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Abstract
This paper is concerned with the controllability results of neutral impulsive stochastic functional integrodifferential equa-

tions driven by a fractional Brownian motion with infinite delay in a real separable Hilbert space. The controllability results
are obtained using stochastic analysis, the theory of resolvent operator in the sense of Grimmer and Krasnoselskii fixed point
theorem. An example is provided to illustrate the obtained theory.
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1. Introduction

The concept of controllability plays a major role in both finite and infinite dimensional spaces for
systems represented by ordinary differential equations and partial differential equations. One of the basic
qualitative behaviors of a dynamical system is the controllability. The problem of controllability is to
show the existence of control function, which steers the solution of the system from its initial state to
final state, where the initial and final states may very over the entire space. Conceived by Kalman, the
controllability concept has been studied extensively in the fields of finite and infinite-dimensional systems.
If a system cannot be controlled completely then different types of controllability can be defined such as
approximate, null, local null and local approximate null controllability. For more details the reader may
refer to [1, 9, 10, 17, 18] and references therein.

On the other hand, the properties of long/short-range dependence are widely used in describing many
phenomena in fields like hydrology and geophysics as well as economics and telecommunications. As
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extension of Brownian motion, fractional Brownian motion is a self-similar Gaussian process which has
the properties of long/short-range dependence. However, fractional Brownian motion is neither a semi
martingale nor a Markov process. In [4, 5, 11, 12], studied the general theory for the infinite-dimensional
stochastic differential equations driven by a fractional Brownian motion.

Few years ago, Park et al. [15] investigated the controllability of impulsive neutral integrodifferential
systems with infinite delay in Banach spaces using Schauder-fixed point theorem. Very recently, [2, 7]
established the existence, uniqueness and asymptotic behaviors of mild solutions to a class of impul-
sive neutral stochastic integrodifferential equations driven by a fractional Brownian motion with delays.
Moreover, several upcoming researchers are keen interested to study the solution of control problems in
the field of stochastic systems. A through survey of literature reveals that a very little work has been done
for the fractional Brownian motion in stochastic control problems. Chen [6] concerned the approximate
controllability for semilinear stochastic equations with fractional Brownian motion. Several researchers
reported the use of fractional Brownian motion in stochastic integrodifferential equations (see [11, 12, 17]
and references therein). Moreover, the controllability of neutral impulsive stochastic functional integrod-
ifferential systems with infinite delay driven by a fractional Brownian motion is an untreated topic in the
literature so far. Thus, we will make the first attempt to study such problem in this paper.

The goal of present research work is focus to study the controllability of neutral impulsive stochastic
functional integrodifferential equations of the form:

d [x(t) − g(t, xt)] = A [x(t) + g(t, xt) +Bu(t)]dt+
∫t

0
γ(t− s) [x(s) + g(s, xs)]dsdt

+ f(t, xt)dt+ σ(t)dBH(t), t ∈ [0, T ],
∆x
∣∣
t−tk

= x(t+k ) − x(t
−
k ) = Ik(x(t

−
k )), k = 1, ...,m,

x(t) = ϕ(t) ∈ L0
2(Ω, Bh), for a.e. t ∈ (−∞, 0].

(1.1)

Here, A is the infinitesimal generator of a strongly continuous semigroup of bounded linear operator
(T(t))t>0 on a Hilbert space X with domain D(A); γ(t) is a closed linear operator on X with domain
D(γ) ⊃ D(A); BH is a fractional Brownian motion with Hurst parameter H > 1

2 on a real and separable
Hilbert space Y; and the control function u(·) takes values in L2([0, T ], U), the Hilbert space of admissible
control functions for a separable Hilbert space U; and B is a bounded linear operator from U into X. The
history xt : (−∞, 0] → X, xt(θ) = x(t+ θ), belongs to an abstract phase space Bh defined axiomatically,
and f,g : [0, T ]×Bh → X, σ : [0, T ] → L0

2(Y, X) are appropriate functions, where L0
2(Y, X) denotes the

space of all Q-Hilbert-Schmidt operators from Y into X. Moreover, the fixed moments of time tk satisfy
0 < t1 < t2 < · · · < tm < T , x(t−k ) and x(t+k ) represent the left and right limits of x(t) at time tk,
respectively. ∆x(tk) denotes the jump in the state x at time tk with I : X→ X determining the size of the
jump.

2. Preliminaries

In this section, we introduce the fractional Brownian motion as well as Wiener integral with respect
to it. We also provide some important results which will bee needed throughout this paper. For more
details on this section, we refer the reader to [7, 13, 18].

Fix a time interval [0, T ] and let (Ω, =, P) be a complete probability space and
{
βH(t) : t ∈ [0, T ]

}
be

a one-dimensional fractional Brownian motion with Hurst parameter H ∈ ( 1
2 , 1). By definition, βH is a

centered Gaussian process with covariance function

RH(t,s) = E
[
βH(t)βH(s)

]
=

1
2

(
|t|2H + |s|2H − |t− s|2H

)
.

