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Abstract

In the last few decades many authors pointed out that derivatives and integrals of non-integer order are very suitable for
the description of properties of various real problems. It has been shown that fractional-order models are more adequate than
previously used integer-order models. In this work, we aim to investigate of different features of the plant virus model with
its fractional order equivalent. We present an application for reproduction number for these kind of epidemic models with
next generation matrix method. Also, existence and uniqueness of solutions have been showed for this fractional order system.
Finally we present some figures according to the given numerical scheme.
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1. Introduction

Without doubt plants are very important in our life for many things. The plants are used in many
areas suc as food, medicine, fiber for clothes and etc. However, plants are subject to virus diseases also
similar with human disease. So how do plants get the virus? In plants the most common way that
viruses are propagated by means of insects. So insects are very big problem for plants. We know that
plants cannot protect themselves. But if there are many predators such as birds, bats and herbal remedies,
plants can live long and grow healthy. In this paper we consider plant virus model which was modified
a plant-virus propagation model with delays in paper [2, 6, 7, 10]. Our aim is to understand plant virus
model with fractional order and predict the process of the disease.

In many applied problems which are considered in this area, the zero initial condition on the func-
tion y(t) and its integer-order derivatives are used. There are three main reasons for this. The reasons
are given as physical interpretation of fractional derivatives, difficulties with numerical approximation
of initial conditions. For long years, fractional differentiation and integration operators are very pre-
ferred operators that have becoming a very popular in mathematical modelling. Researchers from all over
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the world have considered those operators with their appropriate kernels such as power law (Caputo
and Riemann Liouville derivative), exponential law (Caputo-Fabrizio derivative) and Mittag-Leffler law
(Atangana-Baleanu derivative) [3-5, 8, 9]. These different works put many effective theorems and applica-
tions. Liouville and Riemann gave birth to the well-known fractional integral, and then with its fractional
derivative. Among these operators Caputo is the most preferred differential operator which is the con-
volution of the derivative of a function with power-law [9]. An application of the Laplace transform to
this version leads to the normal initial condition. Because of this reason mentioned in last sentence, we
have considered our plant virus model via Caputo fractional differential equations. But we noted that the
model was considered with its classical version in paper [2] before. In this paper we aim at modelling the
spread of plant virus disease. Several cases are considered, conditions under which the unique system
solution is obtained are presented in detail. Also we present numerical simulation for solution of the
considered equation with this method. The numerical results show that this numerical approach is useful
and accurate for obtaining numerical solutions of such equations.

1.1. Some important theorems and definitions of fractional calculus

There is a very close relationship between differential operators and integral operators. This relation is
also suitable for fractional calculus. Authors who work with fractional order differentiation want to retain
this relation in a suitably generalized sense. In this sense, in this section we give fundamental theorem of
classical calculus and important definitions of fractional calculus [9].

Theorem 1.1 (Fundamental theorem of classical calculus). Let k : [t1, t2] — R be a continuous function, and
let K : [t1, to] — R be defined by

K:= J k(t)dt.
t
Then, K is differentiable and
K =k.

Definition 1.2. Let & > 0 of a function k : (0,00) — R, so Riemann-Liouville fractional integral is given by

t
1 _
15k (t) = (5_1)!i(t—x)£ x(x)dx, x> 0.

Definition 1.3. Let & > 0 of a function k : (0, c0) — R and the Riemann-Liouville derivative is given as

d i
Dok (t) = an Tk(t) =

&|e

t
&
FA_¢) OJ(t x) k(x)dx, 0< &<1.

Here and following definitions I'(.) is Gamma function and we recall the definition as below:
rE) = J téle~tdt, for &> 0.
0
Definition 1.4. Let & > 0 of a function k : (0, c0) — R, the Caputo fractional derivative is given as

t
CDEK(t) = ! J(t—x)adk(x)dx, 0<&<1.
0

MN1—¢&) dx
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Now we give property for Riemann-Liouville derivative.

