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Abstract
In this paper, we consider a deterministic model explaining how Zika virus is transmitted between human and mosquito.

The human population is divided into three groups as susceptible (x1), infected (x2), and treated (x3). Similarly, the mosquito
population is divided into susceptible (y1) and infected (y2) groups. First, we conduct the local and global stability of the
disease-free and endemic equilibrium points in relation to the basic reproductive number. We also study the sensitivity of the
basic reproductive number and the endemic equilibrium point with respect to each parameters used in the model. Furthermore,
we apply optimal control theory to show that there are cost effective control methods with the prevention effort (u1) of the
contact between human and vector and the effort of treatment (u2) for human. Finally, we provide numerical simulations to
support and illustrate some of the theoretical results.
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1. Introduction

The Zika virus is a generally mild illness caused when an infected mosquito of genus Aedes bites a
healthy human being. The genus Aedes includes Aedes apicoargenteus, Aedes aegypti, Aedes furcifer, Aedes
vitattus, Aedes luteocephalus, Aedes africanus, and Aedes hensilli. The virus is similar to those that cause
dengue, hepatitis C, West Nile virus, Saint Louis encephalitis, yellow fever, hog cholera, and chikungunya.
Even though the Zika virus is mainly transmitted through the bite of an infected mosquito, it can also
be spread to people in other ways such as from mother to a fetus during pregnancy or during the time
of birth, through infected blood and sexual contact, and others. Most people infected with the Zika
virus have no signs and symptoms, while others report mild fever, rash, and joint or muscle pain. Other
signs and symptoms may include headache, red eyes or conjunctivitis, and a general feeling of discomfort.
Zika virus infections during pregnancy have been linked to miscarriage and microcephaly which includes
birth defects such as severe microcephaly with a partly collapsed skull, brain damage, and reduced brain
tissue, eye damage, joint problems including limited motion, reduced body movement due to too much
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muscle tone after birth and others [13]. It is also known that the Zika virus may cause other neurological
disorders collectively known as Guillain-Barre syndrome (GBS). In this case, the immune system of the
patient will attack his/her nerves which results in weakness and tingling in the extremities such as feet,
fingers, and legs [13, 46, 47].

Since the symptoms of Zika virus infections are similar to other diseases like dengue and chikungunya,
it is difficult to diagnose clinically [29, 34]. There is no specific treatment or antiviral drug for Zika
infection. Also, because there is no vaccine for the Zika virus, we consider prevention measures that
are the same as for all vector-borne diseases caused by mosquitoes such as Aedes aegypti. There is much
literature on prevention, especially on Zika virus and dengue fever prevention and control [28, 41, 50, 51]
and mosquito bite prevention [5, 13, 45, 49].

The Zika virus was first discovered by a team of researchers in 1947 while studying yellow fever near
the East African Virus Research Institute in Entebbe, Uganda. Since its first discovery, there are several
major outbreaks in different parts of the world. However, according to the world health organization, the
first major outbreak of Zika virus infection was reported from the Island of Yap in 2007. Similarly, there
were other major outbreaks of Zika virus infections. For example, in Polynesia, Easter Island, the Cook
Islands, and New Caledonia (during 2013); in Central and South America, and the Caribbean (during
2015). According to Jorg Heukelbach et al., between August and October 2015, there was an estimate of
29 cases of microcephaly in the Northeastern part of Brazil [21, 27, 30, 49, 55].

Several authors have used mathematical models to understand how fast an infectious disease can be
spread and how long the disease can exist after emergence or reemergence. Thus, with the help of a
mathematical model, researchers could come up with the best strategies to stop the spread of the disease,
choose a better effective immunization program, allocate scarce resources to control or prevent infections
and also predict the future course of an outbreak.

The biology and epidemiology of the Zika virus have been studied by several authors. Adam et al.
investigated the 2013-2014 Zika virus outbreak on the six major archipelagos of French Polynesia. They
analyzed the possibilities of a reemergence of the infection and also, they studied the similarity of Zika
virus dynamics to other vector-borne infections such as the dengue virus in the pacific region [37]. Similar
results can also be found in [6, 12, 22, 46]. A Zika virus model is developed and studied by Deborah et al.,
for the 2015 - 2016 outbreak that happened in Colombia, El Salvador, and Suriname. They estimated the
parameter distributions of the Zika virus model and also provided uncertainty quantification using Ap-
proximate Bayesian Computation [53]. In [44], Moreno et al. studied the dynamics of the Zika virus about
short-term mobility between two populations. They also investigated the asymptomatic and symptomatic
infected populations and estimated the basic reproductive number for a two-patch model by assuming
that vectors are not moving across patches. Similar studies of the Zika virus in different countries in
South America can be found here [9, 58]. Anuwat et al. reviewed the different methods used in modeling
Zika virus transmission [60]. In their review, they summarized the five basic mathematical models (com-
partmental, spatial, meta-population, network, and individual-based) that are used by different authors
to study the transmission of vector-borne infections in general and the Zika virus in particular.

We will formulate an optimal control on the given model to derive optimal prevention of Zika virus
and treatment strategies with the minimal application cost. Some literature have used control theory
on HIV disease [1, 16, 31, 36], tuberculosis [32], a vector-borne disease in general [48]. There are two
methods in optimal control theory, called the direct and the indirect methods. Direct methods consist
in the discretization of the optimal control problem, reducing it to a nonlinear constrained optimization
problem. Indirect methods are based on the Pontryagin Maximum Principle, which in turn reduces the
problem to a boundary value problem [52]. In this paper, we apply the indirect method to show that there
are cost effective methods to mitigate the infection.

Optimal control theory, an extension of advanced theory of calculus of variation, is helpful to derive
control policies in problems related to epidemiology, medicine, economics, military science and other
areas [15, 39].
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An optimal control problem consists of a cost functional J(x(t),u(t)), state variable x(t), and control
variable u(t) where t0 6 t 6 t1. The goal is to find piece-wise continuous functions for control and state
variables maximizing or minimizing a cost functional [52, 61].

The organization of the paper is as follows. In Section 2, we formulate the deterministic Zika virus
model. We use the susceptible-infected-recovered (SIR) type of structure for the human population and
a susceptible-infected (SI) structure for the mosquitoes. In Section 3, we analyze the model. In partic-
ular, we show that the local and global stability of the disease-free and endemic equilibrium points are
completely determined by the basic reproductive number R0. We also discuss the sensitivity analysis of
the basic reproductive number and endemic equilibrium point, which are the most important values in
epidemiology. In Section 4, we analyze an optimal control model for the Zika virus to derive optimal
prevention effort of the contact between the human and the mosquitoes and treatment strategies with
minimal cost. Finally, in the last section, we provide numerical examples and simulations to support
some of the theoretical results in the previous sections.

