise C^{1} curve $\eta:\left[a_{1}, a_{2}\right] \longrightarrow \mathbb{N}$ which is defined as follows:

$$
\mathrm{L}(\eta)=\int_{a_{1}}^{a_{2}}\|\dot{\eta}(y)\| d t
$$

We define $d\left(t_{1}, t_{2}\right)=\inf \left\{L(\eta): \eta\right.$ is a piecewise C^{1} curve joining t_{1} to $\left.t_{2}\right\}$ for any points $t_{1}, t_{2} \in \aleph$. Furthermore, a smooth path η is a geodesic if and only if its tangent vector is a parallel vector field along the path η, i.e., η satisfies the equation $\nabla_{\eta}(t) \eta(t)=0$. Every path η is joining $t_{1}, t_{2} \in \mathbb{K}$, where $L(\eta)=d\left(t_{1}, t_{2}\right)$ is a minimal geodesic.

Finally, assume that (\mathbb{K}, μ) is a complete n-dimensional Riemannian manifold with Riemannian connection ∇. Let $y_{1}, y_{2} \in \mathbb{x}$ and $\eta:[0,1] \longrightarrow \mathbb{X}$ be a geodesic joining the points y_{1} and y_{2}, which means that $\eta_{y_{1}, y_{2}}(0)=x_{2}$ and $\eta_{y_{1}, y_{2}}(1)=y_{1}$.

A set A in a Riemannian manifold \aleph is called t-convex if A contains every geodesic $\eta_{y_{1}, y_{2}}$ of N whose endpoints y_{1} and y_{2} belong to A.

Note that the whole of the manifold \aleph is t-convex, and conventionally, so is the empty set. The minimal circle in a hyperboloid is t-convex, but a single point is not. Also, any proper subset of a sphere is not necessarily t-convex.

The following theorem was proved in [24].
Theorem 2.1 ([24]). The intersection of any number of t-convex sets is t-convex.
Remark 2.2. In general, the union of a t-convex set is not necessarily t-convex.
Definition 2.3 ([24]). A function $g: A \longrightarrow \mathbb{R}$ is called g-convex function on a t-convex set $A \subset \mathbb{K}$ if for every geodesic $\eta_{y_{1}, y_{2}}$, then

$$
g\left(\eta_{y_{1}, y_{2}}(\gamma)\right) \leqslant \gamma g\left(y_{1}\right)+(1-\gamma) g\left(y_{2}\right)
$$

holds $\forall \mathrm{y}_{1}, \mathrm{y}_{2} \in A$ and $\gamma \in[0,1]$.
Now let M be a non-empty set and ξ be a σ - algebra of subsets of M.
Definition 2.4 ([19]). Let $N: \xi \longrightarrow[0, \infty)$ be a set function, then N is called a Sugeno measure if it satisfies

1. $\mathrm{N}(\phi)=0$;
2. if $A, B \in \xi$ and $A \subset B$, then $\xi(A) \leqslant \xi(B)$;
3. $A_{i} \in N$, where $i \in \mathbb{N}, A_{i-1} \subset A_{i}$, then $\lim _{i \longrightarrow \infty} \xi\left(A_{i}\right)=\xi\left(\cup_{i=1}^{\infty} E_{i}\right)$;
4. $A_{n} \in \xi$, where $i \in \mathbb{N}, A_{i-1} \supset A_{i}, \xi\left(A_{1}\right)<\infty$, then $\lim _{i \longrightarrow \infty} \xi\left(A_{i}\right)=\xi\left(\cap_{i=1}^{\infty} E_{i}\right)$.

Assume that (M, ξ, N), which is said to be a sugeno measure space, is a fuzzy measure space. By $H_{\xi}(M)$, then

$$
\chi_{\xi}(M)=\{h: M \xi \longrightarrow[0, \infty): h \text { is measurable with respect to } \xi\} .
$$

Definition $2.5([17,22])$. Assuming (M, ξ, N) is a fuzzy measure space, $h \in \chi_{\xi}(M)$ and $X \in \xi$, then the Sugeno integral of h on A w.r.t. the N is defined by

$$
\int_{X} h d N=\bigvee_{\alpha \geqslant 0}\left(\alpha \wedge N\left(X \cap H_{\alpha}\right)\right)
$$

where $H_{\alpha}=u \in M: h(u) \geqslant \alpha, \wedge$ is the prototypical t-normal minimum and \bigvee the prototypical t-conorm maximum. If $X=M$, then

$$
\int_{X} h d N=\bigvee_{\alpha \geqslant 0}\left(\alpha \wedge N\left(H_{\alpha}\right)\right)
$$

Some properties of the Sugeno integral can be found in $[17,26]$ such as following.
Theorem 2.6. Assume that (M, ξ, N) is a fuzzy measure space, $X, Y \in \xi$, and $h_{1}, h_{2} \in \chi_{N}(M)$, then

1. $\int_{X} h_{1} d N \leqslant N(X)$;
2. $\int_{X} \operatorname{adN}=a \wedge N(X)$, where a is non-negative constant;
3. if $h_{1} \leqslant h_{2}$ on X, then $\int_{X} h_{1} d N \leqslant \int_{X} h_{2} d N$;
4. if $X \subset Y$, then $\int_{X} h_{1} d N \leqslant \int_{Y} h_{1} d N$.