Moreover, βH has the following Wiener integral representation

βH(t) =

∫t
0

KH(t, s)dβ(s),
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where β = {β(t); t ∈ [0, T ]} is a Wiener process and kernel KH(t, s) is given by

KH(t, s) = cHS
1
2=H
∫t

0
(u− s)H− 3

2uH− 1
2du,

for t > s, where cH =

√
H(2H−1)

g(2−2H,H− 1
2 )

and g(·, ·) denotes the Beta function. We take KH(t, s) = 0 if t 6 s.

We will denote by H the reproducing kernel Hilbert space of the fractional Brownian motion. Pre-
cisely, H is the closure of set of indicator functions

{
1[0,t] : t ∈ [0, T ]

}
with respect to the scalar product〈

1[0,t], 1[0,s]
〉
H

= RH(t, s).
The mapping 1[0,t] → βH(t) can be extended to an isometry between H and the first Wiener chaos

and we will denote by βH(ϕ) the image of ϕ by the previous isometry.
Let X and Y be two real separable Hilbert spaces and let L(Y, X) be the space of bounded linear

operator from Y to X. Let Q ∈ L(X, Y) be an operator defined by Qen = λnen with finite trace

trQ =

∞∑
n=1

λn <∞,

where λn > 0 (n = 1, 2, . . .) are non-negative real numbers and {en} (n = 1, 2, . . .) is a complete orthonor-
mal basis in Y. We define the infinte dimensional fractional Brownian motion on Y with covariance Q
as

BH(t) = BH
Q(t) =

∞∑
n=1

√
λnenβ

H
n(t).

where βH
n are real, independent fractional Brownian motion’s. This process is Gaussian, it starts from 0,

has zero mean and covariance

E
〈
BH(t), x

〉 〈
BH(s),y

〉
= R(s, t) 〈Q(x),y〉 for x,y ∈ Y and t, s ∈ [0, T ].

Now, define the Wiener integrals with respect to the Q-fractional Brownian motion, we introduce the
space L0

2 = L0
2(Y, X) of all Q-Hilbert-Schmidt operators ζ : Y → X. We recall that ζ ∈ L(Y, X) is called a

Q-Hilbert-Schmidt operator, if

‖ζ‖2
L0

2
=

∞∑
n=1

∥∥∥√λnζen∥∥∥2
<∞,

and that the space L0
2 equipped with the inner product < ϕ, ζ >L0

2
=
∑∞
n=1 < ϕen, ζen > is a separable

Hilbert space. Let φ(s) : s ∈ [0, T ] be a function with values in L0
2(Y, X) such that

∞∑
n=1

∥∥∥K∗φQ1/2en

∥∥∥2

L0
2

<∞.

The Weiner integral of φ with respect to BH is defined by∫t
0
φ(s)dBH =

∞∑
n=1

∫t
0

√
λnφ(s)endβ

H
n(s). (2.1)

Lemma 2.1 ([13]). If ζ : [0, T ]→ L0
2(Y, X) satisfies

∫t
0
‖ζ(s)‖2

L0
2
ds <∞, then (2.1) is well defined as an X-valued

random variable and

E
∥∥∥∥∫t

0
ζ(s)dBH(s)

∥∥∥∥2

6 2Ht2H−1
∫t

0
‖ζ‖2

L0
2
ds.
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We assume that the phase space Bh is a linear space of functions mapping (−∞, 0] into X, endowed
with a norm ‖·‖Bh . First, we present the abstract phase space Bh. Assume that h : (−∞, 0] → [0,∞) is a
continuous function with

l =

∫ 0

−∞ h(s)ds < +∞.

We define the abstract phase space Bh by Bh =
{
ζ : (−∞, 0] → X for any τ > 0, (E ‖ζ‖2)1/2 is bounded

and measurable function [τ, 0] and
∫0
−∞ h(t) supt6τ60(E ‖ζ(s)‖

2)1/2dt <∞}. If this space with the norm

‖ζ‖Bh =

∫ 0

−∞ h(t) sup
t6s60

(E ‖ζ‖2)1/2dt,

then it is clear that (Bh, ‖·‖Bh) is a Banach space.
We now consider the space BDI (D and I stand for delay and impulse, respectively) given by BDI ={

x : (−∞, T ] → X : x|Ik ∈ C (Ik, X) and x(t+k ), x(t
−
k ) exist with x(t+k ) − x(t

−
k ),k = 1, 2, . . . ,m x0 − ϕ ∈

Bh and sup06t6T E(‖x(t)‖2) < ∞}, where x|Ik is the restriction of x to the interval Ik = (tk, tk+1],
k = 1, 2, . . . ,m. Then the function ‖·‖Bh to be a semi-norm in BDI, it is defined by

‖x‖BDI
= ‖x0‖Bh + sup

0<t<T
(E(‖x(t)‖2))1/2.