2. Mathematical model formulation

A compartmental framework is used to model the transmission dynamics of Zika virus. The human
population is divided into three groups. Let x1(t), x2(t), and x3(t) be the number of susceptible, infected,
and recovered people at time t > 0, respectively. Similarly, the mosquito population is divided into two
groups, and let y1(t) and y2(t) be the number of susceptible and infected mosquitoes at time t > 0,
respectively.

In the study of vector-host epidemic model, it is customary to use the susceptible, exposed, infected
and recovered (SEIR) compartmental type of structure for the host population, and the susceptible, ex-
posed and infected (SEI) type for the vector population. As a result, the mathematical model will have a
system of at least 7-dimensional nonlinear differential equations. In this paper, to reduce the level of com-
plexity that arises from analyzing the system, we assume that all individuals who are exposed or already
infected and are contagious are grouped under the infected group x2(t). Similarly, by assuming that the
life span of mosquitoes is short enough compared to the host, we ignore the exposed group. Thus we
consider an SIR epidemic model for human and an SI model for the mosquito population. Similar litera-
ture where an SIR type of structure for the host and an SI type for the vector can be found [8, 35, 42, 60].
The Zika virus model studied in this paper can be modified to an SEIR type for the host and SEI type
for the vector, especially if one wants to include the intrinsic incubation period for the host and extrinsic
incubation period in the vector group.

It is well known that, all epidemiological models have limitations in such a way that they do not
represent the exact reality of the problem but rather a very simplified version of the real-world problem.
Nonetheless, we can always draw some important conclusions about the infection and thus derive control
mechanisms, which may include the decrease of susceptible people through vaccination, prevention,
quarantine or treatment. In that regard, the model proposed in this paper has some limitations. One
of the limitations is, it is assumed that the population in the SIR model is uniform and homogeneously
mixed, but in reality, it is known that mixing depends on many factors including age, different geographic
and socio-economic factors, individual human behavior and other similar factors. The other limitation
is, this model is deterministic and it does not incorporate the effect of environmental fluctuations. As a
result it is assumed that the output of the model is fully determined by the parametric and initial values.
Another important aspect that can be considered in this model is the spacial migration of the host and
the vector population. Thus by incorporating a population diffusion into this model, we can study the
resulting parabolic system of partial differential equation to predict the transmission of the infection.
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Figure 1: The flow diagram of the Zika transmission model where x1, x2, and x3 are the number of susceptible, infected, and
recovered human and y1 and y2 are the number of susceptible and infected mosquitoes, respectively. The solid arrows represent
transitions between the different epidemiological classes, whereas the dash arrows represent interactions between human and
mosquito.

Susceptible human (x1) can be infected if they are bitten by infectious mosquitoes (y2). Infectious hu-
man (x2) will then move to and remain in the recovered group (x3). Similarly, susceptible mosquitoes (y1)
can be infected if they bite an infectious human. Based on the law of mass action, the dynamics of Zika
virus transmission are described by the following 5 coupled nonlinear ordinary differential equations.

dx1(t)

dt
= δ1 −

ab

H
x1(t)y2(t) −

β

H
x1(t)x2(t) − ηx1(t),

dx2(t)

dt
= θ

(
ab

H
x1(t)y2(t) +

β

H
x1(t)x2(t)

)
− γx2(t) − ηx2(t),

dx3(t)

dt
= (1 − θ)

(
ab

H
x1(t)y2(t) +

β

H
x1(t)x2(t)

)
+ γx2(t) − ηx3(t),

dy1(t)

dt
= δ2 −

acp

H
x2(t)y1(t) − νy1(t),

dy2(t)

dt
=
acp

H
x2(t)y1(t) − νy2(t),

(2.1)

where H(t) = x1(t) + x2(t) + x3(t) and V(t) = y1(t) + y2(t) represent the total human and mosquito
population. A detailed description of the parameters used in the model with their values are given in
Table 1.

Table 1: Description of parameters used in the Zika model and their range.
Parameters Description of the parameters (unit) Range Reference

a Mosquito biting rate (number of bites per mosquito per day) 0.3 - 1 [4, 27]

b
Transmission probability from an infected mosquito to a susceptible
human per bite (dimensionless) 0.1 - 0.75 [4, 27]

c
Transmission probability from an infected human to a susceptible
mosquito per bite (dimensionless) 0.3 - 0.75 [4, 27]

β Transmission rate from infected human to susceptible human (per day) 0.001 - 0.4 [27]
θ Proportion of symptomatic infections (dimensionless) 0.1 - 0.8 [27]
η Death rate of the human population (per day) [2 - 5]·10−5 Assumed
γ Recovery rate of infected human (per day) 0.01 - 0.33 [4]

p
Relative human-to-mosquito transmission probability of infected hu-
man to susceptible mosquito per bite (dimensionless) 0 - 0.5 [27]

ν Death rates of the susceptible and infected mosquito (per day) 0.04 - 0.09 [53]
δ1 Recruitment rates of susceptible human (per day) > 1 Assumed
δ2 Recruitment rates of susceptible mosquito (per day) > 1 Assumed
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Since x3(t) appears only in third equation in (2.1), we can remove it from the system and study the
following equivalent 4-dimensional system of nonlinear differential equation.

dx1(t)

dt
= δ1 −

ab

H
x1(t)y2(t) −

β

H
x1(t)x2(t) − ηx1(t),

dx2(t)

dt
= θ

(
ab

H
x1(t)y2(t) +

β

H
x1(t)x2(t)

)
− γx2(t) − ηx2(t),

dy1(t)

dt
= δ2 −

acp

H
x2(t)y1(t) − νy1(t),

dy2(t)

dt
=
acp

H
x2(t)y1(t) − νy2(t).

(2.2)

Define the set Ω := {(x1, x2,y1,y2) ∈ R4
+ : x1 + x2 6 δ1

η , y1 + y2 = δ2
ν }. Adding the first 3 equations in

system (2.1), we obtain
dH(t)

dt
= δ1 − ηH(t)

and similarly, adding the last 2 equations we have

dV(t)

dt
= δ2 − νV(t).