3. The main results

In this part of the paper, let us take (M, ξ) be a fuzzy measure space for a given $h \in H^{N}(M)$ and $X \in \xi$, then

$$
\Gamma=\left\{\alpha: \alpha \geqslant 0, N\left(X \cap h_{\alpha}\right)>N\left(X \cap h_{\beta}\right) \text { for any } \beta>\alpha\right\} .
$$

Moreover, $\int_{X} h d N=\bigvee_{\alpha \in \Gamma}\left(\alpha \wedge N\left(X \cap h_{\alpha}\right)\right)$ [2].
In the next definition, the concept of (E, μ, κ)-convexity is given.
Definition 3.1. Considering Y_{1} and Y_{2} are two E-convex sets, where $E: \mathbb{R}^{+} \longrightarrow \mathbb{R}^{+}$. Assume that $\mu_{\mathrm{E}\left(u_{1}\right), \mathrm{E}\left(u_{2}\right)}:[0,1] \longrightarrow Y_{1}$ is a geodesic arc joining the pointsu$u_{1}, u_{2} \in Y_{1}$ and $\kappa_{E\left(v_{1}\right), E\left(v_{2}\right)}:[0,1] \longrightarrow Y_{2}$ is a geodesic arc joining the points $v_{1}, \nu_{2} \in Y_{2}$. A real calued function $h: Y_{1} \longrightarrow Y_{2}$ is called a (E, μ, κ)-convex if

$$
h\left(\mu_{\mathrm{E}\left(\mathbf{u}_{1}\right), \mathrm{E}\left(u_{2}\right)}(\lambda)\right) \leqslant \kappa_{h\left(E\left(v_{1}\right)\right), \mathrm{h}\left(\mathrm{E}\left(v_{2}\right)\right)}(\lambda), \forall u_{1}, u_{2} \in \mathrm{Y}_{1}, \lambda \in[0,1] .
$$

Remark 3.2.

1. For a (E, μ, k)-convex function $h:\left[x_{1}, x_{2}\right] \longrightarrow\left[y_{1}, y_{2}\right]$, then

$$
\begin{equation*}
h(u)=h\left(\mu_{\mathrm{E}\left(\mathrm{x}_{1}\right), \mathrm{E}\left(x_{2}\right)}\left(\mu_{\mathrm{E}\left(\mathrm{x}_{1}\right), \mathrm{E}\left(\mathrm{x}_{2}\right)}^{-1}(u)\right)\right) \leqslant \kappa_{h\left(\mathrm{E}\left(\mathrm{x}_{1}\right)\right), \mathrm{h}\left(\mathrm{E}\left(\mathrm{x}_{2}\right)\right)}\left(\mu_{\mathrm{E}\left(\mathrm{x}_{1}\right), \mathrm{E}\left(\mathrm{x}_{2}\right)}^{-1}(u)\right) \tag{3.1}
\end{equation*}
$$

for all $u \in\left[x_{1}, x_{2}\right]$, then the inquality is sharp for all $u \in\left[x_{1}, x_{2}\right]$.
2. If $E=I$, where I is the indenty mapping, then the inquality (3.1) becomes the inquality (2) in [2].

Next, some generalizations of Hadamard in inequality for different geodesic convex functions are given.

Theorem 3.3. Assume that Y_{1} and Y_{2} are two E-convex subsets of $\mathbb{R}, x_{1}, x_{2} \in Y_{1}^{o}$ with $x_{1}<x_{2}$ and $y_{1}, y_{2} \in Y_{2}^{o}$ with $\mathrm{y}_{1}<\mathrm{y}_{2}$. For the particular geodesic arcs $\mu:[0,1] \longrightarrow \mathrm{Y}_{1}$ and $\mathrm{k}:[0,1] \longrightarrow Y_{2}$ defined by $\mu_{\mathrm{E}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)}(\lambda)=$ $(1-\lambda) \mathrm{E}\left(u_{1}\right)+\lambda \mathrm{E}\left(u_{2}\right)$ and $\kappa_{v_{1}, v_{2}}(\lambda)=\mathrm{E}\left(v_{1}\right)^{1-\lambda} \mathrm{E}\left(v_{2}\right)^{\lambda}$, then the next inqualities hold.

1. If $h: Y_{1} \longrightarrow Y_{2}$ is $a(E, \mu, \mu)$ - convex function, then

$$
\frac{1}{x_{2}-E\left(x_{1}\right)} \int_{E\left(x_{1}\right)}^{E\left(x_{2}\right)} h(E(u)) d E(u) \leqslant \frac{h\left(E\left(x_{1}\right)\right)+h\left(E\left(x_{2}\right)\right)}{2}, \forall u \in\left[x_{1}, x_{2}\right]
$$

2. If $h: Y_{1} \longrightarrow Y_{2} \subseteq(0, \infty)$ is a $(\mathrm{E}, \mu, \mathrm{k})$-convex function with $\mathrm{h}\left(\mathrm{E}\left(\mathrm{x}_{1}\right)\right) \neq \mathrm{h}\left(\mathrm{E}\left(\mathrm{x}_{2}\right)\right)$, then

$$
\frac{1}{E\left(x_{2}\right)-E\left(x_{1}\right)} \int_{E\left(x_{1}\right)}^{E\left(x_{2}\right)} h(E(u)) d E(u) \leqslant \frac{h\left(E\left(x_{1}\right)\right)}{\ln \left(\frac{h\left(E\left(x_{2}\right)\right)}{h\left(E\left(x_{1}\right)\right)}\right)}\left(\frac{h\left(E\left(x_{2}\right)\right)}{h\left(E\left(x_{1}\right)\right)}-1\right)
$$

