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Abstract

In this paper, we introduce an inertial hybrid S-iteration algorithm for two asymptotically nonexpansive mappings and
equilibrium problems in a real Hilbert space. Strong convergence of the iterative scheme is established. Our results improve and
extend many recent results in the literature.
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1. Introduction

Let C be a nonempty closed and convex subset of a real Hilbert space H, with an inner product (., .)
and induced norm [|.|| on H. The equilibrium problem (shortly written as EP), see [4, 25], is a problem of
finding x* € C, such that

f(x*,y) >0, WyecC, (1.1)

where f is a bifuntion on C x C. We denote by EP(f, C) the set of solutions of equilibrium problem (1.1),
ie, EP(f,C) = {x* € C: f(x*,y) >0, Yy € C}. Let B: C — H be a map. The variational inequality
problem with respect to B, defined on C is to find a point z € C, such that

(Bzzy—2z) >0, WweC. (1.2)

The set of solutions of problem (1.2) is denoted by VI(C,B), i.e., VI(C,B) ={z € C: (Bz,y—2z) >0, Vy €
C}. Setting f(z,y) = (Bz,y —z), Yy € C, then, z € EP(f,C) if and only if (Bz,y—z) >0, Yy € C. Thatis z
is a solution of problem (1.2).

Let S : C — C be a nonlinear map. The fixed point problem with respect to S is to find a point x € C
such that Sx = x. We denote by Fix(S) the set of all fixed points of S, i.e., Fix(S) = {x € C: Sx = x}. If the
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map S satisfies the following condition,
1Sx =Syl < kllx —yll, ¥x,yeC, (1.3)

where k is some constant in [0, 1), then it is called a contraction. However, if k = 1 in (1.3), then S is
nonexpansive. S is asymptotically nonexpansive (see [10]) if there exists a sequence {kn} C [0, 00), with
lim k,, = 0 such that

n—oo

1S = S™Myll < (T+Kkn)lx—yll, Vx,yeCn>1

S is uniformly L-Lipschitzian if there exists a constant L > 0 such that, for all x,y € C,
1S — Syl < Lix—yll, Vvn>1.

Remark 1.1. It can easily be seen from the above that the class of nonexpansive mappings is properly
contained in the class of asymptotically nonexpansive mappings and every asymptotically nonexpansive
mapping is uniformly L-Lipschitzian, for more details see Goebel and Kirk [10].

The equilibrium problems and fixed point problems, which are closely related are problems that arise
in various applications, such as in optimization, physics, economics, engineering, theory of differential
equations, game theory, image recovery, signal processing, and other important areas in mathematical
sciences, (see, for examples, [4, 16, 17, 19, 26]). Various methods have been proposed for approximating
solutions of fixed point problems and equilibrium problems in various spaces (see for examples [2-
4,14, 15,18, 19, 24, 26, 31, 33-35] and the references therein).

Takahashi et al. [36] introduce a hybrid method for nonexpansive mapping called shrinking projection
method in Hilbert space as follows;

Xo € H,
Cl = Cr X1 = PC]XOI
Yn = anXn + (1 —an)Txn, (1.4)

Chy1 ={z€ Cnllyn — 2zl < lxn —2|l},
Xn+1 = PCn+1X0’ nz 1,

where 0 < an < a <1, Vn > 1. They proved strong convergence of (1.4) to fixed point of T.
Agarwal et al. [1] introduced an iterative method of the same convergence rate with Picard algorithm
in [28], called S-iteration method as follows;

X0 € C,
Yn = (1 - B%L)Xn + Basxn/ (15)
Xn41 = (1 - B%)an + B%Synz nz=l,

they proved that it converges faster than the Mann algorithm in [22], for the class of maps satisfying (1.3).
Sahu [30] proved both theoretically and numerically that S-iteration method (1.5) converges faster than
both Picard algorithm in [28] and Mann algorithm in [22] for contraction mappings.
Recently, Suparatulatorn et al. [32] proved weak and strong convergence S-iteration process for two
G-nonexpansive mappings S; and S; in Hilbert space as follows:

Xo € C,
Yn = (1= Bn)xn + BnSixn, (1.6)
Xnt+1 = (1 —oan)S1xn + anSoyn, n =0.

