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Abstract

In this paper, we consider a deterministic model explaining how Zika virus is transmitted between human and mosquito.
The human population is divided into three groups as susceptible (x;), infected (x;), and treated (x3). Similarly, the mosquito
population is divided into susceptible (y;) and infected (y;) groups. First, we conduct the local and global stability of the
disease-free and endemic equilibrium points in relation to the basic reproductive number. We also study the sensitivity of the
basic reproductive number and the endemic equilibrium point with respect to each parameters used in the model. Furthermore,
we apply optimal control theory to show that there are cost effective control methods with the prevention effort (u;) of the
contact between human and vector and the effort of treatment (u;) for human. Finally, we provide numerical simulations to
support and illustrate some of the theoretical results.
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1. Introduction

The Zika virus is a generally mild illness caused when an infected mosquito of genus Aedes bites a
healthy human being. The genus Aedes includes Aedes apicoargenteus, Aedes aegypti, Aedes furcifer, Aedes
vitattus, Aedes luteocephalus, Aedes africanus, and Aedes hensilli. The virus is similar to those that cause
dengue, hepatitis C, West Nile virus, Saint Louis encephalitis, yellow fever, hog cholera, and chikungunya.
Even though the Zika virus is mainly transmitted through the bite of an infected mosquito, it can also
be spread to people in other ways such as from mother to a fetus during pregnancy or during the time
of birth, through infected blood and sexual contact, and others. Most people infected with the Zika
virus have no signs and symptoms, while others report mild fever, rash, and joint or muscle pain. Other
signs and symptoms may include headache, red eyes or conjunctivitis, and a general feeling of discomfort.
Zika virus infections during pregnancy have been linked to miscarriage and microcephaly which includes
birth defects such as severe microcephaly with a partly collapsed skull, brain damage, and reduced brain
tissue, eye damage, joint problems including limited motion, reduced body movement due to too much
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muscle tone after birth and others [13]. It is also known that the Zika virus may cause other neurological
disorders collectively known as Guillain-Barre syndrome (GBS). In this case, the immune system of the
patient will attack his/her nerves which results in weakness and tingling in the extremities such as feet,
fingers, and legs [13, 46, 47].

Since the symptoms of Zika virus infections are similar to other diseases like dengue and chikungunya,
it is difficult to diagnose clinically [29, 34]. There is no specific treatment or antiviral drug for Zika
infection. Also, because there is no vaccine for the Zika virus, we consider prevention measures that
are the same as for all vector-borne diseases caused by mosquitoes such as Aedes aegypti. There is much
literature on prevention, especially on Zika virus and dengue fever prevention and control [28, 41, 50, 51]
and mosquito bite prevention [5, 13, 45, 49].

The Zika virus was first discovered by a team of researchers in 1947 while studying yellow fever near
the East African Virus Research Institute in Entebbe, Uganda. Since its first discovery, there are several
major outbreaks in different parts of the world. However, according to the world health organization, the
first major outbreak of Zika virus infection was reported from the Island of Yap in 2007. Similarly, there
were other major outbreaks of Zika virus infections. For example, in Polynesia, Easter Island, the Cook
Islands, and New Caledonia (during 2013); in Central and South America, and the Caribbean (during
2015). According to Jorg Heukelbach et al., between August and October 2015, there was an estimate of
29 cases of microcephaly in the Northeastern part of Brazil [21, 27, 30, 49, 55].

Several authors have used mathematical models to understand how fast an infectious disease can be
spread and how long the disease can exist after emergence or reemergence. Thus, with the help of a
mathematical model, researchers could come up with the best strategies to stop the spread of the disease,
choose a better effective immunization program, allocate scarce resources to control or prevent infections
and also predict the future course of an outbreak.

The biology and epidemiology of the Zika virus have been studied by several authors. Adam et al.
investigated the 2013-2014 Zika virus outbreak on the six major archipelagos of French Polynesia. They
analyzed the possibilities of a reemergence of the infection and also, they studied the similarity of Zika
virus dynamics to other vector-borne infections such as the dengue virus in the pacific region [37]. Similar
results can also be found in [6, 12, 22, 46]. A Zika virus model is developed and studied by Deborah et al.,
for the 2015 - 2016 outbreak that happened in Colombia, El Salvador, and Suriname. They estimated the
parameter distributions of the Zika virus model and also provided uncertainty quantification using Ap-
proximate Bayesian Computation [53]. In [44], Moreno et al. studied the dynamics of the Zika virus about
short-term mobility between two populations. They also investigated the asymptomatic and symptomatic
infected populations and estimated the basic reproductive number for a two-patch model by assuming
that vectors are not moving across patches. Similar studies of the Zika virus in different countries in
South America can be found here [9, 58]. Anuwat et al. reviewed the different methods used in modeling
Zika virus transmission [60]. In their review, they summarized the five basic mathematical models (com-
partmental, spatial, meta-population, network, and individual-based) that are used by different authors
to study the transmission of vector-borne infections in general and the Zika virus in particular.

We will formulate an optimal control on the given model to derive optimal prevention of Zika virus
and treatment strategies with the minimal application cost. Some literature have used control theory
on HIV disease [1, 16, 31, 36], tuberculosis [32], a vector-borne disease in general [48]. There are two
methods in optimal control theory, called the direct and the indirect methods. Direct methods consist
in the discretization of the optimal control problem, reducing it to a nonlinear constrained optimization
problem. Indirect methods are based on the Pontryagin Maximum Principle, which in turn reduces the
problem to a boundary value problem [52]. In this paper, we apply the indirect method to show that there
are cost effective methods to mitigate the infection.