3. If $h: Y_{2} \subseteq(0, \infty) \longrightarrow Y_{1}$ is a (E, κ, μ)-convex function, then

$$
\frac{1}{E\left(y_{1}\right)-E\left(y_{2}\right)} \int_{E\left(y_{1}\right)}^{E\left(y_{2}\right)} h(E(u)) d E(u) \leqslant h\left(E\left(y_{1}\right)\right)+\frac{h\left(E\left(y_{2}\right)\right)-h\left(E\left(y_{1}\right)\right)}{\ln \left(\frac{h\left(E\left(y_{2}\right)\right)}{h\left(E\left(y_{1}\right)\right)}\right)}\left(\frac{E\left(y_{2}\right) \ln \left(\frac{E\left(y_{2}\right)}{E\left(y_{1}\right)}\right)}{E\left(y_{2}\right)-E\left(y_{1}\right)}-1\right)
$$

4. If $h: \mathrm{Y}_{2}:(0, \infty) \longrightarrow \mathrm{Y}_{2}:(0, \infty)$ is a $(\mathrm{E}, \mathrm{k}, \mathrm{k})$-convex function with $\mathrm{h}\left(\mathrm{E}\left(\mathrm{y}_{1}\right)\right) \neq \mathrm{h}\left(\mathrm{E}\left(\mathrm{y}_{2}\right)\right)$, then

$$
\frac{1}{E\left(y_{1}\right)-E\left(y_{2}\right)} \int_{E\left(y_{1}\right)}^{E\left(y_{2}\right)} h(E(u)) d E(u) \leqslant \frac{E\left(y_{1}\right) h\left(E\left(y_{1}\right)\right)}{E\left(y_{2}\right)-E\left(y_{1}\right)}\left(\frac{\left(\frac{E\left(y_{2}\right)}{E\left(y_{1}\right)}\right)^{\log _{E\left(y_{2}\right)}\left(\frac{h\left(E\left(y_{2}\right)\right)}{h\left(y_{1}\right)}+1\right)}-1}{\log _{\frac{E\left(y_{2}\right)}{E\left(y_{1}\right)}}\left(\frac{h\left(E\left(y_{2}\right)\right)}{h\left(E\left(y_{1}\right)\right)}\right)+1}\right)
$$

Proof. The first inequality is the well-known Hadamard's inequality for E-convex functions. If we use the inequality (3.1), then we have the following inequalities.

1. The function $h:\left[x_{1}, x_{2}\right] \longrightarrow\left[x_{1}, x_{2}\right]$ is (E, μ, μ)-convex iff

$$
\begin{equation*}
h(u) \leqslant h\left(E\left(x_{1}\right)\right)+\frac{u-E\left(x_{1}\right)}{E\left(x_{2}\right)-E\left(x_{1}\right)}\left(h\left(E\left(x_{2}\right)\right)-h\left(E\left(x_{1}\right)\right)\right), \forall u \in\left[x_{1}, x_{2}\right] . \tag{3.2}
\end{equation*}
$$

2. The function $h:\left[x_{1}, x_{2}\right] \longrightarrow\left[y_{1}, y_{2}\right]$ is (E, μ, κ)-convex iff

$$
\begin{equation*}
h(u) \leqslant h\left(E\left(x_{1}\right)\right)\left(\frac{h\left(E\left(x_{2}\right)\right)}{h\left(E\left(x_{1}\right)\right)}\right)^{\frac{u-E\left(x_{1}\right)}{E\left(x_{2}\right)-E\left(x_{1}\right)}}, \forall u \in\left[x_{1}, x_{2}\right] . \tag{3.3}
\end{equation*}
$$

3. The function $h:\left[y_{1}, y_{2}\right] \longrightarrow\left[x_{1}, x_{2}\right]$ is (E, κ, μ)-convex iff

$$
\begin{equation*}
h(u) \leqslant h\left(E\left(y_{1}\right)\right)+\log _{\frac{E\left(y_{2}\right)}{E\left(y_{1}\right)}} \frac{u}{h\left(E\left(y_{1}\right)\right)}\left(h\left(E\left(y_{2}\right)\right)-h\left(E\left(y_{1}\right)\right)\right), \forall u \in\left[y_{1}, y_{2}\right] \tag{3.4}
\end{equation*}
$$

4. The function $h:\left[x_{1}, x_{2}\right] \longrightarrow\left[y_{1}, y_{2}\right]$ is (E, μ, κ)-convex iff

$$
\begin{equation*}
h(u) \leqslant h\left(E\left(y_{1}\right)\right)\left(\frac{h\left(E\left(y_{2}\right)\right)}{h\left(E\left(y_{1}\right)\right)}\right)^{\left.\log _{\frac{E\left(y_{2}\right)}{}}^{E\left(y_{1}\right)}\right)^{\frac{u}{h\left(E\left(y_{1}\right)\right)}}}, \forall u \in\left[y_{1}, y_{2}\right] \tag{3.5}
\end{equation*}
$$

If we integrate the inequalities (3.2), (3.3), (3.4), and (3.5) from both sides over $\left[x_{1}, x_{2}\right]$ or $\left[y_{1}, y_{2}\right]$, we obtain the results in the theorem.