Property 1.5. If k(t) is defined in the interval [t;, t2] and

L J(t —x)5 k(x)dx =0,
t

&)
for £ > 0 and for all t € [ty, t5], then
k(t)=0
2. Plant virus model
ds(t) By
— u(k— —
dt Hk—s)+dv 1+ocys'
di(t) By
— —(d ,
dt 1+ocys (d+utyh
dx(t) A— B . c1x o
dt 1+a1” 14+ ochp ’
dy(t)  Bn cy
dt 1+O(11X 1+oc3yp my,
dp(t) 041X 42y
A — &p.
dt p+1+(x3xp+1+oc3yp P

The initial conditions are taken as follows:
s(0) = so, U0) =1, x(0) =xo, Yy(0) =yo, P(0) = Ppo.
The meanings of the parameters of model considered in this paper was given in paper [2].

2.1. Positivity and boundness of the solutions

In this part, we study the positivity of solutions of plant virus model. Here we derive necessary
and sufficient conditions such that the solutions have positivity. Our aim is show that solutions have
qualitative behavior. So we assume that for any initial conditions for model s(0) = sp, 1(0) = 19, x(0) = %o,
y(0) = yo, p(0) = po € AT so there exists a unique solution and for t > 0 and the solutions satisfies
L2(0,00). Let us give definition for a positivity criterion below.

Definition 2.1. The positive cone which is defined in L2(0,R™), is
At = {xe*>(0,R™)|x'>0,i=12,...,m}.

If we can show positivity of solutions, we will state the maximal existence interval of the solutions by
[0, T].
Now let us start with s(t) class. We define the following norm

@l = sup lol.
t€[0,T]

!

s(t) is given by
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So we have for the function s(t),

= — +——" |5, Vt=0,
W 1+« sup [yl

t€[0,T]

Blyll )
>—(p+-—"21% )5, Vit 0.
( 1+ oyl

Then we have
— (e )
s(t) = spe eyl /7 Wt > 0.

!/

1(t) is given by

Then we have

!’

x(t) is given by

x(t) =A— Brt X — ax
14+ a1 14 agx
B c1X
1+ o 1 + ogx
Pry +m|x, Vt>0,
1+ ot 1 —I— o3
B1 N C1
14+ 0y \1| 14 a3

.
.
( 1 sup Rl
o
.

p—mx, Vt>0,

+m>x, vt>0,

—i—m)x, vt >0,

te[0,T] C1

+m|x, Vvt>0,
1+ sup | 143

te[0,T]
B1[[1lo 1
14+ o 1o 1+oc3

+m>x, vt > 0.

Then we have

B1lltlloo
x(t) > xoe‘<1+3mhnoo+l+ )t , YVt >0.
y(t) is given by
/ B 2y
t) = — —my, Vt>0,
y(t) 1+cxllx 1+oc3yp my

C2
— +mly, Vt=>0,
<1+0<3yp >y

C2
> - , >0,
(e m)s
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Z— , V2=
(2 bl m)y, w0
)
> — sup lpl+m |y, Vt>0,
<1+ %3 tefo,T]

2
= — , vVt > 0.
(52 et m) y

So we have

y(t) > yoe*(“cg‘3 )t, vt > 0.

Finally {)(t) is given by

' x4C1X x4C2y
t)=Ap
plY) = +1—|—oc3xp 1+ a3y

xX4C1X o x4Co2y 16 P, Vt>0,
1+ aszx 14+ a3y

p_é‘p/ Vt>0/

ogct x| a4C2 [yl )
+0])p, Vt=0,
1—|—oc3|x| 1+oc3|y)| P

( oucy sup [x| o4 sup |y

te[0,T] te[0,T]

14+ a3 sup X 1+as sup |yl
te0,T] tel0,T]

+6]|p, Vt=0,

ogc [|xlo, X402 1Yllso +5> p, V=0
T, T+l

ogcqlixlloe  ac2lylloo 5)
T Tl THaslulles T

>e , Vt>0.

So the virus model has positive solutions Vt > 0.