Optimal control theory, an extension of advanced theory of calculus of variation, is helpful to derive
control policies in problems related to epidemiology, medicine, economics, military science and other
areas [15, 39].
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An optimal control problem consists of a cost functional J(x(t),u(t)), state variable x(t), and control
variable u(t) where ty < t < t1. The goal is to find piece-wise continuous functions for control and state
variables maximizing or minimizing a cost functional [52, 61].

The organization of the paper is as follows. In Section 2, we formulate the deterministic Zika virus
model. We use the susceptible-infected-recovered (SIR) type of structure for the human population and
a susceptible-infected (SI) structure for the mosquitoes. In Section 3, we analyze the model. In partic-
ular, we show that the local and global stability of the disease-free and endemic equilibrium points are
completely determined by the basic reproductive number Ry. We also discuss the sensitivity analysis of
the basic reproductive number and endemic equilibrium point, which are the most important values in
epidemiology. In Section 4, we analyze an optimal control model for the Zika virus to derive optimal
prevention effort of the contact between the human and the mosquitoes and treatment strategies with
minimal cost. Finally, in the last section, we provide numerical examples and simulations to support
some of the theoretical results in the previous sections.

2. Mathematical model formulation

A compartmental framework is used to model the transmission dynamics of Zika virus. The human
population is divided into three groups. Let x1(t), x2(t), and x3(t) be the number of susceptible, infected,
and recovered people at time t > 0, respectively. Similarly, the mosquito population is divided into two
groups, and let y;(t) and y,(t) be the number of susceptible and infected mosquitoes at time t > 0,
respectively.

In the study of vector-host epidemic model, it is customary to use the susceptible, exposed, infected
and recovered (SEIR) compartmental type of structure for the host population, and the susceptible, ex-
posed and infected (SEI) type for the vector population. As a result, the mathematical model will have a
system of at least 7-dimensional nonlinear differential equations. In this paper, to reduce the level of com-
plexity that arises from analyzing the system, we assume that all individuals who are exposed or already
infected and are contagious are grouped under the infected group x,(t). Similarly, by assuming that the
life span of mosquitoes is short enough compared to the host, we ignore the exposed group. Thus we
consider an SIR epidemic model for human and an SI model for the mosquito population. Similar litera-
ture where an SIR type of structure for the host and an SI type for the vector can be found [8, 35, 42, 60].
The Zika virus model studied in this paper can be modified to an SEIR type for the host and SEI type
for the vector, especially if one wants to include the intrinsic incubation period for the host and extrinsic
incubation period in the vector group.

It is well known that, all epidemiological models have limitations in such a way that they do not
represent the exact reality of the problem but rather a very simplified version of the real-world problem.
Nonetheless, we can always draw some important conclusions about the infection and thus derive control
mechanisms, which may include the decrease of susceptible people through vaccination, prevention,
quarantine or treatment. In that regard, the model proposed in this paper has some limitations. One
of the limitations is, it is assumed that the population in the SIR model is uniform and homogeneously
mixed, but in reality, it is known that mixing depends on many factors including age, different geographic
and socio-economic factors, individual human behavior and other similar factors. The other limitation
is, this model is deterministic and it does not incorporate the effect of environmental fluctuations. As a
result it is assumed that the output of the model is fully determined by the parametric and initial values.
Another important aspect that can be considered in this model is the spacial migration of the host and
the vector population. Thus by incorporating a population diffusion into this model, we can study the
resulting parabolic system of partial differential equation to predict the transmission of the infection.
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Figure 1: The flow diagram of the Zika transmission model where xq,%;, and x3 are the number of susceptible, infected, and
recovered human and y; and y; are the number of susceptible and infected mosquitoes, respectively. The solid arrows represent
transitions between the different epidemiological classes, whereas the dash arrows represent interactions between human and

mosquito.

Susceptible human (x;) can be infected if they are bitten by infectious mosquitoes (yz). Infectious hu-
man (xz) will then move to and remain in the recovered group (x3). Similarly, susceptible mosquitoes (y1)
can be infected if they bite an infectious human. Based on the law of mass action, the dynamics of Zika
virus transmission are described by the following 5 coupled nonlinear ordinary differential equations.

o =0 alty(t) - %xl(t)m(t) —nxq(t),
Palt) _ g <j‘l’xl (Dya(t) + Bxl(t)m(t)) —yxa(t) —mxalt),
Dol _ 1) (‘f{’xl(t)yz(t) N flxl(t)m(t)) Fyxalt) — s 1),
dyst(t) =5, %xz(t)yﬂt) —vyi(t),
dy(;t(” = Sty (1) — valt),

2.1)

where H(t) = x1(t) + x2(t) + x3(t) and V(t) = yi(t) + ya(t) represent the total human and mosquito
population. A detailed description of the parameters used in the model with their values are given in

Table 1.
Table 1: Description of parameters used in the Zika model and their range.
Parameters| Description of the parameters (unit) Range Reference
a Mosquito biting rate (number of bites per mosquito per day) 03-1 [4, 27]
b Eransmission. probgbility from an infected mosquito to a susceptible 01-075 [4, 27]
uman per bite (dimensionless)

c Transmission probal?ility .from an infected human to a susceptible 03 - 075 [4, 27]
mosquito per bite (dimensionless)