The following lemma is a common property of phase spaces.

Lemma 2.2 ([13]). Suppose x ∈ BDI, then for all t ∈ [0, T ], xt ∈ Bh and

l(E(‖x(t)‖2))
1
2 6 l sup

06s6t
(E ‖x(s)‖2)

1
2 + ‖x0‖Bh ,

where l =
∫0
−∞ h(s)ds <∞.

2.1. Partial integrodifferential equations in Banach spaces
Further, we recollect some basic results related to resolvent operators. Regarding the theory of resol-

vent operators, we refer the reader to [8]. Let A and γ(t) are closed linear operators on X and Y represents
the Banach space D(A) equipped with the graph norm

|y|Y := |Ay|+ |y| for y ∈ Y.

The notation C ([0,∞); Y) stands for the space of all continuous functions from [0,∞) into Y. We consider
the following Cauchy problemv ′(t) = Av(t) +

∫t
0
γ(t− s)v(s)ds for t > 0,

v(0) = v0 ∈ X.
(2.2)

Definition 2.3 ([8]). A resolvent operator for equation (2.2) is a bounded linear operator valued function
R(t) ∈ L(X) for t > 0, satisfying the following properties:

(i) R(0) = I and ‖R(t)‖ 6Meλt for some constants M and β;
(ii) for each x ∈ X, R(t)x is strongly continuous for t > 0;
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(iii) for x ∈ Y, R(·)x ∈ C 1([0,∞); X)
⋂

C ([0,∞); Y) and

R
′
(t)x = AR(t)x+

∫t
0
γ(t− s)R(s)xds = R(t)Ax+

∫t
0
R(t− s)B(s)xds for t > 0.

For additional details on resolvent operators, we refer the reader to [8]. In what follows we suppose the
following assumptions.

(H1) The operator A generator a C0-semigroup (T(t))t>0 on X.
(H2) For all t > 0, γ(t) is a continuous linear operator from (Y, |·|Y) into (X, |·|X). Moreover, there exists an

integrable function C : [0,∞) → R+ such that for any y ∈ Y, y → γ(t)y belongs to W1,1([0,∞); X)
and ∣∣∣∣ ddtγ(t)(t)y

∣∣∣∣
X
6 C (t) |y|Y for y ∈ Y and t > 0.

Theorem 2.4 ([8]). Assume that hypotheses (H1) and (H2) hold. Then there exists a unique resolvent operator for
the Cauchy problem (2.2).

Lemma 2.5 ([14]). For any T > 0 there exists a constant L = L(T) such that

||R(t+ ε) −R(ε)R(t)||L(X) 6 Lε for 0 6 ε 6 t 6 b.

In the sequel, we recall some results on existence of solutions for the following integrodifferential equationv ′(t) = Av(t) +
∫t

0
γ(t− s)v(s)ds+ q(t) for t > 0,

v(0) = v0 ∈ X;
(2.3)

where q : [0,∞)→ X is a continuous function.

Definition 2.6. A continuous function v : [0,∞)→ X is said to be a strict solution of equation (2.3) if

(i) v ∈ C 1([0,∞); X)
⋂

C ([0,∞); Y);
(ii) v satisfies equation (2.4) for t > 0.

Theorem 2.7 ([8]). Assume that (H1)-(H2) hold. If v is a strict solution of Equation (2.3), then the following
variation of constants formula holds

v(t) = R(t)v0 +

∫t
0
R(t− s)q(s)ds for t > 0. (2.4)

Now, we have the following definition for mild solution of (2.3).

Definition 2.8. An X-valued process {x(t) : t ∈ (−∞, T ]} is a mild solution of (1.1) if

1. x(t) is measurable for each t > 0, x(t) = ϕ(t) on (∞, 0],

∆x
∣∣
t−tk

= Ik(x(t
−
k )), k = 1, 2, . . . ,m,

the restriction of x(·) to [0, T ] − {t1, t2, . . . , tm} is continuous;
2. for every 0 6 s 6 t, the process x satisfies the following integral equation:

x(t) = R(t) [ϕ(0) − g(0,ϕ)] + g(t, xt) +
∫t

0
R(t− s)f(s, xs)ds+

∫t
0
R(t− s)Bu(s)ds

+

∫t
0
R(t− s)σ(s)dBH(s) +

∑
0<tk<t

R(t− s)Ik(x(t
−
k )), P− a.s..

(2.5)
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Definition 2.9. A function v : [0,∞) → X is called a mild solution of (2.3) if v satisfies the variation of
constants formula (2.4) for v0 ∈ X.