However, there have been tremendous interests in developing fast convergence algorithms, especially
for the inertial type algorithms, which was first proposed by Polyak in [29] as an acceleration process in
solving a smooth convex minimization problem. Recently, some researchers have constructed various fast
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iterative algorithms by inertial extrapolation techniques (see [5-7, 9, 12, 13, 16, 17, 20] and the references
contained therein).

Mainge [21] proposed the following inertial Mann algorithm by combining the Mann algorithm in [22]
and inertial extrapolation.

{ Wn =Xn +Yn(xn _anl)/ (1 7)

Xni1 = (1—an)wn +oanTw,, n>1

He proved a weak convergence theorem for the scheme (1.7) under some conditions on the sequences of

parameters {yn}, {otn}).

Very recently, Phon-on et al. [27] proposed the following modified inertial S-iteration process by
combining (1.6) and the inertial extrapolation, and consequently obtain the following accelerated approx-
imation method for two nonexpansive mappings S; and S, in Hilbert space.

Xp,X1 € H,

Wi = Xn + Yn(Xn —Xn-1),

Yn = (1= Bn)wn + BnSiwn,

Xni1 = (1= an)S1wn +anSoyn, m =1,

where {yn}, {an}, and {fn} satisfy some conditions.

Inspired and motivated by the results of [27, 32, 36], our purpose in this paper is to introduce an
inertial hybrid S-iteration algorithm for solving monotone equilibrium problem and fixed point problem
of two asymptotically nonexpansive mappings in a real Hilbert space. We also give numerical examples
to justify that our scheme is more effective and implementable. Our results generalize and improve recent
results in the literature.

2. Preliminaries
Let H be a real Hilbert space. The following identity is well known
A+ (1= Ayl = AP + (1= NlylI> = A1 =Nlx—ylP?, Yo,y eH AeR. (2.1)
It is also known that for any x € H, there exists a unique element denoted by Pcx in C, such that
Ix =Pexl| < llx—yll, vyeC.
The mapping Pc is called the metric projection from H onto C. In addition, Pc has the following charac-

teristics, (see, for example Goebel and Reich [11]):

(i) (x—y,Pcx—Pcy) = [[Pcx—Pcyll?, Vx,y € H;
(ii) for x € H, and x* € C,
x*=Pcx, & (x—x",x"—y) >0, YyeC;
(iii) forx e Hand y € C,
I —Pexl? + Ily — Pexli” < lx — vyl (2.2)

Definition 2.1. A nonlinear map S is said to be demiclosed at yg € X, if for any sequence {xn } in X which
converges weakly to xg € X and Sx,, — Yo, it holds that Sxy = yo.

To solve the equilibrium problem (1.1), we assume the bifunction f to satisfies the following conditions:
(Gy) f(x,x) =0, VxeC
(Gp) fis monotone, i.e., f(x,y)+f(y,x) <0, Vx,yeC
(G3) for each x,y,z € C;
lin})f(sz—i- (1—-s)x,y) < f(x,y);
S—>
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(Gy) for each x € C, y — f(x,y) is convex and lower semi continuous.

The following Lemmas will be needed in the proof of the main results.
Lemma 2.2 ([38]). Let X be a real uniformly convex Banach space and C be a nonempty closed and convex subset
of X. Let T : C — C be asymptotically nonexpansive mapping with sequence {kn} C [0, 0o) such that T}gr;o kn =0.
Then, the mapping (1 —T) is demiclosed at zero.

Lemma 2.3 ([10]). Let C be a nonempty closed and convex subset of a uniformly convex Banach space X, and let
T: C — C be asymptotically nonexpansive map. Then, F(T) is closed and convex.