B Transmission rate from infected human to susceptible human (per day) | 0.001 - 0.4 [27]

&) Proportion of symptomatic infections (dimensionless) 0.1-0.8 [27]

n Death rate of the human population (per day) [2-5]107° | Assumed

Y Recovery rate of infected human (per day) 0.01-0.33 [4]
Relative human-to-mosquito transmission probability of infected hu-

P . . . . . 0-05 [27]
man to susceptible mosquito per bite (dimensionless)

v Death rates of the susceptible and infected mosquito (per day) 0.04 - 0.09 [53]

51 Recruitment rates of susceptible human (per day) >1 Assumed

& Recruitment rates of susceptible mosquito (per day) > 1 Assumed
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Since x3(t) appears only in third equation in (2.1), we can remove it from the system and study the
following equivalent 4-dimensional system of nonlinear differential equation.

P _ 51— S tualt) — B (tpa(t) —ma(e),
dxa(t) ab B
et —X1 2 T~ 2 PRl TR
25 —o < ok (Ey2(t) + o () (t)> VXa(t) —mxa(t)
(2.2)
dy;t(t) =8y — Lﬁxg(t)yl(t) —vyi(t),
dﬁf):ﬂfmawaﬂvmﬁ%

Define the set Q = {(x1,%2,Y1,Y2) € IR‘}F X1 +x < %, Y1ty = %}. Adding the first 3 equations in

system (2.1), we obtain
dH(t)

=01 —nH(t
it 1—nH(t)
and similarly, adding the last 2 equations we have
dVv(t)
=&y —vV(t).
at 2= VV(t)

This yields H(t) = % +cre "t and V(t) = % + cpe vt where c¢; and c; are arbitrary constant. Note
that lim_,., H(t) = % and lim{_, . V(t) = %. Thus, without loss of generality, we can assume that the
C . . . . . 5 5

limiting population of the human and mosquitoes is constant. That is, H(t) = 7 and V(t) = 3} for any

t > 0 provided that H(0) = %, V(0) = % and as a result we conclude that Q) is positively invariant and
globally attractive with respect to system (2.2).

3. Analysis of the model

3.1. Equilibrium points and basic reproductive number
Solving the system
dXi dy]' ..
=0, —=0 f =12
at 0, m 0 for 1i,j ,
yields two equilibrium points. These are, the disease-free equilibrium point

) )
Eop = (1,0,2,0>
n v

and the endemic equilibrium point £y = (x],x3,Y7,y;), where

O H
acpx} +vH’

. acpdrx;
= 3.1
Y2 v(acpx; +vH) (3.1)

R ES
1 n _ne 27 1

and x; is the positive solution of the equation

2n0d1 — (v +nnx; a?bepdoxs _ Ex*

= . 2
051 — (v +M)x; Hv(acpxj +vH) H 2 (3-2)

The basic reproductive number Ry is an epidemiological quantity, that represents the expected number
of secondary Zika infections by a single infectious individual over the duration of infectious period with
in a fully susceptible population [2, 19, 20]. We use the next generation method to obtain Ry. For that
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purpose, let
9[351 6ab61
+n 0
F(Eo) = [aggsz e ] and V(e = V3" ).

Then the next generation matrix G(Ep) is defined by

0B 5 0abd,
G(Eo) = F(Eo)V ! (Ep) = [HQ%Q’ HSV ]
Hv(y+n)

Hence Ry, which is the dominant eigenvalue of G, is given by

1( 6p 0232 40a%bcepds
Ro == + - :
"7 2 (v+n \/(v+n)2 Hv2(y +n)
3.2. Local and global stability of the equilibrium point

In this subsection, we discuss the local and global stability of the disease-free and endemic equilibrium
points.

Theorem 3.1. The disease-free equilibrium point g is locally asymptotically stable in Q if Ry < 1.

Proof. To prove the local stability of Eg, we need to show that all the real roots of the eigenvalues of the
Jacobian matrix J(Eg) are non-positive. To that end, we have

SO DI
n n
035 Babd
€)= |0 Tm-y-n 0 S
I 0) = O acpéz 0
TTHy -V
0 fepos 0 —v

The eigenvalues of J(E) satisfy
A+m)A+V)(A*+koA +k1) =0,

where 0ps
ko = — ! +vY+n+v
Hn
and )
0061 a“cp8618;
kq = — — .
Y <y T ) H?vn

Now if Ry < 1, we have
I < 0B, <Ro<l.
Hn(y+n+v) = Hn(y+n)

Thus kg > 0. Also if Ry < 1, then

0B51  0a’bcpdidy B

Hn H2v2n —n<0.
Note that ,
9[551 Ba bCp5152
ki = — — 0.
1 <Y +1 HT] szzn v >
In conclusion, all the eigenvalues of the Jacobian matrix have a negative real part and thus the disease-free
equilibrium point Ey is locally stable. O

To prove the global stability of Ey, we use the Lasalle’s invariance principle stated below [38, 57].
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Theorem 3.2. Let O C D be a compact set that is positively invariant with respect to x’ = f(x). Let V: D — R
be a C'~function such that V'(t) < 0on Q. Let E = {x € Q : V/(t) = 0} and M be the largest invariant set in E.
Then every solution starting in Q) approaches M as t — oo.