Definition 2.10. Let V be a bounded closed and convex subset of a Banach space X and let Π1,Π2 be two
operators of V into X satisfying

(i) Π1(x) +Π2(x) ∈ V whenever x ∈ V;
(ii) Π1 is a contraction mapping; and

(iii) Π2 is completely continuous.

Then, there exists az ∈ V such that z = Π1(z) +Π2(z).

3. Controllability result

Definition 3.1. System (1.1) is said to be controllable on the interval (−∞, T ] if for every initial stochastic
process ϕ defined on (−∞, T ], there exists a stochastic control u ∈ L2([0, T ]; U) such that the mild solution
x(·) of (1.1) satisfies x(T) = x1.

In order to establish the controllability of (1.1), we impose the following hypotheses.

(H3) The resolvent operatorR(.) is compact and there exist constants M > 1 such that ‖R(t)‖2 6M.
(H4) The mapping g : [0, T ]×Bh → X satisfies the following conditions and there exist constants kg > 0

such that

E ‖g(t, x) − g(t,y)‖2 6 kg ‖x− y‖2
Bh

, t ∈ [0, T ], x,y ∈ Bh, k̄g = sup
t∈[0,T ]

‖g(t, 0)‖2 .

(H5) The mapping f : [0, T ]×Bh ×X→ X satisfies the following conditions:
(i) the function t → f(t, x) is measurable for each x ∈ Bh, the function t → f(t, x) is continuous

for almost all t ∈ [0, T ];
(ii) for every positive integer k there exists pk ∈ L1([0, T ], R+), such that

‖f(t, x)‖2 6 pk(t), for all t ∈ [0, T ], and lim
k→∞ 1

k

∫T
0
pk(τ)dτ = γ <∞.

(H6) The impulses functions Ik for k = 1, 2, . . . ,m, satisfy the following condition. There exists positive
constants Mk, M̃k such that

‖Ik(x) − Ik(y)‖2 6Mk ‖x− y‖2 and ‖Ik(x)‖2 6 M̃k for all x,y ∈ Bh.

(H7) The function σ : [0,∞)→ L0
2(Y, X) satisfies∫T

0
‖σ(s)‖2

L0
2
ds <∞, for t > 0.

(H8) The linear operator W from U into X defined by

Wu =

∫T
0
R(T − s)Bu(s)ds

has an inverse operator W−1 that takes values in L2([0, T ], U)/ kerW, where

ker(W) =
{
x ∈ L2([0, T ], U) :Wx = 0

}
.

The main result of this paper is given in the next theorem.
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Theorem 3.2. Suppose that (H1)-(H8) hold. Then, the system (1.1) is controllable on (−∞, T ] provide that

6l2
(
1 + 7MMbMWT

2) [8[k2(1 + 2k1)] + 8MT 2[k3(1 + 2k4)]

]
< 1. (3.1)

Proof. Using (H8) for an arbitrary function x(·), define the control

ux(t) =W
−1

[
x1 −R(T) [ϕ(0) − g(0, x0)] − g(T , xT ) −

∫T
0
R(T − s)f(s, xs)ds

−

∫T
0
R(T − s)σ(s)dBH(s) −

∑
0<tk<t

R(T − tk)Ik(x(t
−
k ))

]
(t).

Now, put the control u(·) into the stochastic control system (8) and obtain a nonlinear operator Γ on BDI

given by

Γ(x)(t) =



ϕ(t), for t ∈ (−∞, 0],

R(t) [ϕ(0) − g(0,ϕ, 0)] + g(t, xt) +
∫t

0
R(t− s)Bux(s)ds+

∫t
0
R(t− s)f(s, xs)ds

+

∫t
0
R(t− s)σ(s)dBH(s) +

∑
0<tk<t

R(t− tk)Ik(x(t
−
k )), if t ∈ [0, T ].

Then it is clear that to prove the existence of mild solutions to equations (1.1) is equivalent to find a fixed
point for the operator. Clearly, Γx(T) = x1, which means that the control u steers the system grom the
initial state ϕ to x1 in time T , provided we can obtain a fixed point of the operator Γ which implies that
the system in controllable.

Let y : (−∞, T ]→ X be the function defined by

y(t) =

{
ϕ(t), if t ∈ (−∞, 0],
R(t)ϕ(0), if t ∈ [0, T ],

then, y0 = ϕ. For each function z ∈ BDI, set

x(t) = z(t) + y(t).

It is obvious that x satisfies the stochastic control system (2.5) if and only if z satisfies z0 = 0 and

z(t) = g(t, zt + yt) −R(t)g(0,ϕ) +
∫t

0
R(t− s)Bz+y(s)ds+

∫t
0
R(t− s)f(s, zs + ys)ds

+

∫t
0
R(t− s)σ(s)dBH(s) +

∑
0<tk<t

R(t− tk)Ik[z(t
−
k ) − y(t

−
k )], if t ∈ [0, T ],

where

uz+y(t) =W
−1

[
x1 −R(T) [ϕ(0) − g(0, z0 + y0)] − g(T , zT + yT ) −

∫T
0
R(T − s)f(s, zs + ys)ds

−

∫T
0
R(T − s)σ(s)dBH(s) −

∑
0<tk<T

R(T − tk)Ik[z(t
−
k ) + y(t

−
k )]

]
(t).