3. Model analysis

Ro is named as reproduction number which can help us to understand the virus finish completely or
not. Virus-free equilibrium point is globally asymptotic stable if Ry < 1 and virus equilibrium point is
globally asymptotically stable if Ry > 1. In this section we obtain the reproduction number using the next
generation matrix technique [11]. It can be seen that the plant virus model has a virus free equilibrium

point Eg(k,0,0,0,0). Let us consider following system of differential equation consist with 1(;c),

: By
t) = —
(t) T+ oy (d+p+v)y
. P11 2y
t) = — —my,
y(t) 1+oc11X 1—i—oc3yp my
. X4C1X x4C2yYy
t)=A op.
p(t) p+1+cx3xp 14+ a3y P
Then we obtain the following / and ¥ matrices:
1—E§ys (d+p+vy)
F = 1f}x‘11x and 9= %jfxwp +my
Ap + e + Ty P sp
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Now let us get F and v of Jacobian of / and ¥ matrices. Then

Bs
[50 (1+ay)? 0
— 1x
F= (14 oq1)? 0 0
O X4Co2P X4C1X + xX4C2Yy

(1+oagy)? 1H+asx ' 1+agy

and
(d4+p+7y) 0 0
Cp 2y
Vv = O (1+“3y)2 +m 1_._0(39
0 0 )

So, next generation matrix for the model is

B1x 0
(1+o¢11)2(d+51+v)
N, =Fv 1= (I+o3y) —c2y(1+osy)
x 0 czp+m(1+cx3y]2 5(czp+m(1+cx3y)2)
1
0 0 1

Finally, the spectral radius Ry of the matrix Ny is the basic reproduction number of the model given by

Ry — 1+ oay)
c2p +m (1+ azy)?
3.1. Global stability of the virus equilibrium point

In this section we investigate the the global stability of the virus equilibrium point of the plant virus
model. Now let us consider model again with its virus equilibrium point E*(s*,1*, x*, y*, p*).

s(.t) =wk—s)+dr— 1 E%xy s,
1({) = 1—(?;138_ (d4+p+v)y
~ 1 c1x
() =A- 1 Eloqlx 1 +loc3xp -
yt) =7 Elolmx 1 iz(iyp ™
p(t) = Ap+ xX4C1% x4C2Yy p—&p.

14 agx 1+ a3y
Theorem 3.1. If Ry > 1, the point E*(s*,1*,x*,y*,p*) is globally asymptotically stable.

Proof. The proof of this theorem is done by using the idea of Lyapunov function. We put the Lyapunov
function associated the system as below:

V(E*(s* 1", x*,y*,p*)) = (s —s*+s*log SS> + (1—1* +1"log Z)

+ <x—x*+x*log7;) + <y—y*+y*logi) + <p—p*+p*log1;>.

Taking the derivative of Lyapunov function for t, we get

V(t) = <S_Ss*> S+ <1_11*>i+ (X_XX*>>'<+ (y;y*>y+ (p;p*>p
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Taking into accont the values in above equation for derivatives
s—s By =) [ By
— — —(d
( )( s)+du 1+ocys>+< " ><1+ays ( +u+y)1)
X—X P11 c1X
A — _ _
+< >< Troan 1+agx mx)
y—y B11 2y p—p* x4C1X x4CoY
— — A —op | .
+( y >(1+O€11X 1+oc3yp my)—i—( P )( p+1—i—oc3xp+1—i—oc3yp p>
Then we write
' By s* st By
V(t) =p(k — dt— ——s— —p(k— ——d —
(t) = s)+d 1—|—ocys su( s) sl—l—cxys
By v By v Pt
- 2 (d A—
1—1—0( —ldtutyn 114+ ay +1( eyt 1+O(1lx
C1X xX* Pt xX* X x*
_ _7/\ ~ ~
1—|—oc3xp mx X 1+oc11X X 1—|—oc3xp+ X mx
Prr c2y p—my— L Brr . Y" cay -
1+ a1 14+ a3y y 14+ o y1+oc3y
y* X4C1X x4C2Yy p*
+=my+Ap, + + op ——Ap
y Y P i+« 1+oc3yp P P
P x4C1x P 064 2y +P75p'
P 14 azx P 14+ a3y P
Let us write above also as .
V(t) =Vi—V,,
here
s*By s*By Ry .
Vi =puk +di+ +sTu+ + s+ (d+p+
=H 1+ ay » l+oay  1+ay (d+n+y)
B x"ceip " P11 yreop * x4C1X o4y x
A A d
+ Jr1—1—0(11 1—|—oc3x+xm+1—|—oc11X 1+oc3y+y m p+1—i—ochp 1—|—oc3yp+p
and
Vo =us + Py S+iuk+idl+(d+ll+‘\/)l+i Py s
14+ ay S s 114+ ay
Biv Ok XA CVP Y B e PP | prauCix | PTauCay
1+ o1 1+ azx X 1+ a3y y 1+ ot P 1+ azx 1+ a3y