Lemma 2.4 ([23]). Let C be a closed convex subset of H. Let {xn} be a sequence in H and uw € H. Let x* = Pcu.
If {xn} is such that w., (xn) C C and satisfies the condition

Ixn —ull < u—x*, vn=>1,
then xn — x*, where Wy (xn) = {y € C: 3xn;} C {xn} and xn; = y}.

Lemma 2.5 ([4]). Let C be a nonempty closed and convex subset of H and f be a bifunction of C x C into R
satisfying (G1)-(Ga). Let v > o and x € H. Then, there exists z € C, such that

1
f(z,y) + . (y—z,z—x) >0, VyeC.

Lemma 2.6 ([8, 37]). Assume that f : C x C — R satisfies (G1)-(Gg). For r > 0 and x € H, define a mapping
T : H — C as follows:

1
T (x) = {z e C:f(z,y) —1—; (y—z,z—x) >0, Yy € C},

for all x € H. Then, the following hold:

(i) T, is single-valued;

(ii) T, is firmly nonexpansive, i.e., for x,y € H, [[Trx — TylP? < (Tox — Ty, x —y);
(iii) F(Ty) = EP(f);
(iv) EP(f) is closed and convex;

W) [lg—Tex|P +[[Teox — x| < llg — x|, ¥q € F(Ty), x € H.

3. Main result

Theorem 3.1. Let H be a real Hilbert space and C be a nonempty closed, bounded and convex subset of H. Let

f: Cx C — R be a bifunction satisfying conditions (G1)-(Gg). Let Ty : C — C, i = 1,2, be asymptotically

nonexpansive mapping with sequence {kn i} C [0, 00) such that li_r)n kni = 0and ﬂ%zl F(Ty) NEP(f, C) # (. For
n—oo

x0, X1 € Cand Cy = C, let {xn} be a sequence generated by;

Wn = Xn + (Xn(xn - anl)/

Yn = (1 - Bn)wn + BnTlnwn;

Zn = (1 _'Yn)TFWn +YnT2nyn/

Un = Trnzn/

Cht1= {Z € Cn i llun _ZHZ < wn _ZHZ +en}/
Xn+l1 = PCnHXO/ n = 0,

(3.1)

where 0, = ((2kn,1 + K2 (1 +VnBn) + Vn(2knz + K2 ) (14 Bn(2kn + k%lll))>M2, M = diamC =

sup |[x —yl| and {rn} C la,00) for some a > 0. Then, the sequence {xn} converges strongly to a point
x,yeC
X € ﬂ%zl F(Ti) N EP(f, C), provided that the sequences of real numbers {xn} C (0,1), {Bn} and {yn} satisfy

the following condition:
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(C1) Bn,yn €[L,1—{, for some ¢ € (0,1).
Proof. We divide the proof into the following steps.

Step (i): We show that {x,, } is well defined and ﬂ%zl F(T{) NEP(f,C) Cc C, Yn = 0.
From the scheme, Cy = C is closed and convex. We also observe that

un —zI? <lwn —2P+6n & 2(z,w—un) < [wal? — [lunlP + 6n. 3.2)

Therefore, from (3.2), we have that C,, is closed and convex, Yn > 0, and consequently {x,} is well
defined. It follows from Lemma 2.3 that for each i = 1,2, F(T;) is closed and convex, which implies that
ﬂle F(T;) is closed and convex. It also follows from Lemma 2.6 (iv) that EP(f, C) is closed and convex.

Consequently, ﬂ%zl F(Ty) N EP(f, C) is closed and convex. Thus, Pﬂle F(T)NEP(f,C)

Observe that ﬂ%zl F(T) NEP(f,C) ¢ C = Cy. Assume ﬂ%le(Ti) NEP(f,C) € C, and let p €
ﬂle F(T;) N EP(f, C), then by convexity of II.lIZ, we have

xg is well defined.

yn —PIP =111 — Br)wn + Bn T wn —pl?
= 11— Bn)(Wn —P) + Bn(TTwn —p)I?
< (1= Bn)lwn — Pl + BnlT Wi — plIP (3.3)
< (1= Bn)lwn =Pl + Br (14 kn,1)?lwn —pli?
= |[wn — pIP + Bn(2kn1 + K2 1 )lwn —pl.

