]>
2023
30
4
104
Connectedness, local connectedness, and components on bipolar soft generalized topological spaces
Connectedness, local connectedness, and components on bipolar soft generalized topological spaces
en
en
Connectedness represents the most significant and fundamental topological property. It highlights the main characteristics of topological spaces and distinguishes one topology from another. There is a constant study of bipolar soft generalized topological spaces (\( \mathcal{BSGTS}s \)) by presenting \(\mathcal{BS}\) \( \widetilde{\widetilde{\mathfrak{g}}} \)-connected set and \(\mathcal{BS}\) \( \widetilde{\widetilde{\mathfrak{g}}} \)-connected space in \(\mathcal{BSGTS}s\) as well as it is discussing some properties and results for these topics. Additionally, the notion of bipolar soft disjoint sets is put forward, \(\mathcal{BS} \) \(\widetilde{\widetilde{\mathfrak{g}}}\)-separation set, \(\widetilde{\widetilde{\mathfrak{g}}}\)-separated \(\mathcal{BSS}s\) and \(\mathcal{BS}\) \( \widetilde{\widetilde{\mathfrak{g}}} \)-hereditary property. Moreover, there is an extensive study of \(\mathcal{BS}\) \( \widetilde{\widetilde{\mathfrak{g}}} \)-locally connected space and \(\mathcal{BS}\) \( \widetilde{\widetilde{\mathfrak{g}}} \)-component with some related properties and theorems following them, such as the concepts of \( \mathcal{BS} \) \(\widetilde{\widetilde{\mathfrak{g}}}\)-locally connected spaces and \( \mathcal{BS} \) \(\widetilde{\widetilde{\mathfrak{g}}}\)-connected are independent of each other; also determined the conditions under which the \( \mathcal{BS} \) \(\widetilde{\widetilde{\mathfrak{g}}}\)-connected subsets are \( \mathcal{BS} \) \(\widetilde{\widetilde{\mathfrak{g}}}\)-components.
302
321
H. Y.
Saleh
Department of Mathematics, College of Basic Education
University of Duhok
Iraq
B. A.
Asaad
Department of Computer Science, College of Science
Department of Mathematics, Faculty of Science
Cihan University
University of Zakho
Iraq
Iraq
baravan.asaad@uoz.edu.krd
R. A.
Mohammed
Department of Mathematics, College of Basic Education
University of Duhok
Iraq
\(\mathcal{BSGTS}\)
\( \widetilde{\widetilde{\mathfrak{g}}}\)-separated \(\mathcal{BSS}s\)
\(\mathcal{BS}\) \( \widetilde{\widetilde{\mathfrak{g}}}\)-connected set
\( \mathcal{BS}\) \( \widetilde{\widetilde{\mathfrak{g}}} \)-connected space
\(\mathcal{BS}\) \( \widetilde{\widetilde{\mathfrak{g}}}\)-locally connected space
\(\mathcal{BS}\) \( \widetilde{\widetilde{\mathfrak{g}}}\)-component
Article.1.pdf
[
[1]
H. Aktas¸, N. C¸ aˇgman, Soft sets and soft groups, Inf. Sci., 177 (2007), 1-2726
##[2]
M. I. Ali, F. Feng, X. Liu, W. K. Min, M. Shabir, On some new operations in soft set theory, Comput. Math. Appl., 57 (2009), 1-1547
##[3]
S. Al-Ghour, Z. A. Ameen, Maximal soft compact and maximal soft connected topologies, Appl. Comput. Intell. Soft Comp., 2022 (2022), 1-7
##[4]
T. M. Al-shami, Bipolar soft sets: relations between them and ordinary points and their applications, Complexity, 2021 (2021), 1-12
##[5]
T. M. Al-shami, Compactness on soft topological ordered spaces and its application on the information system, J. Math., 2021 (2021), 1-12
##[6]
T. M. Al-shami, On soft separation axioms and their applications on decision-making problem, Math. Prob. Eng., 2021 (2021), 1-12
##[7]
T. M. Al-shami, Soft somewhat open sets: Soft separation axioms and medical application to nutrition, Comput. Appl. Math., 41 (2022), 1-22
##[8]
T. M. Al-shami, Z. A. Ameen, A. A. Azzam, M. E. El-Shafei, Soft separation axioms via soft topological operators, AIMS Math., 7 (2022), 15107-15119
##[9]
T. M. Al-shami, L. D. R. Koˇcinac, B. A. Asaad, Sum of soft topological spaces, Mathematics, 8 (2020), 1-12
##[10]
C. G. Aras, T. M. Al-shami, A. Mhemdi, S. Bayramov, Local compactness and paracompactness on bipolar soft topological spaces, J. Intell. Fuzzy Syst., 43 (2022), 6755-6763
##[11]
B. A. Asaad, T. M. Al-shami, Z. A. Ameen, On soft somewhere dense open functions and soft Baire spaces, To appear in Iraqi J. Sci., (2022), -
##[12]
T. Aydin, S. Enginoglu, Some results on soft topological notions, J. New Res. Sci., 10 (2021), 65-75
##[13]
A. A. Azzam, Z. A. Ameen, T. M. Al-shami, M. E. El-Shafei, Generating Soft Topologies via Soft Set Operators, Symmetry, 14 (2022), 1-13