Therefore if

Vi —V, >0, then V(t) > 0
Vi —V, =0, then V(t) =0;
Vi —V, <0, then V(t) <0

4. Existence and uniqueness theorem as a method of solution

Remembering that our model given by
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But in this section, we consider model as below

ds(t)
dt

Here we take

= Pl(t,S),

i)

ii)

di(t) Py
bt Sl —(d )
dt 1+ ay s=ld+prtvh
dx(t) P11 c1X
—A— _ —mx,
dt 1+ O(llx 1+ 063,7(p mx
dy(t)  Bn coy
dt  1+op 1+ cx3yp m
dp(t) oX4C1X x4C2y
LA — op.
dt p+1+oc3xp+1—|—oc3yp P
da(t) dx(t) y(t)
=P =P t/ 7 =P t/ 7
g 2(t,1), o 3(t,x) T 4(ty)
Pi(t,s) = u(k—s)+di— 1 —Elicys'

Pr(t,1) = 7 E%{ys —(d+u+vy)y

Pt = A B S
Paltry) = 1 —[ilolqlx 1 —ic-zzgyp —my
Ps(t,p) = Ap + 1036;; 1?2313 —&p.

IP1(t,s) —P1(t, 51
[P2(t,1) — Pa(t,u
IP3(t,x) —P3(t, x1
IPs(t,y) — Palt, y1
IPs(t,p) — Ps(t, p1

—_— Y Y
N

P1(t,s)? <Gi(1+1sP),
P2 (t, 1) <Gp(1+hP),
P3(t,%)* <1+ x[),
P4t y)* <Fu(1+yP),
IPs(t,p)* <Js(1+IpP).

If above conditions are verified, then solution of system exists and is unique. We start with first
equation of system Pi(t,s). Then we will try to verify first condition for equation like below

P1(t,s) — Pi(t, s1)1* <jils —sqf*.

Now we define the following norm

2 2
[olle = sup lol”.
t€[0,T]
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Let us consider s,s; € RZand t € [0, T],

2

[P1(t,s) — Pi(t, s1) ZZK—H 152@) (s —s1)

2 2
{2u2+ By }Issll2

1+a@F

2 sup yf’
te[0,T] 2
—————— rls—s
1—1—0( sup |yl
tel0,T]

2R2
{2u2+ B 1yl }|s_31|2
1+ alylls,

<itls —si1?,

262 ||y|2
1_{2u2+ B [yl }
L+ allyl,

where

—.

Fori,y € RZand t € [0, T]

Pa(t,1) = Pa(t,u)P == (d+p+vy) a—u)P < {(Ba2+3u2+3y?) } h—yuf <

where
jo = {3d* +3u* +3y*} .
For x,x; € R?and t € [0, TJ,

2

P11 c1p
Pa(t,x) — P3(t,x1)[* = —
[P3(t, x) — P3(t,x1)] ( 1+(X1l 1T o —m | (x—x1)
< oI —
= 1+0611 1+oc3+m xmx
2112 2 2
<|<3 Bi Y C1|p| +3m (x —x1)
14 o? |1| 1+
[32 sup h? c1 sup |p|2
te[0,T] te[0,T]
1—1—0(1 sup [ (1+ o)
telo,T]
3p2 L3 211p|1?
B HlH Cl HPHO§+3m2 |X—X12
1+oc%||1|| (1+oc3)

\]3 |X_Xl| ’

382 |2 3c
Y T TP . - |
T+af(pfls, (14 ocg)

2

where

Fory,y; € R?and t € [0, T],

C2p
Pa(t,y) — Pa(t, 2= —m —
[P4(t,y) — Palt, y1)l ’( T+ oy >(y Y1)

. 2
12|1’_ll| ’

+3m? % x —x1 /2
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< l(—lcjz% —m) (y—y1)

<! ¢ Ipl? 1 om2 2 ) ”PH 2 e a2
< s+2m? o ly—yil® < Q22 4 om? b ly —uiF <aly — il
(1+ a3) (1+O¢3)