Theorem 3.3. If Ry < 1, then the disease-free equilibrium point is globally asymptotically stable.

Proof. Define a function
Oabdq

vHn

V(x1,%2,Y1,Y2) =x2 + Y2.

Clearly, V(x1,%2,Y1,Y2) > 0 along the solution of system (2.2). Using the fact that y; = % — 1Yo, we have
the following result.

AV _ dx  Oabs dys
dt dt  vHn dt

ab Babd; [ acpd ac
=0 <X1y2 + BX1X2> —Yx2 —Mx2 + ! < P 2X2 - pxzyz - V92>

H H vHn Hv H
< (St oy SO BN S0 Bortr, )
o g e ).
Notice that if Ry < 1, it follows that Hne (E/in) + ]_elﬁlizf& {1]512) < 1 and then % < 0. Thus by Theorem 3.2,
we conclude that the disease-free equilibrium point Eg is globally asymptotically stable. O

Theorem 3.4. The endemic equilibrium point Eq is locally asymptotically stable if Rg > 1.

Proof. The proof is similar to Theorem 3.1. The characteristic equation of the Jacobian matrix evaluated at
E; is given by

A — (a1 4+ ax + ag)A\? + (a1a5 + ajag + asag — axas + agay)A
+ (—a1asay + axazag — azagay — ajasag) =0,

where
alz—%y;—[%;—n<0, az=—%<0, ag,:—a?_iq<0,
ay _Ga:ly; 6[}3;; >0, c15:e[}:XT —v—1m<0, a6:%>0,
ay = airjz ac]zyé‘ 0, ag = _ach; —v<0
Now if we let
u=—(a;+ay+ag), v=ajas+ ajag + asag — axas + agdy, z = —a10s0ay + Apa40g — 30407 — A1050g,

thenu > 0,v >0, and z > 0. Also we have

uv —z =aqazayq — (1%(15 + axagas — a1a§ — azagay +2aag¢ay + asagay

+ a%ag —2ajasag — agag — agayag — alaé — a5a§ > 0.

Thus according to the Hurwitz criterion, the endemic equilibrium E; is locally asymptotically stable
[17]. O
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Next, we use the Poincaré-Bendixon theorem to prove the global stability of the endemic equilibrium
point Eq [11, 40, 54].

Theorem 3.5. Let x — f(x) € R™ be a C! function for x € D C R™ and consider the system of differential
equations x" = f(x). Assume that

1. there exists a compact absorbing set K C D and the above system has a unique equilibrium X € D;
2. x is locally asymptotically stable;

3. the system satisfies the Poincaré-Bendixon property;

4. any periodic orbit of the system is asymptotically orbitally stable.

Then the unique equilibrium X is globally asymptotically stable in D.

Note that Q is bounded. Thus, in order to show that system (2.2) has a compact absorbing set, it is
sufficient to prove system (2.2) is uniformly persistent [40, 59]. That is, we have to show that there exists
k > 0 such that, the solution of system (2.2) satisfies the condition

liminf |(xq(t), x2(t), y1(t), y2(t))[ = k

t—o00
for any initial value x;(0) > 0,x2(0) > 0,y1(0) > 0,y2(0) > 0.

Lemma 3.6. System (2.2) is uniformly persistent if Rg > 1.

Proof. By contradiction, suppose there exists a solution x;(t), x2(t), y1(t), and ya(t) of system (2.2), such
that x1(0) > 0, x2(0) > 0, y1(0) > 0, y2(0) > 0 and

lim xq(t) = i, lim x,(t) =0, tlim yi(t) = @, lim y,(t) =0. (3.3)
—00

t—o0 n t—o0 v t—o0

0B 0a’bcpd, .
If Ry > 1, then yin T T2y rn) > 1 and thus, there exists € > 0 such that

) 1)
SB(#—e)v—i—eazbcp( e) —Hv(y+mn) > 0.

°2
v

Equation (3.3) implies that for € > 0, there is tp > 0 such that for any t > t; we have
d 5 d b
A _e <x(t) < —1+€, x2(t) < €, 2 _e <yi(t) < —2—1—6, yYo(t) < e.
n n v v

Thus if t > ty we have

b OB (6 b (b
% =0 (?{X1yz+ﬁmxz) —Yx2 —1Mx2 = <£ (n]—e) —Y-ﬂ) X2+e% <nl—€> Y2,

and

Now consider the following system of linear differential equations:

4 — (% <%—e) —y—n)x+6%’ (%—GZ)‘J,

%:@@%)vay, (3.4)

i
x(to) = x2(to) >0, y(to) =ya(to) > 0.
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Note that
N GICEREEICES
’ aﬁp (% B e) N ’

is a quasi-positive matrix and

det(Q) :—% [(9[3 ((‘;1_€> —Y— ﬂ) v+ Saj—‘tl)cp (?—e) (%—e)] <0.

Thus by the Perron-Frobenius theorem there is a vector v > 0 corresponding to the positive eigenvalue
A of Q such that Qv = Av. Therefore, for any initial value x(tp) > 0, y(to) > 0 the solution of system (3.4)
is unbounded. That is x2(t) — oo and yp(t) — oo as t — oo which is a contradiction. In conclusion,
system (2.2) is uniformly persistent and thus it has a compact absorbing set. O

To show that system (2.2) satisfies the Poincaré-Bendixon property, it is sufficient to prove that the sys-
tem is competitive [11, 40]. That is, for some diagonal matrix D = diag (¢1, 2, C3, ..., (n), DJD has non-
positive off-diagonals where | is the Jacobian matrix associated with system (2.2) and ¢; € {—1, 1} for i =
1,2,...,n

Lemma 3.7. If Ry > 1, then system (2.2) is competitive in Q.