This yields H(t) = δ1
η + c1e

−ηt and V(t) = δ2
ν + c2e

−νt, where c1 and c2 are arbitrary constant. Note
that limt→∞H(t) = δ1

η and limt→∞ V(t) = δ2
η . Thus, without loss of generality, we can assume that the

limiting population of the human and mosquitoes is constant. That is, H(t) = δ1
η and V(t) = δ2

ν for any
t > 0 provided that H(0) = δ1

η , V(0) = δ2
ν and as a result we conclude that Ω is positively invariant and

globally attractive with respect to system (2.2).

3. Analysis of the model

3.1. Equilibrium points and basic reproductive number

Solving the system
dxi
dt

= 0,
dyj

dt
= 0 for i, j = 1, 2

yields two equilibrium points. These are, the disease-free equilibrium point

E0 =

(
δ1

η
, 0,
δ2

ν
, 0
)

and the endemic equilibrium point E1 = (x∗1 , x∗2 ,y∗1 ,y∗2), where

x∗1 =
δ1

η
−

(γ+ η)

ηθ
x∗2 , y∗1 =

δ2H

acpx∗2 + νH
, y∗2 =

acpδ2x
∗
2

ν(acpx∗2 + νH)
(3.1)

and x∗2 is the positive solution of the equation

2ηθδ1 − (γ+ η)ηx∗2
θδ1 − (γ+ η)x∗2

=
a2bcpδ2x

∗
2

Hν(acpx∗2 + νH)
−
β

H
x∗2 . (3.2)

The basic reproductive number R0 is an epidemiological quantity, that represents the expected number
of secondary Zika infections by a single infectious individual over the duration of infectious period with
in a fully susceptible population [2, 19, 20]. We use the next generation method to obtain R0. For that
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purpose, let

F(E0) =

[
θβδ1
Hη

θabδ1
Hη

acpδ2
Hν 0

]
and V(E0) =

[
γ+ η 0

0 ν

]
.

Then the next generation matrix G(E0) is defined by

G(E0) = F(E0)V
−1(E0) =

[
θβδ1

Hη(γ+η)
θabδ1
Hην

acpδ2
Hν(γ+η) 0

]
.

Hence R0, which is the dominant eigenvalue of G, is given by

R0 =
1
2

(
θβ

γ+ η
+

√
θ2β2

(γ+ η)2 +
4θa2bcpδ2

Hν2(γ+ η)

)
.

3.2. Local and global stability of the equilibrium point
In this subsection, we discuss the local and global stability of the disease-free and endemic equilibrium

points.

Theorem 3.1. The disease-free equilibrium point E0 is locally asymptotically stable in Ω if R0 < 1.

Proof. To prove the local stability of E0, we need to show that all the real roots of the eigenvalues of the
Jacobian matrix J(E0) are non-positive. To that end, we have

J(E0) =


−η βδ1

Hη 0 −abδ1
Hη

0 θβδ1
Hη − γ− η 0 θabδ1

Hη

0 −acpδ2
Hν −ν 0

0 acpδ2
Hν 0 −ν

 .

The eigenvalues of J(E0) satisfy
(λ+ η)(λ+ ν)(λ2 + k0λ+ k1) = 0,

where
k0 := −

θβδ1

Hη
+ γ+ η+ ν

and

k1 := ν

(
γ+ η−

θβδ1

Hη

)
−
a2cpθδ1δ2

H2νη
.

Now if R0 < 1, we have
θβδ1

Hη(γ+ η+ ν)
6

θβδ1

Hη(γ+ η)
6 R0 < 1.

Thus k0 > 0. Also if R0 < 1, then

θβδ1

Hη
+
θa2bcpδ1δ2

H2ν2η
− γ− η < 0.

Note that

k1 =

(
γ+ η−

θβδ1

Hη
−
θa2bcpδ1δ2

H2ν2η

)
ν > 0.

In conclusion, all the eigenvalues of the Jacobian matrix have a negative real part and thus the disease-free
equilibrium point E0 is locally stable.

To prove the global stability of E0, we use the Lasalle’s invariance principle stated below [38, 57].
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Theorem 3.2. Let Ω ⊂ D be a compact set that is positively invariant with respect to x ′ = f(x). Let V : D → R

be a C1-function such that V ′(t) 6 0 on Ω. Let E = {x ∈ Ω : V ′(t) = 0} and M be the largest invariant set in E.
Then every solution starting in Ω approaches M as t→∞.

Theorem 3.3. If R0 < 1, then the disease-free equilibrium point is globally asymptotically stable.

Proof. Define a function

V(x1, x2,y1,y2) = x2 +
θabδ1

νHη
y2.

Clearly, V(x1, x2,y1,y2) > 0 along the solution of system (2.2). Using the fact that y1 = δ2
ν − y2, we have

the following result.

dV

dt
=
dx2

dt
+
θabδ1

νHη

dy2

dt

= θ

(
ab

H
x1y2 +

β

H
x1x2

)
− γx2 − ηx2 +

θabδ1

νHη

(
acpδ2

Hν
x2 −

acp

H
x2y2 − νy2

)
6 x2

(
θβδ1

Hη
− γ− η+

θa2bcpδ1δ2

H2ν2η
−
θa2bcpδ1

H2νη
y2

)
= x2

(
(γ+ η)

[
θβδ1

Hη(γ+ η)
+
θa2bcpδ1δ2

H2ν2η(γ+ η)
− 1
]
−
θa2bcpδ1

H2νη
y2

)
.

Notice that if R0 < 1, it follows that θβδ1
Hη(γ+η) +

θa2bcpδ1δ2
H2ν2η(γ+η)

< 1 and then dV
dt 6 0. Thus by Theorem 3.2,

we conclude that the disease-free equilibrium point E0 is globally asymptotically stable.

Theorem 3.4. The endemic equilibrium point E1 is locally asymptotically stable if R0 > 1.

Proof. The proof is similar to Theorem 3.1. The characteristic equation of the Jacobian matrix evaluated at
E1 is given by

λ3 − (a1 + a2 + a8)λ
2 + (a1a5 + a1a8 + a5a8 − a2a4 + a6a7)λ

+ (−a1a6a7 + a2a4a8 − a3a4a7 − a1a5a8) = 0,

where

a1 =−
aby∗2
H

−
βx∗2
H

− η < 0, a2 = −
βx∗1
H

< 0, a3 = −
abx∗1
H

< 0,

a4 =
θaby∗2
H

+
θβx∗2
H

> 0, a5 =
θβx∗1
H

− γ− η < 0, a6 =
θabx∗1
H

> 0,

a7 =
acpδ2

Hν
−
acpy∗2
H

> 0, a8 = −
acpx∗2
H

− ν < 0.