Theorem 3.4. Let (\mathbb{R}, ξ, N) be the fuzzy measurement space . Assume that $\mu:[0,1] \longrightarrow\left[x_{1}, x_{2}\right]$ and $\kappa:[0,1] \longrightarrow$ $\left[\mathrm{y}_{1}, \mathrm{y}_{2}\right]$ are two invertible geodesic arcs. If $\mathrm{h}:\left[\mathrm{x}_{1}, \mathrm{x}_{2}\right] \longrightarrow\left[\mathrm{y}_{1}, \mathrm{y}_{2}\right]$ is a $(\mathrm{E}, \mu, \mathrm{k})$-convex function, then

$$
\int_{x_{1}}^{x_{2}} h d N \leqslant\left\{\begin{array}{l}
V_{\alpha \in\left[h\left(E\left(x_{1}\right)\right), h\left(E\left(x_{2}\right)\right)\right]}\left(\alpha \wedge N\left(\left[\mu_{\mathrm{E}\left(x_{1}\right), \mathrm{E}\left(x_{2}\right)}\left(\kappa_{h\left(\mathrm{E}\left(\mathrm{x}_{1}\right)\right), \mathrm{h}\left(\mathrm{E}\left(x_{2}\right)\right)}^{-1}(\alpha)\right), \mathrm{E}\left(x_{2}\right)\right]\right)\right) \\
\quad \text { if } \mu, \kappa \text { are comonotone, } \\
\left.\bigvee_{\alpha \in\left[h\left(\mathrm{E}\left(x_{2}\right)\right), h\left(\mathrm{E}\left(x_{1}\right)\right)\right]}\left(\alpha \wedge \mathrm{N}\left(\left[\mathrm{E}\left(x_{1}\right), \mu_{\mathrm{E}\left(x_{1}\right), \mathrm{E}\left(x_{2}\right)}\left(\mathrm{K}_{h\left(\mathrm{E}\left(\mathrm{x}_{1}\right)\right), h\left(\mathrm{E}\left(x_{2}\right)\right)}^{-1}(\alpha)\right)\right]\right)\right)\right) \\
\text { if } \mu, \kappa \text { are countermonotone. }
\end{array}\right.
$$

Proof. Since h is a ($\mathrm{E}, \mu, \mathrm{k}$)-convex function and by using the property (3 in Theorem 2.6) of fuzzy measure, we get

$$
\begin{align*}
\int_{x_{1}}^{x_{2}} h d N & =\int_{x_{1}}^{x_{2}} h\left(\mu_{E\left(x_{1}\right), E\left(x_{2}\right)}\left(\mu_{h\left(E\left(x_{1}\right)\right), h\left(E\left(x_{2}\right)\right)}^{-1}(u)\right)\right) d N \\
& \leqslant \int_{x_{1}}^{x_{2}} K_{E\left(x_{1}\right), E\left(x_{2}\right)}\left(\mu_{h\left(E\left(x_{1}\right)\right), h\left(E\left(x_{2}\right)\right)}^{-1}(u)\right) d N . \tag{3.6}
\end{align*}
$$

If μ and κ are comonotone, then $\kappa \circ \mu^{-1}$ is an increasing function, then by Definition 2.5

$$
\begin{align*}
& \int_{x_{1}}^{x_{2}} K_{E\left(x_{1}\right), E\left(x_{2}\right)}\left(\mu_{h\left(E\left(x_{1}\right)\right), h\left(E\left(x_{2}\right)\right)}^{-1}(u)\right) d N \\
&=\bigvee_{\alpha \geqslant 0}\left(\alpha \wedge N\left(\left[E\left(x_{1}\right), E\left(x_{2}\right)\right] \cap \mu_{E\left(x_{1}\right), E\left(x_{2}\right)}\left(\kappa_{h\left(E\left(x_{1}\right)\right), h\left(E\left(x_{2}\right)\right)}^{-1} \geqslant \alpha\right)\right)\right) \\
& \quad=\bigvee_{\alpha \geqslant 0}\left(\alpha \wedge N \left(u \geqslant \mu_{\left.\left.E\left(x_{1}\right), E\left(x_{2}\right)\left(\kappa_{h\left(E\left(x_{1}\right)\right), h\left(E\left(x_{2}\right)\right)}^{-1}(\alpha)\right)\right)\right)} \quad=\bigvee_{\alpha \geqslant 0}\left(\alpha \wedge N\left(\left[\mu_{E\left(x_{1}\right), E\left(x_{2}\right)}\left(\kappa_{h\left(E\left(x_{1}\right)\right), h\left(E\left(x_{2}\right)\right)}^{-1}(\alpha)\right), E\left(x_{2}\right)\right]\right)\right) .\right.\right. \tag{3.7}
\end{align*}
$$

Since $\kappa \circ \mu^{-1}$ is increasing, we get

$$
\begin{align*}
& E\left(x_{1}\right) \leqslant \mu_{E\left(x_{1}\right), E\left(x_{2}\right)}\left(\kappa_{h\left(E\left(x_{1}\right)\right), h\left(E\left(x_{2}\right)\right)}^{-1}(\alpha)\right)<E\left(x_{2}\right) \\
& \Longrightarrow \kappa_{E\left(x_{1}\right), E\left(x_{2}\right)}\left(\mu_{h\left(E\left(x_{1}\right)\right), h\left(E\left(x_{2}\right)\right)}^{-1}\left(E\left(x_{1}\right)\right)\right) \leqslant \alpha<\kappa_{E\left(x_{1}\right), E\left(x_{2}\right)}\left(\mu_{h\left(E\left(x_{1}\right)\right), h\left(E\left(x_{2}\right)\right)}^{-1}\left(E\left(x_{2}\right)\right)\right) \tag{3.8}\\
& \left.\Longrightarrow \kappa_{E\left(x_{1}\right), E\left(x_{2}\right)} 0\right) \leqslant \alpha<\kappa_{E\left(x_{1}\right), E\left(x_{2}\right)}(1) \\
& \Longrightarrow h\left(E\left(x_{1}\right)\right) \leqslant \alpha<h\left(E\left(x_{2}\right)\right) .
\end{align*}
$$