Putting u,, = Ty, zn, using (3.3) and Lemma 2.6 (ii), we have

un —pI? =Ty, zn —plP
< llzn —pIP
=1 =yn)T{"Wn +vnT3'yn _PHZ
=1 =vn) ({wn —P) + Yn(T3'yn — )
< (1 =y wr = pIP + vl T3 ym — plP
< (1=vyn)lwn = pIP + (2kn1 + K5 Dlwn — pIF +vn (1 +kn2)*lyn — I
< (1=vyn)lwn —pIP + (2kn1 + K2 1)lwn — Pl
+n 1+ K22 (Iwn = PIP + B 2kn 1 + 12, 1)lwe —pIP)
= (1—vn)lwn =Pl + (2kn 1 + K4 1)lwn —pl?
+¥n (I = PIP + Br (21 1 1) we —PIR)

[§

Y (22 + K ) (1w = PIP + B 2k + 12, 1)we —pIP)
= (1 —yn)lwn =PI + (2kn,1 + K3 1)lwn =PI + ynlwn —pl?
VB (2kn 1 + K )W =PI+ Y (22 1) (14 B (2 1 1) ) Ibwn — P
= [wn — I + (2kn1 + k3 1) (1 +vnBn)lwn —pl
¥ (2kn2 + K4 2) (14 B (2kn1 +KE 1) ) Iwe =PI
< Iwn — IR + (2 + K2 1)1+ Y Br)M2 7 2k + 13 2) (14 B 2kt + 16, 1) ) M2
= [wn — Pl + On.

Hence, we have that p € Cy4;. This implies that ﬂ%zl F(T;) NEP(f,C) € Cny1. Thus, ﬂ%zl FT) N
EP(f,C) C Cp, Vn > 0.
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Step (ii): We show that lim |[x, —Xo|| exists.
n—oo

Since xn, = Pc, %0, and xn 41 € Cry1 € C, ¥ > 0, we have
lIxn —xoll = [[Pc, X0 — Xoll < [Xn41—xoll, YN >0, (3.4)

showing that {||Xn — xoll} is nondecreasing sequence. We also obtain from the definition of x, and (2.2)
that

2 2
Ixn —xolI” = [IPc,.x0 — xoll

2 2

< p —xoll” = llp — P, xoll

= IIp —xol* = lIp — xnll? (3.5)

2
<lp—xolP, ¥p € [VFTINEP,C), P =P g1 inep(r,c)X0-

i=1

Therefore, {IIxn — xoll} is bounded. Consequently, {x,} is bounded. From (3.4) and (3.5), we get that
1i_1>n [[xn — xol| exists.
n o

Step (iii): We show that ILm [[Xxn — Tixnll =0, fori=1,2.
n o
From xm = Pc,_ %0 € Cin € Cq, for m > n, then by (2.2), we get that

2 2 2
Im — Xnll© < xn —%0ll* = [[Xm —%0lI* = 0 as n — oo.

Hence, {xn,} is Cauchy in H.

Similarly, since xn4+1 € Pc, ;X0 € Cny1 C Cr, then

nt
xnt1 = xnl* < [xn = Xoll* = Xn41 — ol
Since T}gr;o [[xn — xol| exists, we obtain
Jim Jxn 41— xnll = 0. (3.6)
We also obtain from the Definition of w;,, and (3.6) that
Wn —xnll = anllxn —xn_1ll <Ilxn —xn_1ll = 0 as n — oo. (3.7)
By (3.6) and (3.7), we obtain
Wi —Xnp1ll = [[Wn —x%n +xn = Xn41ll < [[wn —xnll + lIxn — X4l = 0 as 1 — oo. (3.8)