Now if we let

u = −(a1 + a2 + a8), v = a1a5 + a1a8 + a5a8 − a2a4 + a6a7, z = −a1a6a7 + a2a4a8 − a3a4a7 − a1a5a8,

then u > 0, v > 0, and z > 0. Also we have

uv− z =a1a2a4 − a
2
1a5 + a2a4a5 − a1a

2
5 − a3a4a7 + 2a1a6a7 + a5a6a7

+ a2
1a8 − 2a1a5a8 − a

2
5a8 − a6a7a8 − a1a

2
8 − a5a

2
8 > 0.

Thus according to the Hurwitz criterion, the endemic equilibrium E1 is locally asymptotically stable
[17].
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Next, we use the Poincaré-Bendixon theorem to prove the global stability of the endemic equilibrium
point E1 [11, 40, 54].

Theorem 3.5. Let x → f(x) ∈ Rn be a C1 function for x ∈ D ⊂ Rn and consider the system of differential
equations x ′ = f(x). Assume that

1. there exists a compact absorbing set K ⊂ D and the above system has a unique equilibrium x̄ ∈ D;
2. x̄ is locally asymptotically stable;
3. the system satisfies the Poincaré-Bendixon property;
4. any periodic orbit of the system is asymptotically orbitally stable.

Then the unique equilibrium x̄ is globally asymptotically stable in D.

Note that Ω is bounded. Thus, in order to show that system (2.2) has a compact absorbing set, it is
sufficient to prove system (2.2) is uniformly persistent [40, 59]. That is, we have to show that there exists
k > 0 such that, the solution of system (2.2) satisfies the condition

lim inf
t→∞ |(x1(t), x2(t),y1(t),y2(t))| > k

for any initial value x1(0) > 0, x2(0) > 0,y1(0) > 0,y2(0) > 0.

Lemma 3.6. System (2.2) is uniformly persistent if R0 > 1.

Proof. By contradiction, suppose there exists a solution x1(t), x2(t), y1(t), and y2(t) of system (2.2), such
that x1(0) > 0, x2(0) > 0, y1(0) > 0, y2(0) > 0 and

lim
t→∞ x1(t) =

δ1

η
, lim
t→∞ x2(t) = 0, lim

t→∞y1(t) =
δ2

ν
, lim
t→∞y2(t) = 0. (3.3)

If R0 > 1, then θβ
γ+η + θa2bcpδ2

Hν2(γ+η)
> 1 and thus, there exists ε > 0 such that

θβ(
δ1

η
− ε)ν+ θa2bcp(

δ2

ν
− ε) −Hν(γ+ η) > 0.

Equation (3.3) implies that for ε > 0, there is t0 > 0 such that for any t > t0 we have

δ1

η
− ε < x1(t) <

δ1

η
+ ε, x2(t) < ε,

δ2

ν
− ε < y1(t) <

δ2

ν
+ ε, y2(t) < ε.

Thus if t > t0 we have

dx2

dt
= θ

(
ab

H
x1y2 +

β

H
x1x2

)
− γx2 − ηx2 >

(
θβ

H

(
δ1

η
− ε

)
− γ− η

)
x2 + θ

ab

H

(
δ1

η
− ε

)
y2,

and

dy2

dt
=
acp

H
x2y1 − νy2 >

acp

H

(
δ2

ν
− ε

)
x2 − νy2.

Now consider the following system of linear differential equations:
dx
dt =

(
θβ
H

(
δ1
η − ε

)
− γ− η

)
x+ θabH

(
δ1
η − ε

)
y,

dy
dt = acp

H

(
δ2
ν − ε

)
x− νy,

x(t0) = x2(t0) > 0, y(t0) = y2(t0) > 0.

(3.4)
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Note that

Q :=


(
θβ
H

(
δ1
η − ε

)
− γ− η

)
θabH

(
δ1
η − ε

)
acp
H

(
δ2
ν − ε

)
−ν

 ,

is a quasi-positive matrix and

det(Q) = −
1
H

[(
θβ

(
δ1

η
− ε

)
− γ− η

)
ν+

θa2bcp

H

(
δ1

η
− ε

)(
δ2

ν
− ε

)]
< 0.

Thus by the Perron-Frobenius theorem there is a vector v > 0 corresponding to the positive eigenvalue
λ of Q such that Qv = λv. Therefore, for any initial value x(t0) > 0, y(t0) > 0 the solution of system (3.4)
is unbounded. That is x2(t) → ∞ and y2(t) → ∞ as t → ∞ which is a contradiction. In conclusion,
system (2.2) is uniformly persistent and thus it has a compact absorbing set.

To show that system (2.2) satisfies the Poincaré-Bendixon property, it is sufficient to prove that the sys-
tem is competitive [11, 40]. That is, for some diagonal matrix D = diag (ζ1, ζ2, ζ3, . . . , ζn), DJD has non-
positive off-diagonals where J is the Jacobian matrix associated with system (2.2) and ζi ∈ {−1, 1} for i =
1, 2, . . . ,n.

Lemma 3.7. If R0 > 1, then system (2.2) is competitive in Ω.

Proof. Since y1(t) = δ2
ν − y2(t), we have dy2

dt = acp
H (δ2

ν − y2) − νy2. Thus the Jacobian matrix of system
(2.2) is given by

J =

−abH y2 −
β
Hx2 − η −βHx1 −abH x1

θab
H y2 +

θβ
H x2

θβ
H x1 − γ− η

θab
H x1

0 acpδ2
Hν − acp

H y2 −acpH x2 − ν

 .

Let D = diag (−1, 1,−1) then,

DJD =

−abH y2 −
β
Hx2 − η −βHx1 −abH x1

−θabH y2 −
θβ
H x2

θβ
H x1 − γ− η −θabH x1

0 acpδ2
Hν − acp

H y2 −acpH x2 − ν

 .

Note that the off-diagonal elements of DJD are all non-positive. Thus system (2.2) is competitive inΩ.

Next, we use the following theorem to show that any periodic orbit of system (2.2) if it exists, is
asymptotically stable [14, 40].

Theorem 3.8. A periodic orbit Γ = {p(t) : 0 6 t < ω} of the differential equation x ′ = f(x) is orbitally
asymptotically stable with asymptotic phase if the linear system

z ′(t) =
∂f[2]

∂x
(p(t))z(t)

is asymptotically stable, where ∂f
[2]

∂x is the second additive compound matrix of the Jacobian matrix ∂f
∂x .