Proof. Since y;(t) = % —yz(t), we have % = 2P (2 82 _y,) — vy,. Thus the Jacobian matrix of system
(2.2) is given by

—*92 - Elexz | 0 _%Xl —aflfxl
J=| Sy 5F Fexa—y-n Oex
0 achvéz _ aﬁpy Py, —
Let D = diag(—1,1,—1) then,

—*yz - %Xz -1 —%Xl —aﬁbM

DJD = Gab 6B e, ., __Bab
H Y2 {H X2 TX1—Y—"M X1
0 G GRSy

Note that the off-diagonal elements of DJD are all non-positive. Thus system (2.2) is competitive in (3. [
Next, we use the following theorem to show that any periodic orbit of system (2.2) if it exists, is
asymptotically stable [14, 40].

Theorem 3.8. A periodic orbit T = {p(t) : 0 < t < w} of the differential equation x’ = f(x) is orbitally
asymptotically stable with asymptotic phase if the linear system

ofl2l

2'(8) = S—(p(t))z(t)

is asymptotically stable, where ag is the second additive compound matrix of the Jacobian matrix af

Using Theorem 3.8, we prove the following result.
Theorem 3.9. Any periodic solution to the system (2.2), if it exists, is asymptotically orbitally stable.

Proof. Suppose the solution of system (2.2) is periodic with period T > 0. The corresponding second
additive compound matrix of the system is given by

0
2 —$v2— %?2 — o+ §8x —v 58 $Ex
J& = e < LR 1)) —42y— fro—n—4Ex—v —fx
: EHA T

For any initial value (x(0),y(0),z(0)) lRfL, let (x(t),y(t),z(t)) € IR%r be the solution of system (2.2). Then
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the second compounded system is given by

% = _Lb — E —2n+ % + &Lb + (17b
at Q2R AT gy )X gy T s
dy _ (acpd, _ acp ab B g %P _B
dt_< Hy H92>X+< Y2 T V)Q Ha%
dz_(ab  0p \ (0B acp
dt— Hyz HX2 Yy Hxl Y—N HX2 v |z
Let
Vi, 2 ve) = sup {0, 22l ) |
Then we have the following differential inequalities.
ab R op abxixz \ Y2
< — X — — == .
D xitl <0 (~Sfua o~ 20+ o =y )ty + 2802 ) 2 65)
X9 xo [ acpd, acpyz) (acpxz X} yﬁ) X9
Dy ¢ —(yt) +z(t < — - X — +N+v——=+= +z|)—.
ARyt e | < 2 (S22 S P2 v 24 B2 4 2
Let b 8 8 oab
__ab B B abx1yz
f1:= HY2 ™ /2 2n + Yt T 6
_ (acpdaxa acp_ | [(acpx X Y ‘
fz._( [EATA sz> ( H Fn+v— 2+y2 .
From system (2.2) we have the following equations:
x5 Babx ) acpdaxa  acpx
o _fabvyr By gy 2_gme aha (37)
X2 Hx» H Yz Hvy» H
Using equations (3.6) and (3.7) we obtain the following inequalities.
Xy abyz Pxz X5 ;
fi<2-—>=-==-n< 27, d fh<=—
1 X2 H H X n, an 2 ) n
Thus ,
X2
sup{fi(t), f2(t)} < == —m.
X2
Finally, from (3.5) and (3.6) it follows that
/
D, V(t) < sup(fy, V(1) < ("2 —n> Vit). (33)
X2

Integrating inequality (3.8) on [0, 1] we have,

T T X/
L sup{fi(t), f2(t)} dt < L (XE —n> dt = (In(x2(7)) = In(x2(0))) —mt = .
Hence it follows that V(t) < ce " and thus, V(t) — 0 as t — oo. This implies that x(t),y(t),z(t) — 0
as t — oo. As a result, the second compound system is asymptotically stable and thus, by Theorem
3.8 the periodic orbit of system is asymptotically orbitally stable. In conclusion, the above discussion is
summarized in the following theorem. O

Theorem 3.10. The endemic equilibrium point €y is globally asymptotically stable if Ro > 1.
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Simulation of the deterministic Zika model is presented in Figures 2 and 3 for different values of
parameters listed in Table 2. For the numerical simulation, we used 4 for 1 instead of gyisz. In that
way, we can see the same result in a very short period of time. Otherwise, we need to wait for a long
time to see the asymptotic behavior of the solution. The set of parameter values listed under value 1
yields Ro = 0.2415. Thus according to Theorems 3.1 and 3.3, the solution of system (2.2) will converge
to the disease-free equilibrium point Eg. Similarly, the set of parameter values under the column value 2
results Ry = 3.81. Therefore, by Theorems 3.4 and 3.10 the trajectories of the solution of system (2.2) will
converge to the endemic equilibrium point E;.

Table 2: Input parameter values used to simulate the trajectories of the solution of the model as shown in Figures 2 and 3. The
values under the column value 1 will result Ry = 0.2415 < 1 and the parameters under value 2 yields Ry = 3.81 > 1.