Thus, $\Gamma=\left[h\left(E\left(x_{1}\right)\right), h\left(E\left(x_{2}\right)\right)\right]$ and we only need to consider $\alpha \in\left[h\left(E\left(x_{1}\right)\right), h\left(E\left(x_{2}\right)\right)\right]$. It follows from (3.6), (3.7), and (3.8), that

$$
\begin{aligned}
& \int_{x_{1}}^{x_{2}} k_{E\left(x_{1}\right), E\left(x_{2}\right)\left(\mu_{h\left(E\left(x_{1}\right)\right), h\left(E\left(x_{2}\right)\right)}^{-1}(u)\right) d N} \quad \leqslant \bigvee_{\alpha \in\left[h\left(E\left(x_{1}\right)\right), h\left(E\left(x_{2}\right)\right)\right]}\left(\alpha \wedge N\left(\left[\mu_{E\left(x_{1}\right), E\left(x_{2}\right)}\left(\kappa_{h\left(E\left(x_{1}\right)\right), h\left(E\left(x_{2}\right)\right)}^{-1}(\alpha)\right), E\left(x_{2}\right)\right]\right)\right) .
\end{aligned}
$$

If μ and κ are countermonotone, then $\kappa \circ \mu^{-1}$ is a decreasing function. Then, by Definition 2.5, we get

$$
\begin{align*}
\int_{x_{1}}^{x_{2}} & K_{E\left(x_{1}\right), E\left(x_{2}\right)}\left(\mu_{h\left(E\left(x_{1}\right)\right), h\left(E\left(x_{2}\right)\right)}^{-1}(u)\right) d N \\
& =\bigvee_{\alpha \geqslant 0}\left(\alpha \wedge N\left(\left[E\left(x_{1}\right), E\left(x_{2}\right)\right] \cap \mu_{E\left(x_{1}\right), E\left(x_{2}\right)}\left(\kappa_{h\left(E\left(x_{1}\right)\right), h\left(E\left(x_{2}\right)\right)}^{-1} \geqslant \alpha\right)\right)\right) \\
& =\bigvee_{\alpha \geqslant 0}\left(\alpha \wedge N\left(u \leqslant \mu_{E\left(x_{1}\right), E\left(x_{2}\right)}\left(\kappa_{h\left(E\left(x_{1}\right)\right), h\left(E\left(x_{2}\right)\right)}^{-1} \geqslant \alpha\right)\right)\right) \tag{3.9}\\
& =\bigvee_{\alpha \geqslant 0}\left(\alpha \wedge N\left(\left[E\left(x_{1}\right), \mu_{E\left(x_{1}\right), E\left(x_{2}\right)}\left(\kappa_{h\left(E\left(x_{1}\right)\right), h\left(E\left(x_{2}\right)\right)}^{-1}(\alpha)\right)\right]\right)\right) .
\end{align*}
$$

Since $\kappa \circ \mu^{-1}$ is decreasing, we get

$$
E\left(x_{1}\right) \leqslant \mu_{E\left(x_{1}\right), E\left(x_{2}\right)}\left(\kappa_{h\left(E\left(x_{1}\right)\right), h\left(E\left(x_{2}\right)\right)}^{-1}(\alpha)\right)<E\left(x_{2}\right)
$$

$$
\begin{align*}
& \Longrightarrow K_{E\left(x_{1}\right), E\left(x_{2}\right)}\left(\mu_{h\left(E\left(x_{1}\right)\right), h\left(E\left(x_{2}\right)\right)}^{-1}\left(E\left(x_{1}\right)\right)\right) \leqslant \alpha<\kappa_{E\left(x_{1}\right), E\left(x_{2}\right)}\left(\mu_{h\left(E\left(x_{1}\right)\right), h\left(E\left(x_{2}\right)\right)}^{-1}\left(E\left(x_{2}\right)\right)\right) \tag{3.10}\\
& \Longrightarrow K_{E\left(x_{1}\right), E\left(x_{2}\right)}(0) \leqslant \alpha<\kappa_{E\left(x_{1}\right), E\left(x_{2}\right)}(1) \\
& \Longrightarrow h\left(E\left(x_{1}\right)\right) \leqslant \alpha<h\left(E\left(x_{2}\right)\right) .
\end{align*}
$$

Thus, $\Gamma=\left[h\left(E\left(x_{2}\right)\right), h\left(E\left(x_{1}\right)\right)\right]$ and we only need to consider $\alpha \in\left[h\left(E\left(x_{2}\right)\right), h\left(E\left(x_{1}\right)\right)\right]$. It follows from (3.6), (3.9), and (3.10) that

$$
\begin{aligned}
& \int_{x_{1}}^{x_{2}} \kappa_{E\left(x_{1}\right), E\left(x_{2}\right)\left(\mu_{h\left(E\left(x_{1}\right)\right), h\left(E\left(x_{2}\right)\right)}^{-1}(u)\right) d N} \quad \leqslant \quad \bigvee_{\alpha \in\left[h\left(E\left(x_{1}\right)\right), h\left(E\left(x_{2}\right)\right)\right]}\left(\alpha \wedge N\left(\left[\mu_{E\left(x_{1}\right), E\left(x_{2}\right)}\left(E\left(x_{2}\right), \kappa_{h\left(E\left(x_{1}\right)\right), h\left(E\left(x_{2}\right)\right)}^{-1}(\alpha)\right)\right]\right)\right) .
\end{aligned}
$$