Using Theorem 3.8, we prove the following result.

Theorem 3.9. Any periodic solution to the system (2.2), if it exists, is asymptotically orbitally stable.
Proof. Suppose the solution of system (2.2) is periodic with period τ > 0. The corresponding second
additive compound matrix of the system is given by

J[2] =

−abH y2 −
β
Hx2 − 2η+ θβ

H x1 − γ
θab
H x1

ab
H x1

acpδ2
Hν − acp

H y2 −abH y2 −
β
Hx2 − η−

acp
H x2 − ν −βHx1

0 θab
H y2 +

θβ
H x2

θβ
H x1 − γ− η−

acp
H x2 − ν

 .

For any initial value (x(0),y(0), z(0)) ∈ R3
+, let (x(t),y(t), z(t)) ∈ R3

+ be the solution of system (2.2). Then
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the second compounded system is given by

dx

dt
=

(
−
ab

H
y2 −

β

H
x2 − 2η+

θβ

H
x1 − γ

)
x+

θab

H
x1y+

ab

H
x1z,

dy

dt
=

(
acpδ2

Hν
−
acp

H
y2

)
x+

(
−
ab

H
y2 −

β

H
x2 − η−

acp

H
x2 − ν

)
y−

β

H
x1z,

dz

dt
=

(
θab

H
y2 +

θβ

H
x2

)
y+

(
θβ

H
x1 − γ− η−

acp

H
x2 − ν

)
z.

Let

V(x,y, z, x2,y2) := sup
{
θ|x|,

x2

y2
(|y|+ |z|)

}
.

Then we have the following differential inequalities.

D+|x(t)| 6 θ

(
−
ab

H
y2 −

β

H
x2 − 2η+

θβ

H
x1 − γ

)
x+

(
|y+ z|

abx1x2

Hy2

)
y2

x2
, (3.5)

D+

{
x2

y2
(|y(t) + z(t)|)

}
6
x2

y2

(
acpδ2

Hν
−
acpy2

H

)
x −

(
acpx2

H
+ η+ ν−

x ′2
x2

+
y ′2
y2

)
(|y+ z|)

x2

y2
.

Let
f1 := −

ab

H
y2 −

β

H
x2 − 2η+

β

H
x1 − γ+

θabx1y2

Hx2
,

f2 :=

(
acpδ2

Hν

x2

y2
−
acp

H
x2

)
−

(
acpx2

H
+ η+ ν−

x ′2
x2

+
y ′2
y2

)
.

(3.6)

From system (2.2) we have the following equations:

x ′2
x2

=
θabx1y2

Hx2
+
β

H
x1 − γ− η,

y ′2
y2

=
acpδ2x2

Hνy2
−
acpx2

H
− ν. (3.7)

Using equations (3.6) and (3.7) we obtain the following inequalities.

f1 6
x ′2
x2

−
aby2

H
−
βx2

H
− η 6

x ′2
x2

− η, and f2 6
x ′2
x2

− η.

Thus

sup{f1(t), f2(t)} 6
x ′2
x2

− η.

Finally, from (3.5) and (3.6) it follows that

D+V(t) 6 sup{f1, f2}V(t) 6

(
x ′2
x2

− η

)
V(t). (3.8)

Integrating inequality (3.8) on [0, τ] we have,∫τ
0

sup {f1(t), f2(t)}dt 6
∫τ

0

(
x ′2
x2

− η

)
dt = (ln(x2(τ)) − ln(x2(0))) − ητ = −ητ.

Hence it follows that V(t) 6 ce−ηt and thus, V(t) → 0 as t → ∞. This implies that x(t),y(t), z(t) → 0
as t → ∞. As a result, the second compound system is asymptotically stable and thus, by Theorem
3.8 the periodic orbit of system is asymptotically orbitally stable. In conclusion, the above discussion is
summarized in the following theorem.

Theorem 3.10. The endemic equilibrium point E1 is globally asymptotically stable if R0 > 1.
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Simulation of the deterministic Zika model is presented in Figures 2 and 3 for different values of
parameters listed in Table 2. For the numerical simulation, we used 1

60 for η instead of 1
60×365 . In that

way, we can see the same result in a very short period of time. Otherwise, we need to wait for a long
time to see the asymptotic behavior of the solution. The set of parameter values listed under value 1
yields R0 = 0.2415. Thus according to Theorems 3.1 and 3.3, the solution of system (2.2) will converge
to the disease-free equilibrium point E0. Similarly, the set of parameter values under the column value 2
results R0 = 3.81. Therefore, by Theorems 3.4 and 3.10 the trajectories of the solution of system (2.2) will
converge to the endemic equilibrium point E1.

Table 2: Input parameter values used to simulate the trajectories of the solution of the model as shown in Figures 2 and 3. The
values under the column value 1 will result R0 = 0.2415 < 1 and the parameters under value 2 yields R0 = 3.81 > 1.

Value 1 Value 2 Description of the parameters (units)
a 0.4 0.8 Mosquito biting rate (number of bites per mosquito per day)

b 0.4 0.4 Transmission probability from an infected mosquito to a susceptible human (dimen-
sionless)

c 0.3 0.3 Transmission probability from an infected human to a susceptible mosquito (dimen-
sionless)

β 0.001 0.4 Transmission rate from infected human to susceptible human (per day)
θ 0.1 0.8 Proportion of symptomatic infections (dimensionless)
η 1/60 1/60 Death rate of the human population (per day)
γ 0.07 0.07 Recovery rate of infected human (per day)

p 0.1 0.1 Relative human-to-mosquito transmission probability of infected human to suscepti-
ble mosquito (dimensionless)

ν 1/14 1/14 Death rates of the susceptible and infected mosquito (per day)
δ1 5 2 Recruitment rates of susceptible human (per day) [7]
δ2 40 4 Recruitment rates of susceptible mosquito (per day) [7]

Figure 2: Trajectories of solution of the deterministic Zika model for R0 = 0.2415 < 1. The disease-free equilibrium point is
calculated to be E0 = (300, 0, 560, 0) and the simulation also shows that the trajectories of the solution converge to E0.

Figure 3: Trajectories of solution of the deterministic Zika model for R0 = 3.81 > 1. Using equations (3.1)-(3.2) the endemic
equilibrium point is calculated to be E1 = (41.602, 9.471, 54.855, 2.112). The figure confirms that the trajectories of the solution
converge to E1.
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3.3. Sensitivity analysis of the basic reproductive number R0 and the endemic equilibrium point E1.