. llpl2,
jg={2-2Plleo | 52
{ (1+ 063)2
For p,p1 € R?Zand t € [0, T],

x4C1X x4C2yYy
Ps(t, Ps(t, 5] (p—
[P5(t,p) — P5(t, p1)| ’(H%X T+ a0 >(p P1)

x4C1X x4C2y
-5 —
’<1+oc3x 14+ a3y >(p P

2

where

2

2

5 e o odeilyP
1—|—oc3|x| 1+ syl

°‘4C1||X|| 13 “ZC%”UHio + 1382 |p—p1|2
1+oc3HxH 1+ o3 ||yl

. +362} Ip —p1l*

<slp—ml,

D R Y- = [ e g
Tros|xls  1+ea |yl
Then we were able to provide the necessary condition (i).

Now we will proof the second condition for plant virus system by following: V(t,s) € R? x[to, T], then
we will show that

where

By |
Pi(t,s) = |u(k— —
[P1(t, )l 'u( s)+du l+ocys
2 2.2 2012 B2 yl* 2
<4 (pk)” +4p”|s]” +4d" " +4— s
(14 fyl)
2 2.2 2 B2y 2
<4 (pk)"+4d h + (4p° +4——5 | 3]
(1+ oyl
B2 sup Iy
< 4 (pk)? + 442 sup W2+ | 4p2+ 4 el 5 Is|?
te(0,T]
14+ a sup |yl
te[0,T]
B2 sup |yl
4H2+4 tel[0,T] 5
<1+oc sup y|>
< 4(pk)2+4d2 sup |1\2 1+ AL |s\2
( te[0,T] 4 (uk)? +4d2 sup hf?
t€[0,T]
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2 2
4u2_{_4 B ||yHoo
(1+allyll% )’

Is(t)1?
4 (uk)? +4a2 o3

< (4002 + 402 ) | 1+

< (1 +1sP),

where B
i1 =4 (k) +4ad? )2,
and with under condition

2 2
a2 4 4 Byl
R TIIERE

4 (uk)? 1 4d2 %

Now we continue with second equation V(t,1) € R? x[tg, T], then we will show that

2

Pa(t, 1) = ‘ Py s—(d+up+vy)h
14+ ay
2 2
< (2P S1sPP+2(d+p+v)*h
(14 fyl)
B2 sup lyf
0T
< |2 telo T 5 sup s> +2(d+ pw+v)* b/
te[0,T]
14+« sup [yl
te[0,T]
2 2
< (22 g g2 @y n?
(1+alyllZ)
282 [lyll3, (d+p+v)? o
(1+aun2)””” el ’
oo (+adlylZ)
<Ja(1+ NP,
where )
2 00’
(1+alyllZ)
and with under condition )
(d+p+vy) 1
B2 HUH ” ” '
(+alylz)
Y(t,x) € R? x[tg, T], then we will show that
2 B c1X 2
Pa(t, x)P = |A— - -
[P3(t,x)] ‘ 1+(X11X 1+(X3XP mx
4p2 2 AP, 2
< [4n%+ [x|? + — p? + 4m?2 ||
( 1+ a2 hf 1+ o xP?

AP 4ctipP
< (an2 4 (2PN 5+ i |p| +4m X[
1+a2hf 14w
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4(3% sup Iﬂ2 4c% sup \p\Z

t€[0,T] te[0,T] 2
1+0o3 sup /2 1+od +4m
2 tel0,T] 2
< | 4A% | 1+ N2 x|
4312, 4c%\|p||m
S AN2 x
<Js(1+IxP),
where
iz = 42,
and with under condition
4p3IZ, 401HPIIOo
ol T ireg TAM
e <1
Y(t,y) € R? x[to, T], then we will show that
O L= RN
A 1+t 1+ agy
< (3BIHENE S SERE
1+ocl|1| 1+oc§|y|
o (3BIRENE | SSBEIRE o oy o
1+ o2 h? 1403
21121012
< 3f3 [~ x| - 302|P| +3m? | P
14 of h/? 1+«
B2 Jnll2, X112, c3 ||PH 2\ 2
+ 13 X +3m
( 1+ o2 1+ o2 yl
Al 2
SBR[ D™ T o
It o2 3 BRI XI5