Remark 3.5. Consider $h:\left[x_{1}, x_{2}\right] \longrightarrow\left[y_{1}, y_{2}\right]$ is a (E, μ, k)-convex function, ξ is the Borel field, and N is the Lebesgue measure on \mathbb{R}. Then

$$
\int_{x_{1}}^{x_{2}} h d N \leqslant\left\{\begin{array}{l}
V_{\alpha \in\left[h\left(E\left(x_{1}\right)\right), h\left(E\left(x_{2}\right)\right)\right]}\left(\alpha \wedge\left(E\left(x_{2}\right)-\mu_{E\left(x_{1}\right), E\left(x_{2}\right)}\left(\kappa_{h\left(E\left(x_{1}\right)\right), h\left(E\left(x_{2}\right)\right)}^{-1}(\alpha)\right)\right),\right. \\
\text { if } \mu, k \text { are comonotone, } \\
V_{\alpha \in\left[h\left(E\left(x_{2}\right)\right), h\left(E\left(x_{1}\right)\right)\right]}\left(\alpha \wedge\left(\mu_{E\left(x_{1}\right), E\left(x_{2}\right)}\left(\kappa_{h\left(E\left(x_{1}\right)\right), h\left(E\left(x_{2}\right)\right)}^{-1}(\alpha)\right)-E\left(x_{1}\right)\right)\right), \\
\text { if } \mu, k \text { are countermonotone. }
\end{array}\right.
$$

In the following corollaries, consider that $((R), \mathbb{R}, \xi, N)$ is the fuzzy measure space.
Corollary 3.6. Let $\mathrm{h}:\left[\mathrm{x}_{1}, \mathrm{x}_{2}\right] \longrightarrow\left[\mathrm{x}_{1}, \mathrm{x}_{2}\right]$ be a (E, μ, μ)-convex function, hence

$$
\int_{x_{1}}^{x_{2}} h d N \leqslant\left\{\begin{array}{l}
V_{\alpha \in\left[h\left(E\left(x_{1}\right)\right), h\left(E\left(x_{2}\right)\right)\right]}\left(\alpha \wedge N\left(\left[E\left(x_{1}\right)+\left(E\left(x_{2}\right)-E\left(x_{1}\right)\right) \frac{\alpha-h\left(E\left(x_{1}\right)\right)}{h\left(E\left(x_{2}\right)\right)-h\left(E\left(x_{1}\right)\right)}, E\left(x_{2}\right)\right]\right)\right), \\
\quad \text { if } h\left(E\left(x_{1}\right)\right)<h\left(E\left(x_{2}\right)\right), \\
h\left(E\left(x_{1}\right)\right) \wedge N\left(E\left(x_{1}\right), E\left(x_{2}\right)\right), i f h\left(E\left(x_{1}\right)\right)=h\left(E\left(x_{2}\right)\right), \\
V_{\alpha \in\left[h\left(E\left(x_{2}\right)\right), h\left(E\left(x_{1}\right)\right)\right]}\left(\alpha \wedge N \left(\left[E\left(x_{1}\right), E\left(x_{1}\right)+\left(E\left(x_{2}\right)-E\left(x_{1}\right)\right) \frac{\alpha-h\left(E\left(x_{1}\right)\right)}{\left.\left.\left.h\left(E\left(x_{2}\right)\right)-h\left(E\left(x_{1}\right)\right)\right]\right)\right),}\right.\right.\right. \\
\quad \text { if } h\left(E\left(x_{1}\right)\right)>h\left(E\left(x_{2}\right)\right) .
\end{array}\right.
$$

If we take

$$
\mu_{\mathrm{E}\left(\mathrm{x}_{1}\right), \mathrm{E}\left(x_{2}\right)}\left(\mu_{\mathrm{h}\left(\mathrm{E}\left(\mathrm{x}_{1}\right)\right), \mathrm{h}\left(\mathrm{E}\left(x_{2}\right)\right)}^{-1}(\alpha)\right)=\mathrm{E}\left(\mathrm{x}_{1}\right)+\left(\mathrm{E}\left(\mathrm{x}_{2}\right)-\mathrm{E}\left(\mathrm{x}_{1}\right)\right) \frac{\alpha-\mathrm{h}\left(\mathrm{E}\left(\mathrm{x}_{1}\right)\right)}{\mathrm{h}\left(\mathrm{E}\left(\mathrm{x}_{2}\right)\right)-\mathrm{h}\left(\mathrm{E}\left(\mathrm{x}_{1}\right)\right)}
$$

in Theorem 2.6, then the Corollary 3.6 can be proved.
Corollary 3.7. Let $\mathrm{h}:\left[\mathrm{x}_{1}, \mathrm{x}_{2}\right] \longrightarrow\left[\mathrm{y}_{1}, \mathrm{y}_{2}\right]$ be a $(\mathrm{E}, \mu, \mathrm{k})$-convex function. Then