##[14]
K. V. Babitha, J. J. Sunil, Soft set relations and functions, Comput. Math. Appl., 60 (2010), 1840-1849
##[15]
N. C¸ a˘gman, S. Engino˘ glu, Soft set theory and uni-int decision making, Eur. J. Oper. Res., 207 (2010), 848-855
##[16]
N. C¸ a˘gman, S. Karatas¸, S. Engino˘ glu, Soft topology, Comput. Math. Appl., 62 (2011), 1-351
##[17]
D. Dubois, H. Prade, An introduction to bipolar representations of information and preference, Int. J. Intell. Syst., 23 (2008), 866-877
##[18]
A. Fadel, S. C. Dzul-Kifli, Bipolar soft topological spaces, Eur. J. Pure Appl. Math., 13 (2020), 227-245
##[19]
A. Fadel, S. C. Dzul-Kifli, Bipolar soft functions, AIMS Math., 6 (2021), 4428-4446
##[20]
F. Karaaslan, S. Karatas, A new approach to bipolar soft sets and its applications, Discrete. Math., Algorithms. Appl., 7 (2015), 1-14
##[21]
T. Mahmood, A novel approach towards bipolar soft sets and their applications, J. Math., 2020 (2020), 1-11
##[22]
P. K. Maji, R. Biswas, A. R. Roy, Soft set theory, Comput. Math. Appl., 45 (2003), 555-562
##[23]
M. Matejdes, Methodological remarks on soft topology, Soft Comput., 25 (2021), 4149-4156
##[24]
W. K. Min, A note on soft topological spaces, Comput. Math. Appl., 62 (2011), 3524-3528
##[25]
D. Molodtsov, Soft set theory—first results, Comput. Math. Appl., 37 (1999), 19-31
##[26]
S. Y. Musa, B. A. Asaad, Bipolar hypersoft sets, Mathematics, 9 (2021), 1-15
##[27]
S. Y. Musa, B. A. Asaad, Connectedness on bipolar hypersoft topological spaces, J. Intell. Fuzzy Syst., 43 (2022), 4095-4105
##[28]
S. Y. Musa, B. A. Asaad, Connectedness on hypersoft topological spaces, Neutrosophic Sets Syst., 51 (2022), 666-680
##[29]
S. Y. Musa, B. A. Asaad, Topological structures via bipolar hypersoft sets, J. Math., 2022 (2022), 1-14
##[30]
T. Y. O¨ ztu¨ rk, On bipolar soft topological spaces, J. New Theory, 20 (2018), 64-75
##[31]
T. Y. O¨ ztu¨ rk, On bipolar soft points, TWMS J. Appl. Eng. Math., 10 (2020), 877-885
##[32]
D. Pei, D. Miao, From soft sets to information systems, IEEE Inter. Conf. Gran. Comput., 2 (2005), 617-621
##[33]
N. C¸ . Polat, G. Yaylalı, B. Tanay, Some results on soft element and soft topological space, Math. Methods Appl. Sci., 42 (2019), 5607-5614
##[34]
M. Saeed, M. Hussain, A. A. Mughal, A Study of Soft Sets with Soft Members and Soft Elements: A New Approach, Punjab Univ. J. Math., 52 (2020), 1-15
##[35]
H. Y. Saleh, B. A. Asaad, R. A. Mohammed, Bipolar Soft Generalized Topological Structures and Their Application in Decision Making, Eur. J. Pure Appl. Math., 15 (2022), 646-671
##[36]
H. Y. Saleh, B. A. Asaad, R. A. Mohammed, Bipolar Soft Limit Points in Bipolar Soft Generalized Topological spaces, Math. Stat., 10 (2022), 1264-1274
##[37]
G. S¸enel, N. C¸ a˘gman, Soft topological subspace, Ann. Fuzzy Math. Inform., 10 (2015), 525-535
##[38]
A. Sezgin, A. O. Atag ¨ un, On operations of soft sets, Comput. Math. Appl., 61 (2011), 1457-1467
##[39]
M. Shabir, A. Bakhtawar, Bipolar soft connected, bipolar soft disconnected and bipolar soft compact spaces, Songklanakarin J. Sci. Technol., 39 (2017), 359-371
##[40]
M. Shabir, M. Naz, On soft topological spaces, Comput. Math. Appl., 61 (2011), 1786-1799
##[41]
M. Shabir, M. Naz, On bipolar soft sets, arXiv preprint, (2013), -
##[42]
J. Thomas, S. J. John, On soft generalized topological spaces, J. New Results. Sci., 3 (2014), 1-15
##[43]
J.-Y. Wang, Y.-P. Wang, L. Liu, Hesitant bipolar-valued fuzzy soft sets and their application in decision making, Complexity, 2020 (2020), 1-12
##[44]
M. Zhou, S. Li, M. Akram, Categorical properties of soft sets, Sci. World J., 2014 (2014), 1-10
##[45]
P. Zhu, Q. Wen, Operations on soft sets revisited, J. Appl. Math., 2013 (2013), 1-7
]
On the existence and stability of Caputo Volterra-Fredholm systems
On the existence and stability of Caputo Volterra-Fredholm systems
en
en
In this paper, we discuss several problems related to the neutral fractional Volterra-Fredholm integro-differential systems in Banach spaces. Existence of the
Schaefer's fixed point and Ulam-Hyers-Rassias stability properties for the fixed point problem will be discussed. Some results are presented, under appropriate conditions, and
some open questions are pointed out. Our results extend recent results given for \(\psi\)-fractional derivative.