Value 1 Value 2 Description of the parameters (units)
a 0.4 0.8 Mosquito biting rate (number of bites per mosquito per day)
04 04 Transmission probability from an infected mosquito to a susceptible human (dimen-

’ ’ sionless)

c 03 03 Transmission probability from an infected human to a susceptible mosquito (dimen-
’ ’ sionless)

B 0.001 0.4 Transmission rate from infected human to susceptible human (per day)

0 0.1 0.8 Proportion of symptomatic infections (dimensionless)

n 1/60 1/60 Death rate of the human population (per day)

Y 0.07 0.07 Recovery rate of infected human (per day)

. 01 01 Relative human-to-mosquito transmission probability of infected human to suscepti-
’ ’ ble mosquito (dimensionless)

v 1/14 1/14 Death rates of the susceptible and infected mosquito (per day)

o1 5 2 Recruitment rates of susceptible human (per day) [7]

3 40 4 Recruitment rates of susceptible mosquito (per day) [7]

population size
H

0 100 200 300 400 500 600 700 800 900 1000
time

Figure 2: Trajectories of solution of the deterministic Zika model for Ry = 0.2415 < 1. The disease-free equilibrium point is
calculated to be Eg = (300, 0,560, 0) and the simulation also shows that the trajectories of the solution converge to Eg.

population size
4
&

[ 100 200 300 400 500 600 700 800 900 1000
time

Figure 3: Trajectories of solution of the deterministic Zika model for Ry = 3.81 > 1. Using equations (3.1)-(3.2) the endemic
equilibrium point is calculated to be E; = (41.602,9.471,54.855,2.112). The figure confirms that the trajectories of the solution
converge to Ej.
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3.3. Sensitivity analysis of the basic reproductive number Ry and the endemic equilibrium point E;.

In theoretical epidemiology, the basic reproductive number and endemic equilibrium point are the two
most important constants in determining whether the infection will be cleared or persist in the population.
Thus, in order to fully understand which parameters are most highly correlated with the values of Ry and
E1, we have to conduct sensitivity analysis. It also helps in analyzing how sensitive Ry and E; are, by
the changes in one input parameter while keeping the other inputs constant. For that purpose, let p be
a generic parameter representing any of the parameters used in the model. The normalized sensitivity
index of Ry with respect to  is denoted by SI,,, and is defined as SI, = %X X The following values of

o Ro*
parameters are used to calculate the sensitivity indexes for each parameters.

a=038, b=04, c=03, =04, 0=038,
v =0.07, p =01, v =0.0714, 51 =0.05, o =14, n=457x10">,

As it can be seen in Figure 4, the sensitivity indexes of v, n, v and H are negative, while the remaining
indexes 3, a, b, ¢, 6, p, 8, are positive. The negative sensitivity indexes indicate that the parameter and
the basic reproductive number are inversely proportional. Thus, increasing one will decrease the other
value. Similarly, the positive sensitivity indexes show that there is a direct relation between the parameter
and the basic reproductive number. From Figure 4 it follows that, the most sensitive parameter for Ry is
the proportion of symptomatic infection (0), followed by the transmission rate from infected human to
susceptible human (f3) and the recovery rate of infected human (y).

Sensitivity Analysis of Ro

1 T T T T T T T T T T T

o

Q

Normalized sensifivity index

=04 -

Figure 4: Sensitivity indexes of Ry with respect to the parameters used in the model.

Similarly, we discuss the sensitivity analysis of the parameters used in the model with respect to each
components xj, x5, Y7, and y; of the endemic equilibrium point E;. The same values of parameters are
used to calculate the indexes. From Figure 5 we can observe that H, 0 and 3 are the most sensitive
parameters for xi. The most sensitive parameters for x; are 5; and 6 followed by vy. Similarly, the most
sensitive parameters for x3 are 6, and v. Finally v followed by 0 and 6; are the most sensitive parameters
for x;.
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Sensitivity Analysis of x:

r O R
T

1 I
I

Figure 5: Sensitivity indexes of the endemic equilibrium point E; with respect to the parameters used in the model.

4. Optimal control

4.1. A model for optimal control

We consider two control functions uy(t) for the prevention effort of the contact between human and
vector and uy(t) for the treatment for human. Thus the new system of differential equations with the
control functions is given as follows.

% =8 — aﬁb(l —u1(t))x1y2 — %MXZ — Xy,

% =0 (C]T(l —w (t))x1y2 + ﬁmm) —Yx2 —Mxa — Tuz(t)xz,

% =(1-0) (cﬁ)(l —u(t))x1y2 + ]EX1X2> +vx2 —Mx3 + T2 () X2, (4.1)
% =8y — ng(l —uq(t))x2y1 — vy1,

W _ P (1 (0w — v

where 1 —u;(t) describes the failure rate of prevention efforts. The per-capital recovery rate is ruy(t),
where 0 < r < 1 is the proportion of effective treatment.