$$
\int_{x_{1}}^{x_{2}} h d N \leqslant\left\{\begin{array}{l}
V_{\alpha \in\left[h\left(E\left(x_{1}\right)\right), h\left(E\left(x_{2}\right)\right)\right]}\left(\alpha \wedge N\left(\left[E\left(x_{1}\right)+\left(E\left(x_{2}\right)-E\left(x_{1}\right)\right) \log _{\frac{h\left(E\left(x_{2}\right)\right)}{h\left(E\left(x_{1}\right)\right)}} \frac{\alpha}{h\left(E\left(x_{1}\right)\right)}, E\left(x_{2}\right)\right]\right)\right), \\
\quad \text { if } h\left(E\left(x_{1}\right)\right)<h\left(E\left(x_{2}\right)\right), \\
h\left(E\left(x_{1}\right)\right) \wedge N\left(E\left(x_{1}\right), E\left(x_{2}\right)\right), \text { if } h\left(E\left(x_{1}\right)\right)=h\left(E\left(x_{2}\right)\right), \\
V_{\alpha \in\left[h\left(E\left(x_{2}\right)\right), h\left(E\left(x_{1}\right)\right)\right]}\left(\alpha \wedge N\left(\left[E\left(x_{1}\right), E\left(x_{1}\right)+\left(E\left(x_{2}\right)-E\left(x_{1}\right)\right) \log _{\frac{h\left(E\left(x_{2}\right)\right)}{h\left(E\left(x_{1}\right)\right)}} \frac{\alpha}{h\left(E\left(x_{1}\right)\right)}\right]\right)\right), \\
\quad \text { if } h\left(E\left(x_{1}\right)\right)>h\left(E\left(x_{2}\right)\right) .
\end{array}\right.
$$

If we take

$$
\mu_{E\left(x_{1}\right), E\left(x_{2}\right)}\left(\kappa_{h\left(E\left(x_{1}\right)\right), h\left(E\left(x_{2}\right)\right)}^{-1}(\alpha)\right)=E\left(x_{1}\right)+\left(E\left(x_{2}\right)-E\left(x_{1}\right)\right) \log _{\frac{h(E(x)}{\left.h\left(E\left(x_{1}\right)\right)\right)}} \frac{\alpha}{h\left(E\left(x_{1}\right)\right)}
$$

in Theorem 2.6, then the Corollary 3.7 can be proved.
Corollary 3.8. Let $\mathrm{h}:\left[\mathrm{y}_{1}, \mathrm{y}_{2}\right] \longrightarrow\left[\mathrm{x}_{1}, \mathrm{x}_{2}\right]$ be a $(\mathrm{E}, \mathrm{K}, \mu)$-convex function. Then

If we take

$$
K_{E\left(x_{1}\right), E\left(x_{2}\right)}\left(\mu_{h\left(E\left(x_{1}\right)\right), h\left(E\left(x_{2}\right)\right)}^{-1}(\alpha)\right)=E\left(x_{1}\right)\left(\frac{E\left(x_{2}\right)}{E\left(x_{1}\right)}\right)^{\frac{\alpha-\mathfrak{h}\left(E\left(x_{1}\right)\right)}{\mathfrak{h}\left(\underline{E}\left(x_{2}\right)\right)-h\left(E\left(x_{1}\right)\right)}}
$$

in Theorem 2.6, then the Corollary 3.8 can be proved.
Corollary 3.9. Let $\mathrm{h}:\left[\mathrm{y}_{1}, \mathrm{y}_{2}\right] \longrightarrow\left[\mathrm{y}_{1}, \mathrm{y}_{2}\right]$ be a $(\mathrm{E}, \mathrm{k}, \mathrm{k})$-convex function. Then

$$
\left.\left.\int_{x_{1}}^{x_{2}} h d N \leqslant\left\{\begin{array}{l}
V_{\alpha \in\left[h\left(E\left(x_{1}\right)\right), h\left(E\left(x_{2}\right)\right)\right]}\left(\alpha \wedge N \left(\left[E\left(x_{1}\right)\left(\frac{E\left(x_{2}\right)}{E\left(x_{1}\right)}\right)^{\log _{h\left(E\left(x_{2}\right)\right)}^{\left.h\left(E x_{1}\right)\right)}} \frac{\alpha}{h\left(E\left(x_{1}\right)\right)}\right.\right.\right.
\end{array}, E\left(x_{2}\right)\right]\right)\right),
$$

If we take

$$
K_{E\left(x_{1}\right), E\left(x_{2}\right)}\left(\kappa_{h\left(E\left(x_{1}\right)\right), h\left(E\left(x_{2}\right)\right)}^{-1}(\alpha)\right)=E\left(x_{1}\right)\left(\frac{E\left(x_{2}\right)}{E\left(x_{1}\right)}\right)^{\log _{h\left(E\left(x_{2}\right)\right)}^{h\left(E\left(x_{1}\right)\right)}} \frac{\alpha}{\left.\overline{n(E)}\left(x_{1}\right)\right)}
$$

in Theorem 2.6, then Corollary 3.9 can be proven.
Example 3.10.

1. If $E: \mathbb{R} \longrightarrow \mathbb{R}$ is $E(x)=x^{2}$, then the function $h:[1,3] \longrightarrow[0,+\infty]$, which is defined as $h(x)=\frac{1}{\ln ^{2}(x+1)}$ is (E, μ, μ)-convex function.
2. If $E: \mathbb{R} \longrightarrow \mathbb{R}$ is $E(x)=x^{x}$, then the function $h:[1,2] \longrightarrow[0,+\infty]$, which is defined as $h(x)=x$ is ($\mathrm{E}, \mu, \mathrm{K}$)-convex function.
3. If $E: \mathbb{R} \longrightarrow \mathbb{R}$ is $E(x)=x$, then the function $h:\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$, which is defined as $h(x)=x^{\sin ^{2} x}$ is (E, κ, μ)-convex function.
4. If $E: \mathbb{R} \longrightarrow \mathbb{R}$ is $E(x)=2 x$, then the function $h:[1,2] \longrightarrow[0,+\infty]$, which is defined as $h(x)=$ $(\cosh (x))^{\frac{1}{4}}$ is (E, K, k)-convex function.