322
331
S. A. M.
Jameel
Department of Computer Systems
Middle Technical University, Institute of Administration Rusafa
Iraq
saif\_aldeen2001@mtu.edu.iq
\(\psi\)-Caputo fractional derivative
integro-differential equation
fixed point technique
stability problem
Article.2.pdf
[
[1]
A. M. Abed, M. F. Younis, A. A. Hamoud, Numerical solutions of nonlinear Volterra-Fredholm integro-differential equations by using MADM and VIM, Nonlinear Funct. Anal. Appl., 27 (2022), 189-201
##[2]
A. Aghajani, Y. Jalilian, J. J. Trujillo, On the existence of solutions of fractional integro-differential equations, Fract. Calc. Appl. Anal., 15 (2012), 44-69
##[3]
R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 460-481
##[4]
M. Alesemi, N. Iqbal, A. A. Hamoud, The analysis of fractional-order proportional delay physical models via a novel transform, Complexity, 2022 (2022), 1-13
##[5]
M. Areshi, A. Khan, R. Shah, K. Nonlaopon, Analytical investigation of fractional-order Newell-Whitehead-Segel equations via a novel transform, AIMS Math., 7 (2022), 6936-6958
##[6]
R. L. Bagley, P. J. Torvik, Fractional calculus in the transient analysis of viscoelastically damped structures, AIAA J., 23 (1985), 918-925
##[7]
R. T. Baillie, Long memory processes and fractional integration in econometrics, J. Econom., 73 (1996), 5-59
##[8]
R. Belgacem, A. Bokhari, B. Sadaoui, Shehu transform of Hilfer-Prabhakar fractional derivatives and applications on some Cauchy type problems, Adv. Theory Nonlinear Anal. Appl., 5 (2021), 203-214
##[9]
E. Baskin, A. Iomin, Electro-chemical manifestation of nanoplasmonics in fractal media, Cent. Eur. J. Phys., 11 (2013), 676-684
##[10]
W. H. Deng, C. P. Li, Chaos synchronization of the fractional L ¨u system, Phys. A: Stat. Mech. Appl., 2005 (353), 61-72
##[11]
A. Hamoud, Existence and uniqueness of solutions for fractional neutral Volterra-Fredholm integro-differential equations, Adv. Theory Nonlinear Anal. Appl., 4 (2020), 321-331
##[12]
A. A. Hamoud, K. P. Ghadle, Some new existence, uniqueness and convergence results for fractional Volterra-Fredholm integro-differential equations, J. Appl. Comput. Mech., 5 (2019), 58-69
##[13]
A. Hamoud, K. P. Ghadle, Some new uniqueness results of solutions for fractional Volterra-Fredholm integro-differential equations, Iran. J. Math. Sci. Inform., 17 (2022), 135-144
##[14]
A. A. Hamoud, K. P. Ghadle, M. Sh. B. Issa, Giniswamy, Existence and uniqueness theorems for fractional Volterra- Fredholm integro-differential equations, Int. J. Appl. Math., 31 (2018), 333-348
##[15]
J. H. He, Nonlinear oscillation with fractional derivative and its applications, In Proceedings of the International Conference on Vibrating Engineering, 98 (1998), 288-291
##[16]
R. Hilfer, Application of Fractional Calculus in Physics, World Scientific, Singapore (1999)
##[17]
K. Hussain, A. Hamoud, N. Mohammed, Some new uniqueness results for fractional integro-differential equations, Nonlinear Funct. Anal. Appl., 24 (2019), 827-836
##[18]
M. B. Issa, A. A. Hamoud, K. P. Ghadle, Numerical solutions of fuzzy integro-differential equations of the second kind, J. Math. Comput. Sci., 23 (2021), 67-74
##[19]
H. Khan, U. Farooq, R. Shah, D. Baleanu, P. Kumam, M. Arif, Analytical solutions of (2+Time fractional order) dimensional physical models, using modified decomposition method, Appl. Sci., 10 (2019), 109-122
##[20]
A. Loverro, Fractional Calculus: History, Definitions and Applications for the Engineer; Rapport Technique, Univeristy of Notre Dame, Department of Aerospace and Mechanical Engineering, (2004), -
##[21]
S. Magar, A. Hamoud, A. Khandagale, K. Ghadle, Generalized Shehu Transform to -Hilfer-Prabhakar Fractional Derivative and its Regularized Version, Adv. Theory Nonlinear Anal. Appl., 6 (2022), 364-379
##[22]
F. Mainardi, Fractional calculus: Some basic problems in continuum and statistical mechanics, arXiv preprint, (2012), 1-58
##[23]
P. Muniyappan, S. Rajan, Hyers-Ulam-Rassias stability of fractional differential equation, Int. J. Pure Appl. Math., 102 (2015), 631-642
##[24]
K. Nonlaopon, M. Naeem, A. M. Zidan, R. Shah, A. Alsanad, A. Gumaei, Numerical investigation of the timefractional Whitham-Broer-Kaup equation involving without singular kernel operators, Complexity, 2021 (2021), 1-21