In theoretical epidemiology, the basic reproductive number and endemic equilibrium point are the two
most important constants in determining whether the infection will be cleared or persist in the population.
Thus, in order to fully understand which parameters are most highly correlated with the values of R0 and
E1, we have to conduct sensitivity analysis. It also helps in analyzing how sensitive R0 and E1 are, by
the changes in one input parameter while keeping the other inputs constant. For that purpose, let µ be
a generic parameter representing any of the parameters used in the model. The normalized sensitivity
index of R0 with respect to µ is denoted by SIµ, and is defined as SIµ = ∂R0

∂µ
µ
R0

. The following values of
parameters are used to calculate the sensitivity indexes for each parameters.

a = 0.8, b = 0.4, c = 0.3, β = 0.4, θ = 0.8,

γ = 0.07, p = 0.1, ν = 0.0714, δ1 = 0.05, δ2 = 4, η = 4.57× 10−5,

As it can be seen in Figure 4, the sensitivity indexes of γ, η, ν and H are negative, while the remaining
indexes β, a, b, c, θ, p, δ2 are positive. The negative sensitivity indexes indicate that the parameter and
the basic reproductive number are inversely proportional. Thus, increasing one will decrease the other
value. Similarly, the positive sensitivity indexes show that there is a direct relation between the parameter
and the basic reproductive number. From Figure 4 it follows that, the most sensitive parameter for R0 is
the proportion of symptomatic infection (θ), followed by the transmission rate from infected human to
susceptible human (β) and the recovery rate of infected human (γ).

Figure 4: Sensitivity indexes of R0 with respect to the parameters used in the model.

Similarly, we discuss the sensitivity analysis of the parameters used in the model with respect to each
components x∗1 , x∗2 , y∗1 , and y∗2 of the endemic equilibrium point E1. The same values of parameters are
used to calculate the indexes. From Figure 5 we can observe that H, θ and β are the most sensitive
parameters for x∗1 . The most sensitive parameters for x∗2 are δ1 and θ followed by γ. Similarly, the most
sensitive parameters for x∗3 are δ2 and ν. Finally ν followed by θ and δ1 are the most sensitive parameters
for x∗4 .
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Figure 5: Sensitivity indexes of the endemic equilibrium point E1 with respect to the parameters used in the model.

4. Optimal control

4.1. A model for optimal control
We consider two control functions u1(t) for the prevention effort of the contact between human and

vector and u2(t) for the treatment for human. Thus the new system of differential equations with the
control functions is given as follows.

dx1

dt
= δ1 −

ab

H
(1 − u1(t))x1y2 −

β

H
x1x2 − ηx1,

dx2

dt
= θ

(
ab

H
(1 − u1(t))x1y2 +

β

H
x1x2

)
− γx2 − ηx2 − ru2(t)x2,

dx3

dt
= (1 − θ)

(
ab

H
(1 − u1(t))x1y2 +

β

H
x1x2

)
+ γx2 − ηx3 + ru2(t)x2,

dy1

dt
= δ2 −

acp

H
(1 − u1(t))x2y1 − νy1,

dy2

dt
=
acp

H
(1 − u1(t))x2y1 − νy2,

(4.1)

where 1 − u1(t) describes the failure rate of prevention efforts. The per-capital recovery rate is ru2(t),
where 0 6 r 6 1 is the proportion of effective treatment.

4.2. Optimal control problem
Let

J(u1,u2) =

∫T
0
(A1x2(t) +B1u

2
1(t) +B2u

2
2(t)) dt. (4.2)

We find an optimal control (u∗1 ,u∗2) such that

J(u∗1 ,u∗2) = min{J(u1,u2)|(u1,u2) ∈ Γ },
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where the control set is

Γ = {(u1,u2)|ui(t) is a piece-wise continuous on [0, T ] and 0 6 ui(t) 6 1, i = 1, 2}. (4.3)

4.3. Existence of optimal control
Theorem 4.1. Consider the objective functional J with (u1,u2) ∈ Γ subject to the constraint state system. Then,
there exists (u∗1 ,u∗2) ∈ Γ such that J(u∗1 ,u∗2) = min{J(u1,u2), (u1,u2) ∈ Γ }.

Proof. Since the state variables and controls are continuous, by Peano’s existence theorem the sets of con-
trols and corresponding state variables are nonempty. Note that Γ is convex and closed by the definition.
Since we restrict the state variables in Ω and by the definition of Γ , 0 6 ui 6 1, the state system with
controls is bounded by a linear function. We easily see that the following inequality for the integrand of
the cost functional

A1x2 +B1u
2
1 +B2u

2
2 > c1(|u1|

2 + |u2|
2)β/2 − c1

for some c1 > 0, c2 > 0, and β > 1. Also, let L(x2,u1,u2) = A1x2 + B1u
2
1 + B2u

2
2. Then, we have the

following inequality:

L(x2, λu1 + (1 − λ)u ′1, λu2 + (1 − λ)u ′2) 6 λL(x2,u1,u2) + (1 − λ)L(x2,u ′1,u ′2).

Thus, we conclude that the integrand is convex.
By theorem 4.1 in Fleming and Rishel [24], there exists (u∗1 ,u∗2) ∈ Γ such that J(u∗1 ,u∗2) = min{J(u1,u2),

where (u1,u2) ∈ Γ }.

4.4. Optimality system
Let Z = (X, Y) ∈ Ω where X = (x1, x2, x3) and Y = (y1,y2), Π = (λ1, λ2, λ3, λ4, λ5), and U = (u1,u2) ∈ Γ .

We define a Hamiltonian as follows.

L(Z,U,Π) =A1x2 +B1u
2
1 +B2u

2
2 + λ1

[
δ1 −

ab

H
(1 − u1(t))x1y2 −

β

H
x1x2 − ηx1

]
+ λ2

[
θ

(
ab

H
(1 − u1(t))x1y2 +

β

H
x1x2

)
− γx2 − ηx2 − ru2(t)x2

]
+ λ3

[
(1 − θ)

(
ab

H
(1 − u1(t))x1y2 +

β

H
x1x2

)
+ γx2 − ηx3 + ru2(t)x2

]
+ λ4

[
δ2 −

acp

H
(1 − u1(t))x2y1 − νy1

]
+ λ5

[acp
H

(1 − u1(t))x2y1 − νy2

]
.