4.2. Optimal control problem
Let

-
Jlug ) = | (Avsalt) + Buud(t) + Bud(1) . 42)
We find an optimal control (uj,u3) such that

J(ug,uz) = min{J (wy, u)l(ug, uz) €T,
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where the control set is
' ={(u1, u2)luy(t) is a piece-wise continuous on [0, T] and 0 < u;(t) < 1,i=1,2}. (4.3)

4.3. Existence of optimal control
Theorem 4.1. Consider the objective functional ] with (w1, up) € T subject to the constraint state system. Then,
there exists (uj,uy) € I' such that J(uj,u;) = min{J(uy, u2), (ug, u) € T'h

Proof. Since the state variables and controls are continuous, by Peano’s existence theorem the sets of con-
trols and corresponding state variables are nonempty. Note that I' is convex and closed by the definition.
Since we restrict the state variables in () and by the definition of T, 0 < u; < 1, the state system with
controls is bounded by a linear function. We easily see that the following inequality for the integrand of
the cost functional

A1xa + Biud 4+ Bou3 = cp (wf + ua/?)P/2 — ¢

for some ¢; > 0,cp > 0, and p > 1. Also, let L(xp,u,up) = A1xo + Blu% + Bzu%. Then, we have the

following inequality:
L(x2, Awg + (1 —A)ug, Aup + (1 —A)uj) < AL(xp, up,up) + (1 —A)L(xg, uy, w)).

Thus, we conclude that the integrand is convex.
By theorem 4.1 in Fleming and Rishel [24], there exists (u],u3) € I such that J(uj, u;) = min{J(uy, uy),
where (uy,up) € 'L O

4.4. Optimality system
Let Z=(X,Y) € Q where X = (x1,x2,%x3) and Y = (y1,Y2), TT = (A1, A2, A3, A4, A5), and U = (ug,up) € T.
We define a Hamiltonian as follows.

_ao
™ H

L(Z,U,TT) =A1x2 + Biu? + Boud 4+ Ay [5 o

(1—wi(t))x1y2 — Exm —nxl]

+A2 |0 <ab(1 —w (t))x1y2 + BX1X2> —YX2 —1MX2 — Tuz(t)xz]
[ \H H (4.4)

[ ab
+A3|(1—-0) (H(l —uy(t))x1y2 + Elmxz) +vx2 —nx3 + ruz(t)Xz]
- acp

. ac
+Ag |02 — ?(1 —ug (t))xoys — Vyl} +As [?p(l —uy(t))xy1 — Vyz} .

Theorem 4.2. Given an optimal control pair (uj,uy) and solutions xq,%2,%x3,Y1, and Yo, there exist adjoint
variables T1 satisfying

X = A (_ <ab(1—u1)x1y2 _ab(l-—wy2 N Pxixa [3xz>>

H2 H " TR
ab(l—w)x1y2  ab(l—u)yz Pxixz  Px2
—on [ — _ b2
2 ( H2 + H T
ab(l—w)xy2  ab(l—ujlyz PBxixa  Px2
—(1—0)As (— e + H T + H
acAp(l—w)xyr  acAsp(l —ug)xyq
B H2 + H2 ’
- ab(l—w)xy2  Pxixa | Pxg
7\2 = )\2 <9 ( H2 H2 + H Y—M—TU

b(1—
s <(1—6) (_a ( ngl)xwz _ B’ljzxz _I_BHM) —|—Y+Tu2>
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Y <ab(1 —way  Pxixe Bxl) Y <acp(1 —w)xyr _ acp(l _“1)91> (4.5)

H?2 H?2 H H2 H
Y acp(l—w)yr  acp(l—w)xy; _A
5 H ) 1
. ab(1l—uq)x Bx1x
N3 = A3 ((1_9) <_ H21 1Y2 F:22> —T1>
ab(1—w)x1y2  Pxix2 ab(l—w)x1y> | Pxixy
— 0\, (— P - +AM = TP + 0z
acAp(l—ug)xoyr - acAsp(l —ug)xayq
B H2 + H2 ’
- acp(l—u)x2 acAsp(1—ug)xo
A =—N\g ( — 0 V> 0 ,
- abe?\z(l—ul)m ab(1—9)7\3(1—u1)x1 ab?\l(l—ul)m
Ag = H H + H + A5V,
with the terminal conditions,
Ai(T)=0fori=1,...,5. 4.7)

Furthermore, uy and u; are represented by

u] = max {O, min {1,—

uy = max< 0, min 1M
2 ’ " 2B, '

a(—bOA2x1yz + bOA3x1Y2 + bA1x1Yy2 — bA3X1Y2 + cAgpx2y1 — CAspXay) } }
2B1H !
! 4.8

)

Proof. By Pontryagin’s Principle we get the adjoint system

oL .. oL . oL .. oL . oL
o e=a o = =, A=
4 1 Y2

with zero final time conditions. To get the formula of the optimal control, (uj, u;), we solve the equations,

oL oL
— =0, — =0
ouy ouy

7

with the bounds of the controls given in (4.3). O

5. Numerical results

For the numerical simulation, we use the values of parameters in Table 2. We choose weight constant
values A1 = 1,B; = 50,B; = 50 and v = 0.2 in the nonlinear ordinary differential equations with the
optimal controls (4.1) and the objective functional (4.2). The first set of values will result in Ry < 1 and we
will have a stable disease-free equilibrium, while the second set of values will result in Ry > 1 and thus,
we will have a stable endemic equilibrium point.

Figures 6 and 7 show the comparison between non-controlled and controlled cases when Ry < 1. The
number of infected human with the control is less than the number of non-controlled case in the whole
time period. The number of infected human with the control goes to zero faster than the non-controlled
case. Similarly, we see the same result for the mosquito population as shown in Figure 7.