##[25]
I. Podlubny, Fractional Differential Equations, Academic Press, San Diego (1999)
##[26]
Y. A. Rossikhin, M. V. Shitikova, Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids, Appl. Mech. Rev., 50 (1997), 15-67
##[27]
S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives-Theory and Applications, Gordon and Breach, Amsterdam (1993)
##[28]
N. A. Shah, H. A. Alyousef, S. A. El-Tantawy, R. Shah, J. D. Chung, Analytical investigation of fractional-order Korteweg-De-Vries-type equations under Atangana-Baleanu-Caputo Operator: modeling nonlinear waves in a plasma and fluid, Symmetry, 14 (2022), 726-739
##[29]
K. Shah, D. Vivek, K. Kanagarajan, Dynamics and stability of -fractional pantograph equations with boundary conditions, Bol. Soc. Parana. Mat., 39 (2021), 43-55
##[30]
J. V. C. Sousa, E. C. Oliveira, A Gronwall inequality and the Cauchy-type problem by means of -Hilfer operator, Differ. Equ. Appl., 11 (2019), 87-106
]
Generalized neutrosophic ideal convergent sequence spaces
Generalized neutrosophic ideal convergent sequence spaces
en
en
Kostyrko et al. initiated the concept of ideal convergence in [P. Kostyrko, T. Šalát, W. Wilczyński, Real Anal. Exchange, \(\bf 26\) (2000), 669--686]. The purpose of this paper is to introduce and define spaces of the neutrosophic convergent sequence via ideal, namely \(^{I}\mathcal{S}_{\mathcal{M}}\) and \(^{I}\mathcal{S}_{\mathcal{M}_{0}}\). We prove that new spaces are linear and Hausdorff topological spaces. Further, we examine the relation between \(I\)-Cauchy and \(I\)-convergent sequences and show that every separable space \(^{I}\mathcal{S}_{\mathcal{M}}\) is second countable. Moreover, we prove that the space \(^{I}\mathcal{S}_{\mathcal{M}}\) is complete.
332
339
M.
Ahmad
Department of Mathematics
Presidency University, School of Engineering
India
mobeenahmad88@gmail.com
M. I.
Idrisi
Department of Mathematics
University Institute of Sciences, Chandigarh University
India
A. K.
Sirohi
School of Computational and Integrative Sciences
Jawaharlal Nehru University
India
Ideal
filter
\(I\)-convergence
\(I\)-Cauchy
\(t\)-norm
\(t\)-conorm
neutrosophic normed space
Article.3.pdf
[
[1]
K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96
##[2]
T. Bera, N. K. Mahapatra, Neutrosophic Soft Linear Spaces, Fuzzy Inf. Eng., 9 (2017), 299-324
##[3]
A. Esi, Strongly summable double sequence spaces in n-normed spaces defined by ideal convergence and an Orlicz function, Kyungpook Math. J., 52 (2012), 137-147
##[4]
A. Esi, M. K. O¨ zdemir, -strongly summable sequence spaces in n-normed spaces defined by ideal convergence and an Orlicz function, Math. Slovaca, 63 (2013), 829-838
##[5]
H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244
##[6]
B. Hazarika, A. Esi, Lacunary ideal summability and its applications to approximation theorem, J. Anal., 27 (2019), 997-1006
##[7]
B. Hazarika, S. A. Mohiuddine, Ideal convergence of random variables, J. Funct. Spaces Appl., 2013 (2013), 1-7
##[8]
V. A. Khan, A. Esi, M. Ahmad, M. D. Khan, Continuous and bounded linear operators in neutrosophic normed spaces, J. Intell. Fuzzy Syst., 40 (2021), 11063-11070
##[9]
V. A. Khan, M. I. Idrisi, M. Ahmad, On I- convergent triple sequence spaces defined by a compact operator and an Orlicz function, TWMS J. Appl. Eng. Math., 11 (2021), 1012-1022
##[10]
V. A. Khan, M. D. Khan, M. Ahmad, Some results of Neutrosophic normed spaces via Fibonacci matrix, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 83 (2021), 99-110
##[11]
M. Kiris¸ci, N. S¸ims¸ek, Neutrosophic normed spaces and statistical convergence, J. Anal., 28 (2020), 1059-1073
##[12]
P. Kostyrko, T. ˇSal´at, W. Wilczy ´ nski, I-convergence, Real Anal. Exchange, 26 (2000), 669-686
##[13]
M. Mursaleen, O. H. H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl., 288 (2003), 223-231
##[14]
M. Mursaleen, S. A. Mohiuddine, Statistical convergence of double sequences in intuitionistic fuzzy normed spaces, Chaos Solitons Fractals, 41 (2009), 2414-2421
##[15]
M. Mursaleen, S. A. Mohiuddine, O. H. H. Edely, On the ideal convergence of double sequences in intuitionistic fuzzy normed spaces, Comput. Math. Appl., 59 (2010), 603-611