Since xn 11 € Cn 1, then
2 2
Hun_XnJrlH < ||Wn_Xn+1|| +9n~

From (3.8) and the fact that 6,, — 0 as n — oo, we obtain

lim [u, — XTL+1|| =0. (3.9)
n—oo
Using (3.6) and (3.9), we have
[un —xnll = llun —xn41 +Xnp1 —xnll < lun —xn a1l +lxns1 —xnll = 0 as 1 — oo. (3.10)

From (3.7) and (3.10), we get

Wn —unll = [Wn —xn +xn —unll <lwn —xnll+Xn —unll =+ 0as n — oo. (311)
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Now, Putting un, =T zn, p € ﬂ%zl F(Ti) NEP(f, C) and using (2.1), we obtain

Itn =PI = Ty, zn — PIP
< llzn —plP

=11 =) (Tf'wn = p) + Ya(T3yn —p)I?

< (1= y)lIT'Wn — PP +vnl T3 yn — plI*
<(1—-vn)Q1 +kn,l)2||Wn _pHZ‘i’Yn(l +kn,2)2||yn —P||2
=(1—vyn)(1 +kn,l)2||wn —PH2 +vn(1 +kn,2)2||(1 — Bn)(wn —P) + Bn(Tlnwn —P)Hz

(1—vn) (1 + k) Wn = PIP +¥n (1 +kn2)?[(1— Br)lwn —pl?
+ Bl Wi — pIP = B (1 — Brn)lwn — Twn?]
< (1 —=vn) (1 +kn1)2wn — Pl + v (1 +kn2)*[(1 = Bn)lwn —pIP
+ Br(1+ k1) wn = PIP = Br(1— Br)lwn — T wnlP]
= (1—vn)lwn =PI + (1 —vn) 2kn 1 + K2 1)lwn —pl?
+Yn(1+kn2) [[wn =PI + Br (2kn,1 + K5 Wi — pIPF = B (1= Br)lwn — T wn 7]
< (1=vn)lwn = pIP +¥nlwn =PI + (1 —vn) (2kn1 + k5 )lwn — Pl
+Vn (2kn2 + K5 o) wn =PI 4+ ¥n (1 + kn2)*Bn (2kn1 + K5 1)lwn —pII*
—YnBn(l = Bn)lwn — Ty |2
= [win —PIP + (1= n) (2kn1 + K2 1)lwn — pIP +¥n (2kn o + K2 o) [wn —plP
+YnBr (1 +kn2)2(2kn1 + K4 )lwn =PI = ynBn (1 — Br)lwn — T wn |
< Iwn = PIP + (1= n) (2kn1 + K& 1 )M? + 7y (2kn 2 + K2 5 )M?
F¥nBn(l+kn2)*(2kn1 + K5 )M =y Br (1 — Br)lwn — T wn .

Therefore,

YrBn(l—Bn)lwn — TFwalP? < [wn —pl? = lun —plP + (2kn,1 + K2 1 )M?

2 2 2 2 2 (3.12)
+vYn(2kn2 + kn,z)M +YnBn(l+kn2)™(2kn1 + kn,l)M .
Observe that, using (3.11), we have
[wn =PI = llun —plI* = [Wnll> =2 (Wn, ) + IPIP = (unl* =2 (un, p) + [IpI?)
= [wnl? = lunl* =2 (Wn —un, p)
< [l = hun [ + 2] Wi — 1, ) | (3.13)
< (Iwnll = lunll) (1wl + lunll) + 2lws = wnlltpl
< Iwn = unll (Wl + lunll) +2bwn = unlipll 0 as 1~ oo.
Since kn i — 0 as n — oo, for i =1, 2, it follows from (3.12) and (3.13) that
lim ‘Yn[?’n(l - ﬁn)”wn _TlnwnHz =0.
n—oo
Using condition (C1), we get
lgrl lWn — T{'wn || = 0. (3.14)
n [oe]