Figures 8 and 9 show the comparison between non-controlled and controlled cases when Ry > 1.
The results are similar to the case when Ry < 1. The significant result is that, we still have the endemic
equilibrium points for the controlled case which are improved comparing to the non-control case.
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In this numerical example, we observe the expected result that the disease with optimal control can
be controlled better than the non-controlled case. Especially, when Ry > 1, the improvement is significant.
In this paper, we considered two controls, u; for the prevention effort of the contact between human and
mosquito and u, for the treatment for human.

Some authors have also considered other control mechanisms such as controlling the number of vec-
tors of larval or adult, or controlling the contact between infected and healthy human [10, 26, 56].

We search for two optimal control functions u; and uy for the prevention of the contact between
human and vector and the treatment for the human population, respectively. For the case when Ry < 1,
we have the optimal control values, u; = 0.0349, and u, = 0.8085. For Ry > 1 case, we have the optimal
control values, u; = 0.0277 and u,; = 0.4813. It mean that the prevention effort has lower efficacy in both
cases when Ry < 1 and Ry > 1. Therefore, to optimize the number of infected and treated hosts, the
treatment rate has to be increased.

We also search for optimal control function for the prevention, u;, by setting u, = 0, that is, when
there is no treatment. In this case if Ry < 1 then u; = 0.1001 and if Ry > 1 then u; = 0.0387. Moreover,
we investigated the situation when the prevention effort of the contact between the human and mosquito
(uq) is zero and the treatment (u,) is non-zero. As a result if Ry < 1 then u, = 0.8085 and if Ry > 1
then up = 0.4810. Thus we can conclude that the treatment is more effective than the prevention when
Ro < 1. Similarly, if Ryp > 1 then preventing the infection by reducing the contact between the human
and mosquito is better than providing treatment. However in order to get a much better result, both
prevention and treatment controls should be considered.

Susceptible Human x;
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50 100 150 200 250 300
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I
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o
=]
o
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100 150 200 250 300
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&
o 50
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Time

Figure 6: Comparison between with-control and non-control for human when Ry < 1.
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Figure 7: Comparison between with-control and non-control for mosquito when Ry < 1.
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Figure 8: Comparison between with-control and non-control for human when Ry > 1.
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Figure 9: Comparison between with-control and non-control for mosquito when Ry > 1.

6. Discussion and Conclusion

In this paper, a deterministic Zika virus model is proposed and analyzed. In particular, we calculated
some of the most important epidemiological constants. This includes, the disease-free equilibrium point
Eo which is the case when the pathogen has suffered extinction and in the long run, everyone in the
population is susceptible and the epidemic equilibrium point Eq, in which the disease cannot be totally
eradicated and remains in the population. Another important quantity that is derived and discussed
in this paper is the basic reproductive number Ry, which describes the average number of secondary
infections caused by a single infectious individual during their entire infectious lifetime. It is also shown
that both the local and global dynamics of the solution of the Zika model is completely determined by
the value of Ry. That is, if Ry < 1, then the disease-free equilibrium point is both locally and globally
asymptotically stable, and thus there will be no infection eventually. On the other hand, if Ry > 1,
the epidemic equilibrium point is also both locally and globally asymptotically stable and thus there
will always be infection in the vector and host population. Generally, global stability of the epidemic
equilibrium point is proved by constructing a suitable Lyapunov function V(t) and claiming that 4¥ < 0.
However, constructing an appropriate Lyapunov function is not always easy. Thus, in this paper we have
used an alternative technique, the Poincare-Bendixon method, to show that the endemic equilibrium point
is globally stable.

Since the two equilibrium points and the basic reproductive number depend on different parameters
used in the model, it is important to know which parameter affects these quantities the most. In this
regard, the sensitivity analysis of the equilibrium points and the basic reproductive number is discussed,
and the result is supported by numerical examples.

We also studied optimal control of the deterministic Zika virus model. We considered two controls u;
for the prevention effort of the contact between human and vector and wu, for the treatment for human.
We showed the existence of the optimal controls by using the result from [24]. To find u; and up, we
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established the optimality system by defining a Lagrangian (4.4). The optimality system is consisted of
the initial conditions of x1, X2, X3, Y1, Y2, and the adjoint system (4.5) with the terminal conditions (4.7) and
the optimal conditions, u; and u; (4.8).

We compared the number of human and vectors with controls and without controls in Figures 6 and
7 when Ry < 1 and in Figures 8 and 9 when Ry > 1. From the figures, we can observe that the model with
controls have better result than the model without controls. In the comparison, we have that the value of
u;g is 0.0349 and u; is 0.8085. It means the treatment is more efficacy than the prevention.

Also, we discussed the case when we have a single control by setting u; = 0 and search for u,.
Similarly, we search for u; by setting u, = 0. In both cases we found the same result that the treatment is
more efficient than the prevention.

In most infections caused by vectors, experimenting to come up with an excellent control measure is
often difficult and time consuming. Thus, developing mathematical models that can help us to predict
the spread of the infection is very important. These models also have significant role in informing policy
and management decisions about the infection. However, as explained in [25, 33], even though there
are a variety of mathematical tools for designing optimal strategies, it is difficult to put the results from
mathematically motivated simplifications into practice. Additional research and follow up will be needed
subsequently to understand the disease more fully and assess and update the response policy as needed.
More detailed information on how to use the results of the optimal control in policy decision making can
be found in [25, 33].
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