##[16]
S. Pandit, A. Ahmad, A Study on Statistical Convergence of Triple Sequences in Intuitionistic Fuzzy Normed Space, Sahand Commun. Math. Anal., 19 (2022), 1-12
##[17]
J. H. Park, Intuitionistic fuzzy metric spaces, Chaos Solitons Fractals, 22 (2004), 1039-1046
##[18]
R. Saadati, J. H. Park, On the intuitionistic fuzzy topological spaces, Chaos Solitons Fractals, 27 (2006), 331-344
##[19]
E. Savas¸, M. Mursaleen, On statistical convergent double sequences of fuzzy numbers, Inf. Sci., 162 (2004), 183-192
##[20]
F. Smarandache, Neutrosophic set—a generalization of the intuitionistic fuzzy set, Int. J. Pure Appl. Math., 24 (2005), 287-297
##[21]
H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2 (1951), 73-74
##[22]
L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338-353
]
Theoretical study and numerical simulation for a mathematical model of diffusive cancer with effect of stem cell therapy and chemotherapy
Theoretical study and numerical simulation for a mathematical model of diffusive cancer with effect of stem cell therapy and chemotherapy
en
en
Cancer is the most dangerous disease in the world. Therefore, this paper is devoted to studying a mathematical model of diffusive cancer and the effect of its treatments. One of the cancer treatments currently being explored is stem cell transplant, which works to stimulate and strengthen the immune system while the patient receives chemotherapy.
This work introduces a mathematical system for the temporal and spatial interactions between the tumor, stem cells and effector cells during chemotherapy and the extent of the spread of these interactions within the tissue. Also, we study the stability of the system through the equilibrium points of the reaction-diffusion model. In addition, the existence, uniqueness, positivity, and boundedness are proven. We found a numerical simulation by the finite difference method and observed a dynamic of the solutions. Also, we described the tumor behaviour before and after the treatments and the effect of its diffusion.
340
351
N. H.
Aljahdaly
Department of Mathematics, Faculty of Sciences and Arts
King Abdulaziz University
Saudi Arabia
Nhaljahdaly@kau.edu.sa
N. A.
Almushaity
Department of Mathematics, Faculty of Sciences and Arts
King Abdulaziz University
Saudi Arabia
Cancer mathematical model
chemotherapy therapy
stem cell transplant
diffusion terms
finite difference method
Article.4.pdf
[
[1]
M. Agarwal, A. S. Bhadauria, Mathematical modeling and analysis of tumor therapy with oncolytic virus, Appl. Math. (Irvine), 2 (2011), 131-140
##[2]
J. Alba-P´erez, J. E. Macias-Diaz, A finite-difference discretization preserving the structure of solutions of a diffusive model of type-1 human immunodeficiency virus, Adv. Difference Equ., 2021 (2021), 1-19
##[3]
R. A. Alharbey, N. H. Aljahdaly, On fractional numerical simulation of HIV infection for CD8+ T-cells and its treatment, Plos one, 17 (2022), 1-10
##[4]
N. H. Aljahdaly, R. A. Alharbey, Fractional numerical simulation of mathematical model of HIV-1 infection with stem cell therapy, AIMS Math., 6 (2021), 6715-6725
##[5]
N. H. Aljahdaly, H. A. Ashi, Exponential time differencing method for studying prey-predator dynamic during mating period, Comput. Math. Methods Med., 2021 (2021), 1-6
##[6]
N. H. Aljahdaly, S. A. El-Tantawy, Novel anlytical solution to the damped kawahara equation and its application for modeling the dissipative nonlinear structures in a fluid medium, J. Ocean Eng. Sci., 7 (2021), 492-497
##[7]
N. H. Aljahdaly, S. A. El-Tantawy, H. A. Ashi, A. Wazwaz, Exponential time differencing method for modeling the dissipative rouge waves and breathers in a collisional plasma, Eur. Phys. J. Plus, 136 (2021), 1-16
##[8]
M. A. Alqudah, Cancer treatment by stem cells and chemotherapy as a mathematical model with numerical simulations, Alex.Eng. J., 59 (2020), 1953-1957
##[9]
M. A. Alqudah, N. H. Aljahdaly, Global stability and numerical simulation of a mathematical model of stem cells therapy of HIV-1 infection, J. Comput. Sci., 45 (2020), 1-5
##[10]