4. Conclusion

This paper introduces a new class of geodesic convex functions, namely (E, μ, κ)-convex function, and considers and generalizes the Hadamard inequality for ($\mathrm{E}, \mu, \mathrm{k}$)-convex function.

References

[1] S. Abbaszadeh, A. Ebadian, Nonlinear integrals and Hadamard-type inequalities, Soft Comput., 22 (2018), 2843-2849. 1
[2] S. Abbaszadeh, M. Oraki, A. Ebadian, Hadamard integral inequality for the class of geodesic convex functions, Appl. Math. Inf. Sci., 15 (2021) 539-546. 3, 2
[3] I. Abou-Tair, W. T. Sulaiman, Inequalities via convex functions, Int. J. Math. Math. Sci., 22 (1999), 543-546.
[4] X. S. Chen, Some properties of semi-E-convex functions, J. Math. Anal. Appl., 275 (2002), 251-262. 1
[5] D. I. Duca, L. Lupsa, On the E-epigraph of an E-convex functions, J. Optim. Theory Appl., 129 (2006), 341-348. 1
[6] C. Fulga, V. Preda, Nonlinear programming with E-preinvex and local E-preinvex functions, European J. Oper. Res., 192 (2009), 737-743. 1
[7] G. Giorgi, A Simple Way to Prove the Characterization of Differentiable Quasiconvex Functions, Appl. Math., 5 (2014), 12-26. 1
[8] D. Goldfarb, S. Q. Ma, K. Scheinberg, Fast alternating linearization methods for minimizing the sum of two convex functions, Math. Program., 141 (2013), 349-382. 1
[9] A. Iqbal, I. Ahmad, S. Ali, Some properties of geodesic semi-E-convex functions, Nonlinear Anal., 74 (2011), 6805-6813. 1
[10] A. Iqbal, S. Ali, I. Ahmad, On geodesic E-convex sets, geodesic E-convex functions and E-epigraphs, J. Optim. Theory Appl., 155 (2012), 239-251. 1
[11] A. Kiliçman, W. Saleh, On Geodesic Strongly E-convex Sets and Geodesic Strongly E-convex Functions, J. Inequal. Appl., 2015 (2015), 10 pages. 1
[12] A. Kiliçman, W. Saleh, On geodesic semi strongly E-convex functions, J. Interdiscip. Math., 19 (2016), 1039-1055. 1
[13] A. Kiliçman, W. Saleh, On properties of geodesic semilocal E-preinvex functions, J. Inequal. Appl., 2018 (2018), 13 pages. 1
[14] M. A. Noor, Fuzzy preinvex functions, Fuzzy sets and systems, 64 (1994), 95-104.
[15] M. A. Noor, M. U. Awan, K. I. Noor, On some inequalities for relative semi-convex functions, J. Inequal. Appl., 2013 (2013), 16 pages. 1
[16] M. A. Noor, K. I. Noor , M. U. Awan, Generalized convexity and integral inequalities, Appl. Math. Inf. Sci., 9 (2015), 233-243. 1
[17] E. Pap, Null-additive set functions, Springer, Berlin, (1995) 2.5, 2
[18] J. E. Peačarić, F. Proschan, Y. L. Tong, Convex functions, partial orderings, and statistical applications, Academic Press, Boston, (1992). 1
[19] D. Ralescu, G. Adams, The fuzzy integral, J. Math. Anal. Appl., 75 (1980), 562-570. 2.4
[20] T. Rapcsak, Smooth Nonlinear Optimization in \mathbb{R}^{n}, Kluwer Academic Publishers, Dordrecht, (1997). 1
[21] W. Saleh, Some Properties of Geodesic Strongly Eb-vex Functions, Int. J. Anal. Appl., 17 (2019), 388-395. 1
[22] M. Sugeno, Theory of fuzzy integrals and its applications, Doctoral Thesis, Tokyo Institute of technology, (1974). 1, 2.5
[23] Y.-R. Syau, E. S. Lee, Some properties of E-convex functions, Appl. Math. Lett., 18 (2005), 1074-1080. 1
[24] C. Udrist, Convex Funcions and Optimization Methods on Riemannian Manifolds, Kluwer Academic Publishers, Dordrecht, (1994). 1, 2, 2.1, 2.3
[25] H. Vosoughian, Hadamard integral inequality for the class of semi-harmonically convex functions, Asian-Eur. J. Math., 15 (2022), 21 pages. 1
[26] Z. Y. Wang, G. J. Klir, Fuzzy measure theory, Plenum Press, New York, (1992). 2
[27] X. M. Yang, On E-convex set, E-convex functions and E-convex programming, J. Optim. Theory Appl., 109 (2001), 699-703. 1
[28] E. A. Youness, E-convex sets, E-convex functions, and E-convex programming, J. Optim. Theory Appl., 102 (1999), 439-450. 1
[29] E. A. Youness, T. Emam, Strongly E-convex sets and strongly E-convex functions, J. Interdiscip. Math., 8 (2005), 107-117. 1
[30] E. A. Youness, T. Emam, Semi strongly E-convex functions, J. Math. Stat., 1 (2005), 51-57. 1
[31] E. A. Youness, T. Emam, Characterization of efficient solutions for multi-objective optimization problems involving semistrong and generalized semi-strong E-convexity, Acta Math. Sci. Ser. B (Engl. Ed.), 28 (2008), 7-16.

[^0]: Email address: wed_10_777@hotmail.com (Wedad Saleh)
 doi: 10.22436/jnsa.015.04.03
 Received: 2022-05-07 Revised: 2022-06-27 Accepted: 2022-07-02