2
T+od 5

a1+ 1y,

= NG (1% 8
1t o %

Cz\lpl\m 2
1+oc3 +m

where

and with under condition

——— <1
B3Iz lIx[12
TradlnlE,
Y(t,p) € R? x[to, T], then we will show that
2
|P4(t,p)|2 = A, + x4C1X x4Co2Yy 5p

1+oc3xp 1+ a3y
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o2c2 [x[? o232yl |, 2
< (4A2 4455 P4 g T YL 2 452y
( P R |2 1+ 2| |2 P P
o2c?
1+ || H 1 H 1%
1+0¢3IIXH 1+ o3 lylls
RASIRIIR odc3|lyl2 2
[o'e] oo _1_6
2 1+ad|x[l5,  1+edllyllz, 2
< 4/\p 1+ . /\% 2 Ipl

<Js(1+IpP),

where B
js = (4A3)

and with under condition
oc4cll\><\|oo + °¢4Czlly\|oo 482
1+adxlZ,  1+odllylZ

A

< 1.

4.1. Numerical scheme for plant virus model with Riemann-Liouville derivative
In this section, algorithms for effecting differintegration to order « will be devised and evaluated for
Riemann-Liouville derivative. While putting numerical scheme, we will use Adam-Bashforth numerical

scheme [1].
Now, let us write model with Riemann-Liouville derivative as following:

By(t) s(t)

0 Ds(t) = plk—s(t) + dut) — 3= xy(t)

RLD (1) = %s(t) (A4 Y,

B1u(t) cix(t)
Tran®™Y " T an(®
Bra(t) cay(t)

Tt o) V™ mp(t) —my(t),
oyucrx(t) xgcoy(t)
T3 aox(0 "V T4 sy PV ~ o0

6 rDx(t) = A — p(t) — mx(t),

§IDYy(t) =
(}§LD“p(t) = /\p +
with initial conditions are taken as follows:

s(0) = so, 1(0) =10, x(0) =x0, y(0) =yo, (0) = po.

After above let us consider right side of system as

RED*s(t) = Pi(t,5), K-D™(t) = Pa(t,1), §-D*x(t) = P3(t,x), §-D*y(t) = P4(t,y), F-D*p(t) = Ps(t,p).

Now by applying the Riemann-integral on system we get following

Pi(T, s(7))(t — )% ldr,

»
—+
N
|
»
=)
=
I
—
—
R
=
S
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t

1

4(0) =1(0) = i [Pale e (= e
0

x(t) —x(0) = r(la):Pg(T,x(T))(t—T)“ldT,
0

Y(0—y(0) = e [PalryoE - e,
0

p(0) = p(0) = o [Paln ()t - 1) e,

0

thus at t = t,11 = (n+ 1)At, we have the following:

th
S(tns1) — s(0) = r(loc) Pyt s(1)) (tn 1 — 1) dt,
1 tfjl
Ytn41) —10) = o Po(t,1(t)) (tns1 — 1) 1dt,
tfﬂ
X(tns1) — x(0) = r(lcx) P (t, x(t)) (tns1 — )% 1dt,
1 tf:rl
Y(tns1) —y(0) = ) Pa(t,y(t)) (tni1 — t)* 1dt,
tf:rl
Pltnsn) =pI0) = 7o | Paltpl6) tnin — 117 et
0
and
1 F
s(tn) —s(0) = e Py(t, s(t))(tn —t)*tdt
1 to"“
tn) —1(0) = o Po(t,1(t)) (tn —t)* tdt,
1 to"
X(tn) —x(0) = e P3(t, x(t))(tn —t)* 1dt
1 to"“
y(tn) —y(0) = e Pa(t,y(t))(tn —t)* tdt
1 to'“
pltn) —p(0) = o Ps(t,p(t))(tn —t)*tdt
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If we subtract from each other, we get

thit th
) = )+ | =07 Pyl (00— s [ =07 st
0 0
thp tn
Wtns1) =2ltn) s | (s = 0% Pa(a()dt = s [ (tn = 0% Pa(ta(t)at
0 0
tn+1 tnh
Xltns1) =x{tn) + 1 (tnﬂ—t)“—lps(t,x(t))dt—rij n =% TPt x(t))
0 0
thi1
Yltnn) =yltn) + g | (= 0% PRty j w05 Rty (0)dt
)
thi
1 oa—1 1 o—1
Pltnsa) =Plta) + s | (tnsa =0 Ps(t,plo F—J n =% TPs t,p(t)dt.
0