S. Behera, N. H. Aljahdaly, J. P. S. Virdi, On the modified (G 0 =G2)-expansion method for finding some analytical solutions of the traveling waves, J. Ocean Eng. Sci., 7 (2022), 313-320
##[11]
K. Chakrabarty, R. Shetty, A. Ghosh, Corneal cell therapy: with iPSCs, it is no more a far-sight, Stem. Cell Res. Therapy, 9 (2018), 1-15
##[12]
L. G. de Pillis, W. Q. Gu, K. R. Fister, T. A. Head, K. Maples, A. Murugan, T. Neal, K. Yoshida, Chemotherapy for tumors: An analysis of the dynamics and a study of quadratic and linear optimal controls, Math. Biosci., 209 (2007), 292-315
##[13]
M. Dean, T. Fojo, S. Bates, Tumour stem cells and drug resistance, Nature Reviews Cancer, 5 (2005), 275-284
##[14]
P. Hernigou, F. Beaujean, Treatment of osteonecrosis with autologous bone marrow grafting, Clinical Orthopaedics and Related Research, 405 (2002), 14-23
##[15]
D. Kirschner, J. C. Panetta, Modeling immunotherapy of the tumor-immune interaction, Journal of mathematical biology, 37 (1998), 235-252
##[16]
L. H. Li, T. Xie, Stem cell niche: structure and function, Annu. Rev. Cell Dev. Biol., 21 (2005), 605-631
##[17]
Z. J. Liu, C. X. Yang, A mathematical model of cancer treatment by radiotherapy followed by chemotherapy, Math. Comput. Simulation, 124 (2016), 1-15
##[18]
F. Nani, H. I. Freedman, A mathematical model of cancer treatment by immunotherapy, Math. Biosci., 163 (2000), 159-199
##[19]
F. O¨ zkos¨e, M. T. Senel, R. Habbireeh, Fractional-order mathematical modelling of cancer cells-cancer stem cells-immune system interaction with chemotherapy, Math. Model. Numer. Simul. Appl., 1 (2021), 67-83
##[20]
A. H. Salas, S. A. El-Tantawy, N. H. Aljahdaly, An exact solution to the quadratic damping strong nonlinearity duffing oscillator, Math. Probl. Eng., 2021 (2021), 1-8
##[21]
A. R. Sheergojri, P. Iqbal, P. Agarwal, N. Ozdemir, Uncertainty-based gompertz growth model for tumor population and its numerical analysis, Int. J. Optim. Control. Theor. Appl. IJOCTA, 12 (2022), 137-150
##[22]
S. Suddin, F. Adi-Kusumo, L. Aryati, Gunardi, Reaction-diffusion on a spatial mathematical model of cancer immunotherapy with effector cells and IL-2 compounds’ interactions, Int. J. Differ. Equ., 2021 (2021), 1-10
##[23]
J. A. Thomson, J. Itskovitz-Eldor, S. S. Shapiro, M. A. Waknitz, J. J. Swiergiel, V. S. Marshall, J. M. Jones, Embryonic stem cell lines derived from human blastocysts, Science, 282 (1998), 1145-1147
##[24]
A. Tsygvintsev, S. Marino, D. E. Kirschner, A mathematical model of gene therapy for the treatment of cancer, In: Mathematical methods and models in biomedicine, 2013 (2013), 367-385
##[25]
E. Ucar, N. O¨ zdemir, A fractional model of cancer-immune system with caputo and caputo-fabrizio derivatives, Eur. Phys. J. Plus, 136 (2021), 1-17
##[26]
E. Ucar, N. O¨ zdemir, E. Altun, Qualitative analysis and numerical simulations of new model describing cancer, J. Comput. Appl. Math., 422 (2023), 1-13
]
Generalized \(m\)-preinvexity on fractal set and related local fractional integral inequalities with applications
Generalized \(m\)-preinvexity on fractal set and related local fractional integral inequalities with applications
en
en
In this work, we address and explore the concept of generalized \(m\)-preinvex functions on fractal sets along with linked local fractional integral inequalities. Additionally, some engrossing algebraic properties are presented to facilitate the current initiated idea. Furthermore, we prove the latest variant of Hermite-Hadamard type inequality employing the proposed definition of preinvexity. We also derive several novel versions of inequalities of the Hermite-Hadamard type and Fejér-Hermite-Hadamard type for the first-order local differentiable generalized \(m\)-preinvex functions. Finally, some new inequalities for the generalized means and generalized random variables are established as applications.
352
371
S.
Al-Sa'di
Department of Mathematics, Faculty of Science
The Hashemite University
Jordan
saud@hu.edu.jo
M.
Bibi
Department of Basics Sciences
University of Engineering and Technology
Pakistan
mariabibi782@gmail.com
M.
Muddassar
Department of Basics Sciences
University of Engineering and Technology
Pakistan
muhammad.mudassar@uettaxila.edu.pk
S.