Set

B0
DI = {z ∈ BDI : z0 = 0} ,
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for any z ∈ B0
DI, we have

‖z‖B0
DI

= ‖z0‖Bh + sup
t∈[0,T ]

(E ‖z(t)‖2)
1
2 = sup

t∈[0,T ]
(E ‖z(t)‖2)

1
2 .

Then, (B0
DI, ‖·‖B0

DI
) is a Banach space. Define the operator Θ : B0

DI → B0
DI by

(Θz)(t) =



0, if t ∈ (−∞, 0],

g(t, zt + yt) −R(t)g(0,ϕ) +
∫t

0
R(t− s)Bz+y(s)ds+

∫t
0
R(t− s)f(s, zs + ys)ds

+

∫t
0
R(t− s)σ(s)dBH(s) +

∑
0<tk<t

R(t− tk)Ik[z(t
−
k ) − y(t

−
k )], if t ∈ [0, T ],

Set

Bk =
{
z ∈ B0

DI : ‖z‖
2
B0

DI
6 k
}

, for some k > 0,

then Bk ⊆ B0
DI is a bounded closed convex set, and for z ∈ Bk, we have

‖zt + yt‖BDI
6 2

(
‖zt‖2

BDI
+ ‖yt‖2

BDI

)
6 4

(
l2 sup

06s6t
E ‖z(s)‖2 + ‖z0‖2

Bh
+ l2 sup

06s6t
E ‖y(s)‖2 + ‖y0‖2

Bh

)
6 4l2

(
k+ME ‖ϕ(0)‖2

)
+ 4 ‖y‖2

Bh
:= r∗.

Next,

E ‖uz+y‖2 6 7MW

[
‖x1‖2 +ME ‖ϕ(0)‖2 + 2M[kg ‖y‖2

Bh
+ k̄g] +MT

∫t
0
pr∗(s)ds

+ 2MT 2H−1
∫T

0
‖σ(s)‖2

L0
2
ds+mM

m∑
k=1

M̃k

]
:= G.

(3.2)

It is clear that the operator Θ has a fixed point if and only if Θ̂ has one, so it turns to prove that Θ̂ has
a fixed point. To this end, we decompose Θ̂ as Θ̂ = Θ1 + Θ2, where Θ1 and Θ2 are defined on B0

DI,
respectively by

(Θ1z)(t) =

0, if t ∈ (−∞, 0],

g(t, zt + yt) −R(t)g(0,ϕ) +
∫t

0
R(t− s)σ(s)dBH(s), if t ∈ [0, T ],

(Θ2z)(t) =


0, if t ∈ (−∞, 0],∫t

0
R(t− s)f(s, zs + ys)ds+

∫t
0
R(t− s)Buz+y(s)ds

+
∑

0<tk<tR(t− tk)Ik(z(t
−
k ) + y(t

−
k )), if t ∈ [0, T ],

In order to apply the Krasnoselskii fixed point theorem for the operator Θ̂, we prove the following asser-
tions:

(1) Θ1(x) +Θ2(x) ∈ Bk whenever x ∈ Bk;
(2) Θ1 is a contraction;
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(3) Θ2 is continuous and compact map.

For the sake of convenience, the proof will be given in several steps.

Step 1: We claim that there exists a positive number k, such that Θ1(x) +Θ2(x) ∈ Bk whenever x ∈ Bk. If
it is not true, then for each positive number k, there is a function zk(·) ∈ Bk, but Θ1(z

k) +Θ2(z
k) /∈ Bk,

that is

E
∥∥Θ1(z

k)(t) +Θ2(z
k)(t)

∥∥2
> k for t ∈ [0, T ].

However, on the other hand, we have

k < E
∥∥Θ1(z

k)(t) +Θ2(z
k)(t)

∥∥2
6 6
[

2M[kg ‖y‖2
Bh

+ k̄g] + 2[r∗ + k̄g]MMbT
2G

+MT

∫T
0
pr∗(s)ds+ 2MT 2H−1

∫T
0
‖σ(s)‖2

L0
2
ds+M

m∑
k=1

M̃k

]
6 6

(
1 + 6MMbMwT

2) [2M[kg ‖y‖2
Bh

+ k̄g] + 2[r∗ + k̄g]MMbT
2G

+MT

∫T
0
pr∗(s)ds+ 2MT 2H−1

∫T
0
‖σ(s)‖2

L0
2
ds+M

m∑
k=1

M̃k

]
+ 6MMbMwT

2
[
‖x1‖2 +ME ‖ϕ(0)‖2

]
6 K̄+ 6

(
1 + 6MMbMwT

2) [2MT
∫T

0
pr∗(s)ds

]
,

where

K̄ = 6
(
1 + 6MMbMwT

2) [2M[kg ‖y‖2
Bh

+ k̄g] + 2k̄g + 2MT 2H−1
∫T

0
‖σ(s)‖2

L0
2
ds

+M

m∑
k=1

M̃k + 6MMbMwT
2
[
‖x1‖2 +ME ‖ϕ(0)‖2

] ]
is independent of k. Dividing both sides by k and taking the lower limit as k→∞, we obtain