0

After changing the functions Py (t,s(t)), P2(t,1(t)), Ps(t, x(t)), Pa(t, y(t)), Ps(t, p(t)) with their Lagrange
polynomial counterpart respectively as below:

Pu(t5(8) = TPyt sltn)) 4 Pt sl 1)

_Piltnstta)) oy Palteysttea)) o

Palt (b)) = ;tglllm(i,m(ttn)l)i %‘tlt*‘:Pl(tnl,:tntn)J

_Piltnalt)) o Paltnoatte)) oy

Pa(t, x(t) ~ ;__tgl_llm ((ttn,xt(tn;)) + Hm(tnli(tiin
_Paltwx(tn)) ) PiltnaX(te)
Palt,y(t) = ;tillm(tt,yt(tn)l J)+ tnt_:f‘:m (tnl,:(t:l)))
_Pltytn)) oy Piltnnyltea)) oy
Ps(t, plt)) ;{gmut,p;nﬁl tn:t“:m (tnl,:(tntl)))
Palnpltn)) (Pt

and then replacing polynomials with their values and doing necessary calculations, the above system can

be written as

Pi(tn,s(tn)) | 2h 4 tn+% h o — th !
sltny1) = s(tn) hl'(«) o L1 o

+1
P1(tn—1,8(tn—1)) {h « i n ta }+ RS

hl'(«) o M a1 1

_|_
Ut ) = 1(tn) + Pa(tn,tn)) zltm . t%i% + Ettx - t%+1
ntl) = hI'(e) o« "ox+1 ™ x
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a+1

Pa(tnq,itn—1)) Jh o Ty | R 2pa
* hI'( o) {cxt““ a+1 a+l + Ry,
- Paltn X(tn)) [2h o AT h . X!
X(thr]) —X(tn)‘i‘w {0( n+1 OC+1 +&tn o
Paltn1x(tn-1)) [No W1t} | apa
hI'(«) o "o+ 1 a1 n
_ Paltny(tn) f2h o 11 ho tdT]
U(thrl)—y(tn)"‘W s B b
n Py(th—1,yltn1)) Jh o hi R 4 4R
hI'(e) R R n
B Ps(ta,p(tn)) (20 o o1l | h . 3!
p(tn+l) —p(tn)+ hr(“) x n+1 (X+1 x n x
CPsltnaplte)) [ho B 8] spa
hl'(x) o " a1 a+1 n
where
h3+OcM h3+(XM
lpo 1 o 2 2po 2 o4 2
< —_ 1 , R < ——— 1 ,
" Dty (DT n S Ty (DT
h3+aM h3+oM
3pa 3 o 2 dpa 4 o4 2
R¥ < —————— 1 , RY < ————+ 1 ,
n S ey (DT A T TR TR
h3+ocM
5pa 5 o4 2
R < ——+— 1 .
S ey (DT

At the system above M1, My, M3, My, and M5 are bound of functions respectively.

4.2. Numerical simulations

In this numerical part, we show numerical simulation of the given of fractional plant virus. We

have made use of the model with the Riemann-Liouville derivative and

the numerical scheme that was

suggested by Adam-Bashforth where the Lagrange polynomial interpolation is used. Figures 1 and 2 give

the solution of system with same results.

R B

Figure 1: Numerical simulation of system.



I. Koca, H. Bulut, E. Akgetin, J. Nonlinear Sci. Appl., 15 (2022), 186-202 202

al . mE E EEWEEEEEEEEEEEEEEEENEEEEEE
(=
" w5
= i
T wx
H.I LI
'-'-u . ‘P
o .
H
10 A LR
L
g s s s EEEEEEEEEEEEEEEEEEEEENE NN
[ A sssEssEEEEEEsESsEEEEEEEEEEEEE
T T T T T T
o 210 400 i +11) 0 1000

t

Figure 2: Numerical simulation of system.

5. Conclusion

In this work, we considered plant virus model with its fractional order counterpart. The model
was considered to show global stability of equilibrium points. Also, using linear growth and Lipschitz
rules, we obtained the conditions for the existence and the uniqueness of the system solutions . Finally,
numerical simulations are given to showed effective of method.
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