Kermausuor
Department of Mathematics and Computer Science
Alabama State University
USA
skermausour@alasu.edu
Generalized \(m\)-preinvex functions
generalized Hermite-Hadamard inequality
generalized Fejér-Hermite-Hadamard type inequality
fractal sets
fractional integral inequalities
Article.5.pdf
[
[1]
O. Almutairi, A. Kiliçman, Generalized Fejér-Hermite-Hadamard type via generalized (h -m)-convexity on fractal sets and applications, Chaos Solitons Fractals, 147 (2021), 1-9
##[2]
S. Al-Sa’di, M. Bibi, M. Muddassar, Some Hermite-Hadamard’s type local fractional integral inequalities for generalized -preinvex function with applications, Math. Methods Appl. Sci., 46 (2022), 2941-2954
##[3]
T. Antczk, Mean value in invexity analysis, Nonlinear Anal., 60 (2005), 1473-1484
##[4]
A. Atangana, Modelling the spread of COVID-19 with new fractal-fractional operators: Can the lockdown save mankind before vaccination?, Chaos Solitons Fractals, 136 (2020), 1-38
##[5]
I. A. Baloch, I. ˙I ¸scan, Integral inequalities for differentiable harmonically (s,m)-preinvex functions, Open J. Math. Anal., 1 (2017), 25-33
##[6]
A. Ben-Israel, B. Mond, What is invexity?, J. Austral. Math. Soc. Ser. B, 28 (1986), 1-9
##[7]
T.-S. Du, J.-G. Liao, Y.-J. Li, Properties and integral inequalities of Hadamard-Simpson type for the generalized (s,m)- preinvex functions, J. Nonlinear Sci. Appl., 9 (2016), 3112-3126
##[8]
T. Du, H. Wang, M. A. Khan, Y. Zhang, Certain integral inequalities considering generalized m-convexity on fractal sets and their applications, Fractals, 27 (2019), 1-17
##[9]
G. Farid, M. Yussouf, K. Nonlaopon, Fejér-Hadamard Type Inequalities for ( ,hm) -p-Convex Functions via Extended Generalized Fractional Integrals, Fractal Fract., 5 (2021), 1-15
##[10]
J. Hadamard, Étude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann, J. Math. Pures Appl., 58 (1893), 171-216
##[11]
S. Iftikhar, S. Erden, P. Kumam, M. U. Awan, Local fractional Newton’s inequalities involving generalized harmonic convex functions, Adv. Differ. Equ., 2020 (2020), 1-14
##[12]
S. Kermausuor, New Hermite-Hadamard type inequalities for m and ( ,m)-convex functions on the coordinates via generalized fractional integrals, Proyecciones, 40 (2021), 1449-1472
##[13]
S. Kumar, A. Atangana, A numerical study of the nonlinear fractional mathematical model of tumor cells in presence of chemotherapeutic treatment, Int. J. Biomath., 13 (2020), 1-17
##[14]
M. A. Latif, M. Shoaib, Hermite-Hadamard type integral inequalities for differentiable m-preinvex and ( ,m)-preinvex functions, J. Egypt. Math. Soc., 23 (2015), 236-241
##[15]
Y. J. Li, T. S. Du, A generalization of Simpson type inequality via differentiable functions using extended (s,m)'-preinvex functions, J. Comput. Anal. Appl., 22 (2017), 613-632
##[16]
M. Matłoka, On some integral inequalities for (h,m)-convex functions, Math. Econ., 9 (2013), 55-70
##[17]
H. Mo, X. Sui, D. Yu, Generalized convex functions on fractal sets and two related inequalities, Abstr. Appl. Anal., 2014 (2014), 1-7
##[18]
S. R. Mohan, S. K. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl., 189 (1995), 901-908
##[19]
M. A. Noor, K. I. Noor, S. Iftikhar, A. G. Khan, Harmonic m-Preinvex Functions and Inequalities, Int. J. Anal. Appl., 16 (2018), 340-352
##[20]
S. K. Sahoo, F. Jarad, B. Kodamasingh, A. Kashuri, Hermite-Hadamard type inclusions via generalized Atangana- Baleanu fractional operator with application, AIMS Math., 7 (2022), 12303-12321
##[21]
W. Saleh, A. Kılıçman, Some local fractional inequalities involving fractal sets via generalized exponential (s,m)-convexity, Axioms, 12 (2023), 1-17
##[22]
M. Z. Sarikaya, H. Budak, Generalized Ostrowski type inequalities for local fractional integrals, Proc. Amer. Math. Soc., 145 (2017), 1527-1538
##[23]
Y.-Q. Song, S. I. Butt, A. Kashuri, J. Nasir, M. Nadeem, New fractional integral inequalities pertaining 2D-approximately coordinate (r1, h1) - (r2, h2)-convex functions, Alex. Eng. J., 61 (2022), 563-573
##[24]
V. Stojiljkovi´c, R. Ramaswamy, O. A. A. Abdelnaby, S. Radenovi´c, Some Novel Inequalities for LR-(k, h -m) - p Convex Interval Valued Functions by Means of Pseudo Order Relation, Fractal Fract., 6 (2022), 1-19
##[25]
V. Stojiljkovi´c, R. Ramaswamy, F. Alshammari, O. A. Ashour, M. L. H. Alghazwani, S. Radenovi´, Hermite- Hadamard Type Inequalities Involving (kp) Fractional Operator for Various Types of Convex Functions, Fractal Fract., 6 (2022), 1-15
##[26]
W. Sun, Some local fractional integral inequalities for generalized preinvex functions and applications to numerical quadrature, Fractals, 27 (2019), 1-14