From the scheme (3.1) and (3.14), we get

lyn —wall = BnllT{"Wn —wnl| - 0 as n — oco. (3.15)
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Using (3.7) and (3.14), we obtain
Xn — T{'wall < [wn — T wnl + [wn —xnll = 0 as n — oco. (3.16)
Now,
Hxn - T1an|| - HXn - T1nwn + Tlnwn - Tlnan
< pen = T wall + [T W — T x|
< Hxn - TlnwnH + (1 + kn,l)HWn _an/
using (3.7) and (3.16), we get
lim [[xn — T{*xnll = 0. (3.17)
n—oo
Therefore, from (3.6) and (3.17), we get
IXnp1 — T %l < nr —xnll + xn = T %l + [T %0 — T %41l (3.18)
< (2+kn,1)||xn+1_Xn||+||xn_T1an||_>O as m — oo. .
And
IXn41 — Tixnpall = lxny1 + T1n+1xn+1 - -I—1n+1xn+1 — Tixnll
< — T x4+ [ Tixngr — T x|
= xn1 — T el 4 Toxng1 — T (T %)l
g — T x4 (14 K1) xne1 — T %l
Hence from (3.17) and (3.18), we get
li_r)n [[xn — Tixnll = 0. (3.19)
n o

Similarly, from (2.1) and (3.3), we have

2 2
llun —plI* =1ITr, zn — Pl
< ||Zn _p||2

=1 _'Yn)(Tlnwn -p) +Yn(T2“yn —P)||2

= (1 _'Yn)HTlnwn _sz +'Yn||T2nUn —PHZ _Yn(l _'Yn)HTann _TznynHz

< (1 _'Yn)(l + kn,1)2||Wn _sz +Yn(1 + kn,2)2||yn —PH2
_Vn(l _Yn)HTann _TznynHz

< (1=yn)lwn —pIP + (2kn1 + K3 DlIwn = pIP +vn (14 kn2)? [IIwn —pl?

+ B (2kn1 + K5 lwn — PIP] = yn (1 —vn) T Wi — Ty P
=(1 _'Yn)HWn _sz + (an,l + ki,l)HWn —P||2 ""Yn”wn —P||2

+¥n(2knz + K3 Dlwn =PI +¥nBn (14 kn2)?(2kn1 + K5 1 )lwn — Pl

—vn(1 *Yn)HTann *TznynHz
= [wn =PI + (2kn1 + K3 1)lwn =PI + v (2knz + K2 lwn —plP?

+YnPn(l+ kn,Z)Z(an,l + k‘i,l)HWn *P||2 —vYn(l *Yn)HTFWn - Tz“ynllz

< wn =PI+ (2kn 1 + K3 1)M? +yn (2kn 2 + ki, 1)M?
+YnPn(l+ kn,Z)z(an,l + k%t,l)Mz —vn(1 _Yn)HTlnwn - TznynHz-
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Therefore,

V(1 =y)ITwn = T ynl? < lwn — pIPF = [un = pIP + (2kn,1 + K5, 1 )M?

2 2 2 2 2 (3.20)
+v¥n(2kn2 + kn,l)M +VYnBn(1+kn2) (2kn1 + kn,l)M .
Therefore, using (3.13) and the fact that k,,; — 0 as n — oo, it follows from (3.20) that
T}E{}QYH“ _YTL)HTann - TznynHz =0.
From (C1), we have
T}E;r;o”-rlnwn - TznynHz =0.
Consequently,
Tim [T e — T yal| = 0. (3.21)
Now,
Hxn _TQanH < ||Xn _Tlnw'n” + HTlnwn _T2nyn|| + ||T2nyn _Tznx'n”
< pen = T wall + T Wi — Tyl + (1 + kn2)[lyn — xall
< xn = T wnll + M wWn = T ynll 4 (1 +kn2) (lyn — wall + [wn — xall).
Using (3.7), (3.15), (3.16), and (3.21), we have
lim [[xn — To'xn|| = 0. (3.22)
n—oo

Using (3.6) and (3.22), we obtain

|Xn—|—1 —Xnll+ [xn — T?_anH + ||Tznxn - T2nxn+1||
Xng1 = Xnll Flxn = T xnll + (1 4+ kn 2) X0 — Xn41ll (3.23)

||Xn+1 —Tznxn+1|| |
|
= 2+ kn2)llxn —Xnt1ll +xn — T'xnll = 0 as n — oo.