r∗ = 4l2
[
k+ME ‖ϕ(0)‖2

]
+ 4 ‖y‖Bh →∞ as k→∞.

lim
k→∞ inf

∫t
0
pr∗(s)ds

k
= lim
k→∞ inf

∫t
0
pr∗(s)ds

r∗
.
r∗

k
= 4l2γ.

Thus, we have

6l2
(
1 + 6MMbMwT

2) [8MTγ] > 1.

This contradicts (3.1). Hence (Θ1 +Θ2) (Bk) ⊆ Bk.

Step 2: Θ1 is a contraction. Let t ∈ [0, T ] and z1, z2 ∈ B0
DI,

E
∥∥(Θ1z

1)(t) − (Θ1z
2)(t)

∥∥2
6 2E

∥∥g(t, z1
t + yt) − g(t, z

2
t + yt)

∥∥2

6 kg
∥∥z1
t + yt − z

2
t + yt

∥∥2

6 kg
∥∥z1
t − z

2
t

∥∥2
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6 kg ×
[

2l2 sup
06s6T

E
∥∥z1(s) − z2(s)

∥∥2
+ 2

(∥∥z1
0
∥∥2

Bh
+
∥∥z2

0
∥∥2

Bh

)]
6 Γ × sup

06s6T
E
∥∥z1
s − z

2
s

∥∥2
,

where Γ = 2kgl2 < 1. Thus Θ1 is a contraction on B0
DI.

Step 3: Θ2 is completely continuous on B0
DI.

Claim 1. Θ2 is continuous on B0
DI. Let zn be a sequence such that zn → z in B0

DI. Then there existes a
number k > 0 such that ‖zn(t)‖ 6 k, for all n and a.c. t ∈ [0, T ], so zn ∈ B and z ∈ B. By hypothesis
(H5)-(H6), we have

(1) Ik, k = 1, 2 . . . ,m is continuous;
(2) f(t, znt + yt)→ f(t, zt + yt) for each t ∈ [0, T ], since

‖f(t, znt + yt) − f(t, zt + yt)‖2 6 2pr∗(t).

From (H4), Holder’s inequality and the dominated convergence theorem, we have

E ‖Θ2z
n(t) − (Θ2z)(t)‖2 6 3E

∥∥∥∥∫t
0
R(t− s)B [uzn+y − uz+y]ds

∥∥∥∥2

+ 3E
∥∥∥∥∫t

0
R(t− s) [f(s, zns + ys) − f(s, zs + ys)]ds

∥∥∥∥2

+ 3E

∥∥∥∥∥∥
∑

06tk6t

R(t− tk)
[
Ik(z

n(t−k ) + y(t
−
k )) − Ik(z(t

−
k ) + y(t

−
k ))
]∥∥∥∥∥∥

2

6 9MwMbMT

∫T
0

[
E ‖g(T , znT + yT ) − g(T , zT + yT )‖2

+MT

∫T
0

E ‖f(s, zns + ys) − f(s, zs + ys)‖2 ds

+Mm

m∑
k=1

E
∥∥Ik(zn(t−k ) + y(t−k )) − Ik(z(t−k ) + y(t−k ))∥∥2

]
(λ)dλ

+ 3MT
∫T

0
E ‖f(s, zns + ys) − f(s, zs + ys)‖2 ds

+ 3mM
m∑
k=1

E
∥∥Ik(zn(t−k ) + y(t−k )) − Ik(z(t−k ) + y(t−k ))∥∥2

→ 0 as n→∞.

Thus, Θ2 is continuous.

Claim 2. Θ2 maps Bk into equicontinuous family. Let z ∈ Bk and τ1, τ2 ∈ [0, T ], τ1, τ2 ∈ tk, k = 1, . . . ,m,
we have

E ‖(Θ2z)(τ2) − (Θ2z)(τ1)‖2 6 6E
∥∥∥∥∫τ1

0
[R(τ2 − s) −R(τ1 − s)] f(s, zs + ys)ds

∥∥∥∥2

+ 6E
∥∥∥∥∫τ1

0
[R(τ2 − s) −R(τ1 − s)]Bu(s)ds

∥∥∥∥2

+ 6E

∥∥∥∥∥∥
∑

0<tk<t

[R(τ2 − tk) −R(τ1 − tk)] Ik(z(t
−
k ) + y(t

−
k ))

∥∥∥∥∥∥
2
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+ 6E
∥∥∥∥∫τ2

τ1

R(τ2 − s)f(s, zs + ys)ds
∥∥∥∥2

+ 6E
∥∥∥∥∫τ2

τ1

R(τ2 − s)Bu(s)ds

∥∥∥∥2

+ 6E

∥∥∥∥∥ ∑
τ1<tk<τ2

[R(τ2 − tk)] Ik(z(t
−
k ) + y(t

−
k ))

∥∥∥∥∥
2

.