(4.4)

Theorem 4.2. Given an optimal control pair (u∗1 ,u∗2) and solutions x1, x2, x3,y1, and y2, there exist adjoint
variables Π satisfying

λ̇1 = λ1

(
−

(
ab(1 − u1)x1y2

H2 −
ab(1 − u1)y2

H
− η+

βx1x2

H2 −
βx2

H

))
− θλ2

(
−
ab(1 − u1)x1y2

H2 +
ab(1 − u1)y2

H
−
βx1x2

H2 +
βx2

H

)
− (1 − θ)λ3

(
−
ab(1 − u1)x1y2

H2 +
ab(1 − u1)y2

H
−
βx1x2

H2 +
βx2

H

)
−
acλ4p(1 − u1)x2y1

H2 +
acλ5p(1 − u1)x2y1

H2 ,

λ̇2 = −λ2

(
θ

(
−
ab(1 − u1)x1y2

H2 −
βx1x2

H2 +
βx1

H

)
− γ− η− ru2

)
− λ3

(
(1 − θ)

(
−
ab(1 − u1)x1y2

H2 −
βx1x2

H2 +
βx1

H

)
+ γ+ ru2

)
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− λ1

(
ab(1 − u1)x1y2

H2 +
βx1x2

H2 −
βx1

H

)
− λ4

(
acp(1 − u1)x2y1

H2 −
acp(1 − u1)y1

H

)
(4.5)

− λ5

(
acp(1 − u1)y1

H
−
acp(1 − u1)x2y1

H2

)
−A1,

λ̇3 = −λ3

(
(1 − θ)

(
−
ab(1 − u1)x1y2

H2 −
βx1x2

H2

)
− η

)
− θλ2

(
−
ab(1 − u1)x1y2

H2 −
βx1x2

H2

)
+ λ1

(
−

(
ab(1 − u1)x1y2

H2 +
βx1x2

H2

))
−
acλ4p(1 − u1)x2y1

H2 +
acλ5p(1 − u1)x2y1

H2 ,

λ̇4 = −λ4

(
−
acp(1 − u1)x2

H
− ν

)
−
acλ5p(1 − u1)x2

H
,

λ̇5 = −
abθλ2(1 − u1)x1

H
−
ab(1 − θ)λ3(1 − u1)x1

H
+
abλ1(1 − u1)x1

H
+ λ5ν,

with the terminal conditions,
λi(T) = 0 for i = 1, . . . , 5. (4.7)

Furthermore, u∗1 and u∗2 are represented by

u∗1 = max
{

0, min
{

1,−
a(−bθλ2x1y2 + bθλ3x1y2 + bλ1x1y2 − bλ3x1y2 + cλ4px2y1 − cλ5px2y1)

2B1H

}}
,

u∗2 = max
{

0, min
{

1,
rx2(λ2 − λ3)

2B2

}}
.

(4.8)

Proof. By Pontryagin’s Principle we get the adjoint system

λ̇1 = −
∂L

∂x1
, λ̇2 = −

∂L

∂x2
, λ̇3 = −

∂L

∂x4
, λ̇4 = −

∂L

∂y1
, λ̇5 = −

∂L

∂y2

with zero final time conditions. To get the formula of the optimal control, (u∗1 ,u∗2), we solve the equations,

∂L

∂u1
= 0,

∂L

∂u2
= 0,

with the bounds of the controls given in (4.3).

5. Numerical results

For the numerical simulation, we use the values of parameters in Table 2. We choose weight constant
values A1 = 1,B1 = 50,B2 = 50 and r = 0.2 in the nonlinear ordinary differential equations with the
optimal controls (4.1) and the objective functional (4.2). The first set of values will result in R0 < 1 and we
will have a stable disease-free equilibrium, while the second set of values will result in R0 > 1 and thus,
we will have a stable endemic equilibrium point.

Figures 6 and 7 show the comparison between non-controlled and controlled cases when R0 < 1. The
number of infected human with the control is less than the number of non-controlled case in the whole
time period. The number of infected human with the control goes to zero faster than the non-controlled
case. Similarly, we see the same result for the mosquito population as shown in Figure 7.

Figures 8 and 9 show the comparison between non-controlled and controlled cases when R0 > 1.
The results are similar to the case when R0 < 1. The significant result is that, we still have the endemic
equilibrium points for the controlled case which are improved comparing to the non-control case.
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In this numerical example, we observe the expected result that the disease with optimal control can
be controlled better than the non-controlled case. Especially, when R0 > 1, the improvement is significant.
In this paper, we considered two controls, u1 for the prevention effort of the contact between human and
mosquito and u2 for the treatment for human.

Some authors have also considered other control mechanisms such as controlling the number of vec-
tors of larval or adult, or controlling the contact between infected and healthy human [10, 26, 56].

We search for two optimal control functions u1 and u2 for the prevention of the contact between
human and vector and the treatment for the human population, respectively. For the case when R0 < 1,
we have the optimal control values, u1 = 0.0349, and u2 = 0.8085. For R0 > 1 case, we have the optimal
control values, u1 = 0.0277 and u2 = 0.4813. It mean that the prevention effort has lower efficacy in both
cases when R0 < 1 and R0 > 1. Therefore, to optimize the number of infected and treated hosts, the
treatment rate has to be increased.

We also search for optimal control function for the prevention, u1, by setting u2 = 0, that is, when
there is no treatment. In this case if R0 < 1 then u1 = 0.1001 and if R0 > 1 then u1 = 0.0387. Moreover,
we investigated the situation when the prevention effort of the contact between the human and mosquito
(u1) is zero and the treatment (u2) is non-zero. As a result if R0 < 1 then u2 = 0.8085 and if R0 > 1
then u2 = 0.4810. Thus we can conclude that the treatment is more effective than the prevention when
R0 < 1. Similarly, if R0 > 1 then preventing the infection by reducing the contact between the human
and mosquito is better than providing treatment. However in order to get a much better result, both
prevention and treatment controls should be considered.

Figure 6: Comparison between with-control and non-control for human when R0 < 1.
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Figure 7: Comparison between with-control and non-control for mosquito when R0 < 1.

Figure 8: Comparison between with-control and non-control for human when R0 > 1.
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Figure 9: Comparison between with-control and non-control for mosquito when R0 > 1.