<
<

In similar fashion, we have

1 1
n+1 = 12Xn+4+11l = [I*n+1 211 n+1— 2n n+1— 12Xn+1
IIx Toxngill = [xng1 + T x T ix Toxn1ll

n+1
T2

1
< g1 — X1l + 1Toxns1 — B xn 4l

T ol 4+ Maxn g1 — T2 (T3 %n 1)

<t — T gl 4 (14 kg o) xns1 — T3 % -

= ||Xn—|—1 -

Using (3.22) and (3.23), we obtain
lgn [l — Toxnll = 0. (3.24)
n o0

Step (iv): We show that x* € ﬂ%zl F(Ty) NEP(f, C).
Since {xn} is bounded, there exists a sub-sequence {xn,} of {xn} such that x; — x* € H. Therefore
from (3.19) and (3.24), it follows that lim ||xnj — Tixn, | =0, for i =1,2. Consequently by Lemma 2.2, we
j—ro0

have Tix* = x*, for i = 1,2. Thus, x* € ﬂ%zl F(Ty).
On the other hand,
Wi =T ynll < T Wn — T ynll + [wn — T wal.

Using (3.14) and (3.21), we get
lim [win —T3'ynll = 0. (3.25)
n [o¢]
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Using (3.14) and (3.25), we have

lzn =wnll =1 =yn) (TWn —wn) + ¥n (T2 yn —wn |l

(3.26)
< (1 =v)lITTwn —wall+vallT'yn —wall = 0 as n — oo.
From (3.11) and (3.26), we obtain
un = znll < llun —wnll+[wn —znll = 0 as 1 — oo. (3.27)
Therefore, since 1, > a, we get
Jim =2l (3.28)
n—00 Th
Since u,, = Ty, zn, wWe obtain
1
f(un,z) + — (z—un,un —zn) =20, Vze C.
n
From condition (G), we get
1
. (z—Un,Un —2zn) = f(z,un), Vz€C,
n
So that
Un; — Zn;
Z—Up,, — > f(z,un;), VzeC. (3.29)
n

From xn; — x*, (3.10) and (3.27), we have z,,;, — x* and un;, — x*. It follows from (3.28), (3.29), and
conditon (G4) that

f(z,x*) <0, VvzeC.
Assume s € (0,1]. For each z € C, let zg = sz+ (1 —s)x*. Then, z; € C and so f(zs,x*) < 0. Hence, by
(G1) we have

0 = f(zs,zs) < sf(zs,z) + (1 —s)f(zs,x") < sf(zs,2).

Dividing by s, we have
f(zs,2z) 20, Le., f(sz+ (1—s)x*,z) >0, Vze C.

By taking limit as s — 0 and (Gz), we get
f(x*,z) >0, VvzeC.

Showing that x* € EP(f,C). Hence x* € ﬂ%zl F(T;) N EP(f, C). This shows that w,(xn) C ﬂle F(Ty) N

EP(f, C). Therefore, from (3.5) and Lemma 2.4, we obtain that x,, — x* = Pm%:I F(T)NEP(f,C)X0- a

By Remark 1.1, Theorem 3.1 reduces to the following Corollary.