From (3.2) and Holder’s inequality, it follows that

E ‖(Θ2z)(τ2) − (Θ2z)(τ1)‖2 6 6T
∥∥∥∥∫τ1

0
‖R(τ2 − s) −R(τ1 − s)‖

∥∥∥∥2

pr∗(s)ds

+ 6TMbG

∫τ1

0
‖R(τ2 − s) −R(τ1 − s)‖2 ds

+ 6m
∑

0<tk<τ1

‖R(τ2 − tk) −R(τ1 − tk)‖2 M̃k

+ 6T
∫τ2

τ1

‖R(τ2 − s)‖2 pr∗(s)ds+ 6TMbG

∫τ2

τ1

‖R(τ2 − s)‖2 + 6mM
∑

τ1<tk<τ2

M̃k.

The right-hand side is independent of z ∈ Bk and tends to zero as τ2 − τ1 → 0, since the compactness of
R(t)t>0 implies the continuity in the uniform operator topology. Thus, Θ2 maps Bk into an equicontinu-
ous family of functions. The equicontinuous for the cases τ1 < τ2 6 0 and τ1 < 0 < τ2 are obvious.

Claim 3. (Θ2Bk)(t) is precompact set in X. Let 0 < t 6 T be fixed, 0 < ε < t, for z ∈ Bk, we define

(Θ2,εz)(t) = R(ε)

∫t−ε
0

R(t− s− ε)f(s, zs + ys)ds+R(ε)

∫t−ε
0

R(t− s− ε)Buz+y(s)ds

+R(ε)
∑

0<tk<t−ε

R(t− tk − ε)Ik(z(t
−
k ) + y(t

−
k )).

and

(Θ̃2,εz)(t) =

∫t−ε
0

R(t− s)f(s, zs + ys)ds+
∫t−ε

0
R(t− s)Buz+y(s)ds

+
∑

0<tk<t

R(t− tk)Ik(z(t
−
k ) + y(t

−
k )).

Using the estimation (3.2) as above and by the compactness of R(t)t>0, we obtain Vε(t) =
{
(Θ2,εz)(t) : z ∈

Bk
}

is relative compact in X for every ε, 0 < ε < t. Moreover, also by Lemma 2.5 and Holder inequality,
for each z ∈ Bk, we obtain

E
∥∥(Θ2,εz)(t) − (Θ̃2,εz)(t)

∥∥2
6 3T

∫t−ε
0
‖R(ε)R(t− s− ε) −R(t− s)‖2

L(X) E ‖f(s, zs + ys)‖2 ds

+ 3TMbG

∫t−ε
0
‖R(ε)R(t− s− ε) −R(t− s)‖2

L(X) ds

+ 3m
∑

t−ε<tk<t

‖R(ε)R(t− tk − ε) −R(t− tk)‖2
L(X) E

∥∥Ik(z(t−k ) + y(t−k ))∥∥2 .

So the set Ṽε(t) =
{
(Θ̃2,εz)(t) : z ∈ Bk

}
is precompact in X by using the total boundedness. Then for

z ∈ Bk, we have

E
∥∥(Θ2z)(t) − (Θ̃2,εz)(t)

∥∥2
6 3T

∫t
t−ε
‖R(t− s)‖2 E ‖f(s, zs + ys)‖2 ds+ 3TMbG

∫t
t−ε
‖R(t− s)‖2 ds
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+ 3m
∑

t−ε<tk<t

‖R(t− tk)‖2 E
∥∥Ik(z(t−k ) + y(t−k ))∥∥2

6 3TM
∫t
t−ε

pr∗(s)ds+ 3TMbGMε+ 3mM
∑

t−ε<tk<t

M̃k.

Therefore,

E
∥∥(Θ2z)(t) − (Θ̃2,εz)(t)

∥∥2 → 0, as ε→ 0+,

and there are precompact sets arbitrarily close to the set V(t) =
{
(Θ2,εz)(t) : z ∈ Bk

}
, hence the set V(t) is

also precompact in X. Thus, by Arzela-Ascoli theorem Θ2 is compact. Thus, by Krasnoselskii fixed point
theorem there exists a fixed point z(.) for Θ̂ on Bk. If we define x(t) = z(t) + y(t), −∞ < t 6 T , it is easy
to say that x(.) is a mild solution of (1.1) satisfying x0 = ϕ, x(T) = x1. Hence the proof is completed.