6. Discussion and Conclusion

In this paper, a deterministic Zika virus model is proposed and analyzed. In particular, we calculated
some of the most important epidemiological constants. This includes, the disease-free equilibrium point
E0 which is the case when the pathogen has suffered extinction and in the long run, everyone in the
population is susceptible and the epidemic equilibrium point E1, in which the disease cannot be totally
eradicated and remains in the population. Another important quantity that is derived and discussed
in this paper is the basic reproductive number R0, which describes the average number of secondary
infections caused by a single infectious individual during their entire infectious lifetime. It is also shown
that both the local and global dynamics of the solution of the Zika model is completely determined by
the value of R0. That is, if R0 < 1, then the disease-free equilibrium point is both locally and globally
asymptotically stable, and thus there will be no infection eventually. On the other hand, if R0 > 1,
the epidemic equilibrium point is also both locally and globally asymptotically stable and thus there
will always be infection in the vector and host population. Generally, global stability of the epidemic
equilibrium point is proved by constructing a suitable Lyapunov function V(t) and claiming that dVdt 6 0.
However, constructing an appropriate Lyapunov function is not always easy. Thus, in this paper we have
used an alternative technique, the Poincare-Bendixon method, to show that the endemic equilibrium point
is globally stable.

Since the two equilibrium points and the basic reproductive number depend on different parameters
used in the model, it is important to know which parameter affects these quantities the most. In this
regard, the sensitivity analysis of the equilibrium points and the basic reproductive number is discussed,
and the result is supported by numerical examples.

We also studied optimal control of the deterministic Zika virus model. We considered two controls u1
for the prevention effort of the contact between human and vector and u2 for the treatment for human.
We showed the existence of the optimal controls by using the result from [24]. To find u1 and u2, we
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established the optimality system by defining a Lagrangian (4.4). The optimality system is consisted of
the initial conditions of x1, x2, x3,y1, y2, and the adjoint system (4.5) with the terminal conditions (4.7) and
the optimal conditions, u1 and u2 (4.8).

We compared the number of human and vectors with controls and without controls in Figures 6 and
7 when R0 < 1 and in Figures 8 and 9 when R0 > 1. From the figures, we can observe that the model with
controls have better result than the model without controls. In the comparison, we have that the value of
u1 is 0.0349 and u2 is 0.8085. It means the treatment is more efficacy than the prevention.

Also, we discussed the case when we have a single control by setting u1 = 0 and search for u2.
Similarly, we search for u1 by setting u2 = 0. In both cases we found the same result that the treatment is
more efficient than the prevention.

In most infections caused by vectors, experimenting to come up with an excellent control measure is
often difficult and time consuming. Thus, developing mathematical models that can help us to predict
the spread of the infection is very important. These models also have significant role in informing policy
and management decisions about the infection. However, as explained in [25, 33], even though there
are a variety of mathematical tools for designing optimal strategies, it is difficult to put the results from
mathematically motivated simplifications into practice. Additional research and follow up will be needed
subsequently to understand the disease more fully and assess and update the response policy as needed.
More detailed information on how to use the results of the optimal control in policy decision making can
be found in [25, 33].

References

[1] B. M. Adams, H. T. Banks, M. Davidian, H.-D. Kwon, H. T. Tran, S. N. Wynne, E. S. Rosenberg, HIV dynamics:
modeling, data analysis, and optimal treatment protocols, J. Comput. Appl. Math., 184 (2005), 10–49. 1

[2] R. M. Anderson, R. M. May, Infectious diseases of humans: dynamics and control, Oxford university press, (1992). 3.1
[3] N. T. J. Bailey, The mathematical theory of infectious diseases and its applications, Hafner Press, New York, (1975).
[4] S. Bewick, W. F. Fagan, J. Calabrese, F. Agusto, Zika virus: endemic versus epidemic dynamics and implications for

disease spread in the Americas, BioRxiv, (2016). 1
[5] B. Blitvich, Arboviruses: Molecular Biology, Evolution and Control. Nikos Vasilakis and Duane J. Gubler, Am. J. Trop.

Med. Hyg., 95 (2016), 488–489. 1
[6] I. I. Bogoch, O. J. Brady, M. U. G. Kraemer, M. German, M. I. Creatore, M. A. Kulkarni, J. S. Brownstein, S. R.

Mekaru, S. I. Hay, E. Groot, A. Watts, K. Khan, Anticipating the international spread of Zika virus from Brazil, The
Lancet, 387 (2016), 335–336. 1

[7] E. Bonyah, K. O. Okosun, Mathematical modeling of Zika virus, Asian Pac. J. Trop. Dis., 6 (2016), 673–679. 2
[8] S. E. B. Boret, R. Escalante, M. Villasana, Mathematical modelling of zika virus in Brazil, arXiv preprint

arXiv:1708.01280, (2017), 26 pages. 2
[9] P. Brasil, J. P. Pereira, Jr., M. E. Moreira, R. M. Ribeiro Nogueira, L. Damasceno, M. Wakimoto, R. S. Rabello, S. G.

Valderramos, U.-A. Halai, T. S. Salles, A. A. Zin, D. Horovitz, P. Daltro, M. Boechat, C. Raja Gabaglia, P. Carvalho
de Sequeira, J.H. Pilotto, R. Medialdea-Carrera, D. Cotrim da Cunha, L. M. Abreu de Carvalho, M. Pone, A.
Machado Siqueira, G.A. Calvet, A.E. Rodrigues Baião, E.S. Neves, P.R. Nassar de Carvalho, R. H. Hasue, P. B.
Marschik, C. Einspieler, C. Janzen, J. D. Cherry, A. M. Bispo de Filippis, K. Nielsen-Saines, Zika virus infection in
pregnant women in Rio de Janeiro, N. Engl. J. Med., 375 (2016), 2321–2334. 1

[10] E. H. Bussell, C. E. Dangerfield, C. A. Gilligan, N. J. Cunniffe, Applying optimal control theory to complex epidemio-
logical models to inform real-world disease management, Philosophical Transactions of the Royal Society B, 374 (2019),
7 pages. 5

[11] G. Butler, P. Waltman, Persistence in dynamical systems, J. Differential Equations, 63 (1986), 255–263. 3.2, 3.2
[12] V.-M. Cao-Lormeau, A. Blake, S. Mons, S. Lastère, C. Roche, J. Vanhomwegen, T. Dub, Laure Baudouin, A.

Teissier, P. Larre, A.-L. Vial, C. Decam, V. Choumet, S. K. Halstead, H. J. Willison, L. Musset, J.-C. Manuguerra,
P. Despres, E. Fournier, H.-P. Mallet, D. Musso, A. Fontanet, J. Neil, F. Ghawché, Guillain-Barré Syndrome outbreak
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