Corollary 3.2. Let H be a real Hilbert space and C be a nonempty closed, bounded and convex subset of H. Let
f: C x C — R be a bifunction satisfying conditions (G1)-(Gg). Let Ty : C — C, 1 =1, 2, be nonexpansive mapping
such that ﬂ%zl F(Ti) NEP(f, C) # (. Let {xn} be a sequence generated by xo,x; € C and

Co=C,

Wn =Xn + (Xn(xn - anl)/

Yn = (1 - Bn)wn + Bnlen/

zn = (1 =vn)Tiwn + vnT2yn,

Un = Trnzn/

Cni1 = {z € Cn:llun —zl? < llwn —2zIP},
Xn+1 = PCn+1X0’ n > 0.

Then, the sequence {xn} converges strongly to a point x € ﬂ%zl F(Ti) NEP(f, C), provided that {rn} C [a, co) for
some a > 0 and the sequences of real numbers {on} C (0,1), {Bn}, and {yn} satisfy the following condition:
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(C1) Bn,vn €L, 1— 0, for some ¢ € (0,1).

Remark 3.3. Apart from extending the results of Phon-on et al. [27] from two nonexpansive mappings to
two asymptotically nonexpansive mappings, our iterative sequence solves monotone equilibrium prob-
lem.

4. Numerical example

In this section, we give some example to illustrate Theorem 3.1 and justify that our scheme is imple-
mentable.
Consider H = R with its usual metric and let C = [-10,10], which is clearly bounded closed and

convex subset of H. Let T; : C — C, 1 =1,2, be defined by T;(x) = 2"?, then, Vx,y € C, n > 1, we have
1

= (Z—Ei)“HX_yH < (1+(2+i)n)||x_y||-

So, for each i = 1,2, T; is asymptotically nonexpansive mapping with sequence kn i = 5w, Vn > 1

(FEENLY
and 0 € ﬁ%le(Ti). Define a bifunction f : C x C — R by

T2 = T = || 52— e

f(x,y) = 4y> +xy — 5%, Vx,y € C.

Then f satisfies conditions (G1)-(G4) and 0 € EP(f,C). So, by Lemma 2.6, T, z is nonempty and single-
valued for each x € C. Hence, there exists x € C such that

1
fooy)+ —(y—xx-20>0, WyeC

n

which is equivalent to

1
4y2+xy—5x2+r—(y—x,x—z> >0, VyeC,

n

that is .
4y2+xy—5x2—|—r—(y—x)(x—z) >0, YyeC,

n
from which we obtain that

4rny2 + (rnx+x—z)y+xz— (5rn + 1)x% >0, vy € C.

Let f(y) = 4rny® + (tnx +x — z)y + xz — (57 + 1)x2. Then, f is a quadratic function of y with coefficients
a=4r,, b=rpx+x—z, and ¢ = xz— (5t + 1)x2. The discriminant A of f is given by

A =1b?—4ac = (tnx+x—2)? —4(4ry) (xz2 — (5 + 1)x?) = (x —z+9rnx)?.

We can see from the above that f(y) > 0, Vy € C. If it has at most one solution in R, then A < 0. Thus,

-z = = —Zn
we have x = 1591, 7 1€, Un = Tryzn = 1+971n
3

15, then scheme (3.1) becomes

Therefore if o, =

Wn = Xn + %(Xn —Xn-1),
Yn = (1 - Bn)wn + Bn%/
zn = (1 _‘Yn)% +Yn%¥/
Up = 20—
n 149,/
Chy1 = {ZE Ch:iz< %“‘en}/
Xn+1 = Pc, %0, 20,

(4.1)

where 8n = ((2kn1 + K2 ,)(1+YnBn) +Vn(2kn2 + 185 (1+ B (2kng +12,1)) )M, M = diamC =

sup [[x —yll. Let ¢ = 11—0, Bn = VYn = %, and 1, = 43—0. From (4.1), using MATLAB, we obtain numer-
x,yeC
ical results in Figures 1 and 2.
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20

Value of the sequence:x(n)
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Figure 1: Convergence process of {x, } to 0 with initial points ~ Figure 2: Convergence process of {x,} to 0 with initial points
X0=1,X1=9. X0=7,X1=*5.
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