4. Application

We consider the neutral impulsive stochastic functional integrodifferential equations with infinite de-
lays, driven by a fractional Brownian motion of the form:

∂
∂t

[x(t, ζ) − ḡ(t, x(t− k, ζ)]

= ∂2

∂2ζ
[x(t, ζ) + ḡ(t, x(t− k, ζ)] +

∫t
0
B̄(t− s)

∂2

∂2ζ
[x(t, ζ) + ḡ(t, x(t− k, ζ)ds]

+f̄(t, x(t− k, ζ) + c(ζ)u(t) + σ̄dBH

dt , for t 6= tk, t > 0,

∆x(tk, ζ) = x(t+k , ζ) − x(t−k , ζ) =
∫tk
−∞ αk(t−k − s)x(s, ζ)ds, k = 1, 2, . . . ,m,

x(t, 0) = x(t,π) = 0, 0 6 t 6 T ,
x(s, ζ) = ϕ(s, ζ), −∞ < s 6 0, 0 6 ζ 6 π;

(4.1)

where BH(t) is cylindrical fractional Brownian motion, and ϕ : (−∞, 0]× [0,π]→ R is a given continuous
stochastic process such that ‖ϕ‖2

Bh
< ∞. We take X = Y = U = L2([0,π]) with norm ‖·‖. Define the

operator A : D(A) ⊂ X → X given by A = ∂2

∂2ζ
with D(A) =

{
y ∈ X : y

′
is absolutely continuous y

′′ ∈

X, y(0) = y(π) = 0
}

, then we get

Ax =

∞∑
n=1

n2 < x, en > en, x ∈ D(A),

where en =
√

2
π sinnx, n = 1, 2, . . . is an orthogonal set of eigenfunctions of A. We choose the phase

function h(s) = e4s, s < 0, then l =
∫0
−∞ h(s)ds = 1/4 < ∞ and the abstract phase space Bh is Banach

space with the norm

‖ϕ‖Bh =

∫ 0

−∞ h(s) sup
θ∈[s,0]

E(‖ϕ(θ)‖2)1/2ds.

To rewrite the initial-boundary value problem (4.1) in the abstract from we assume the following.
For (t,ϕ) ∈ [0, T ]×Bh, where ϕ(θ)(ζ) = ϕ(θ, ζ), (θ, ζ) ∈ (−∞, 0]× [0,π], we put x(t)(ζ) = x(t, ζ). The

functions g, f : [0, T ]×Bh ×X→ X, σ : [0, T ]→ L0
2(Y, X) are respectively defined by

g(t, x(t− k, ζ))ds = ḡ(t, x(t− k, ζ))ds),
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f(t, x(t− k, ζ))ds) + c(ζ)u(t) = f̄(t, x(t− k, ζ))ds) + c(ζ)u(t).

The above system (4.1) can be written in the abstract from (1.1). Further, we assume that the following
conditions hold.

B : U→ X is a bounded linear operator defined by

Bu(t)(ζ) = c(ζ)u(t), 0 6 ζ 6 π, u ∈ L2([0, T ]; U),

and the linear operator W : L2([0, T ]; U)→ X is given by

Wu(ζ) =

∫T
0
R(T − s)c(ζ)u(t)ds, 0 6 ζ 6 π.

W is a bounded linear operator but not necessarily one-to-one.

Let kerW =

{
x ∈ L2([0, T ]; U),Wx = 0

}
be the null space of W and [kerW]⊥ be its orthogonal

complement in L2([0, T ]; U). Let W̃ = [kerW]⊥ → Range(W) be the restriction of W to [kerW]⊥, W is
necessarily one-to-one operator. The inverse mapping theorem says that W̃−1 is bounded since [kerW]⊥

and Range(W) are Banach spaces. So that W−1 is bounded and takes values in L2([0, T ]; U) kerW,
hypothesis (H8) is satisfied. Thus, it is possible to verify that the assumptions on Theorem 3.2 are fulfilled
and hence, the system (4.1) is controllable on (−∞, T ].

5. Conclusion

In this paper we have proved the controllability results of neutral impulsive stochastic functional in-
tegrodifferential equations driven by a fractional Brownian motion with infinite delay in a real separable
Hilbert space. We have used the techniques of stochastic analysis, the theory of resolvent operator in
the sense of Grimmer, and Krasnoselskii fixed point theorem to study the controllability results with the
illustrative example to justify the theory. One can extend the same problem for second order neutral
impulsive stochastic functional integrodifferential equations with infinite delay using sine and cosine op-
erators. Also, we can study the fractional order neutral impulsive stochastic functional integrodifferential
system with infinite delay using Riemann-Liouville and Caputo derivatives as future work.
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