##[27]
W. B. Sun, Generalized preinvex functions and related Hermite-Hadamard type integral inequalities on fractal space, J. Zhejiang Univ. Sci. Ed., 46 (2019), 543-549
##[28]
W. Sun, Generalized h-convexity on fractal sets and some generalized Hadamard-Type inequalities, Fractals, 28 (2020), 1-9
##[29]
W. Sun, Some Hermite-Hadamard type inequalities for generalized h-preinvex function via local fractional integrals and their applications, Adv. Diffe. Equ., 2020 (2020), 1-14
##[30]
W. Sun, Hermite-Hadamard type local fractional integral inequalities for generalized s-preinvex functions and their generalization, Fractals, 29 (2021), 1-16
##[31]
M. Tariq, S. K. Sahoo, F. Jarad, B. Kodamasingh, Some integral inequalities for generalized preinvex functions with applications, AIMS Math., 6 (2021), 13907-13930
##[32]
M. Tariq, A. A. Shaikh, S. K. Sahoo, H. Ahmad, T. Sitthiwirattham, J. Reunsumrit, New Integral Inequalities via Generalized Preinvex Functions, Axioms, 10 (2021), 1-21
##[33]
G. H. Toader, Some generalisations of the convexity, In Proceedings of Colloquium on Approximation and Optimization, Univ. Cluj-Napoca, Romania, 1984 (1984), 329-338
##[34]
K.-J. Wang, Variational principle and approximate solution for the generalized Burgers-Huxley equation with fractal derivative, Fractals, 29 (2021), 1-10
##[35]
T. Weir, B. Mond, Pre-invex functions in multiple objective optimization, J. Math. Anal. Appl., 136 (1988), 29-38
##[36]
X.-J. Yang, Advanced local fractional calculus and its applications, World Science Publisher, (2012)
##[37]
X.-J. Yang, D. Baleanu, H. M. Srivastava, Local fractional integral transforms and their applications, Academic Press, (2015)
##[38]
X.-J. Yang, F. Gao, H. M. Srivastava, Exact travelling wave solutions for the local fractional two-dimensional Burgers-type equations, Comput. Math. Appl., 73 (2017), 203-210
##[39]
S. Yu, T. Du, B. Yu, Properties and integral inequalities involving with the generalized s -type preinvex mappings in fractal space, Fractals, 30 (2022), 1-7
##[40]
Y.-C. Zhang, T.-S. Du, J. Pan, On new inequalities of Fejér-Hermite-Hadamard type for differentiable ( ,m)-preinvex mappings, ScienceAsia, 43 (2017), 258-266
##[41]
D. Zhao, M. A. Ali, C. Promsakon, T. Sitthiwirattham, Some Generalized Fractional Integral Inequalities for Convex Functions with Applications, Fractal Fract., 6 (2022), 1-20
]
Generalised Hermite-Hadamard type inequalities for \((s,r)\)-convex functions in mixed kind with applications
Generalised Hermite-Hadamard type inequalities for \((s,r)\)-convex functions in mixed kind with applications
en
en
In this article, some generalized inequalities of the Hermite-Hadamard type for functions whose modulus of the derivatives are \((s,r)\)-convex in mixed kind and applications for probability theory and numerical integration are given. Various established results of different articles would be recaptured as special cases. We also provide special cases of the class of \((s,r)\)-convex function on several choices of \(s,r\).
372
380
F.
Mehmood
Department of Mathematics
Department of Mathematics
Samarkand State University
Dawood University of Engineering and Technology
Uzbekistan
Pakistan
faraz.mehmood@duet.edu.pk
F.
Nawaz
Department of Mathematics
Dawood University of Engineering and Technology
Pakistan
mirhafaisal@yahoo.com
A.
Soleev
Department of Mathematics
Samarkand State University
Uzbekistan
asoleev@yandex.ru
Convex function
Hermite-Hadamard inequality
Hölder inequality
power-mean inequality
numerical integration
probability density function
Article.6.pdf
[
[1]
M. Alomari, M. Darus, S. S. Dragomir, Inequalities of Hermite-Hadamard’s type for functions whose derivatives absolute values are quasi-convex, RGMIA Res. Rep. Coll., 12 (2009), 1-11
##[2]
E. F. Beckenbach, Convex functions, Bull. Amer. Math. Soc., 54 (1948), 439-460
##[3]
S. S. Dragomir, On some new inequalities of Hermite-Hadamard type for m-convex functions, Tamkang J. Math., 33 (2002), 55-65
##[4]
S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91-95
##[5]
S. S. Dragomir, J. Peˇcari´c, L. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21 (1995), 335-341
##[6]
A. Ekinci, Klasik E¸sitsizlikler Yoluyla Konveks Fonksiyonlar i¸cin Integral E¸sitsizlikler, Ph.D. Thesis, Atat ¨ urk University, (2014), -
##[7]
E. K. Godunova, V. I. Levin, Inequalities for functions of a broad class that contains convex, monotone and some other forms of functions, Numer. Math. Math. Phys. (Russian), 166 (1985), 138-142
##[8]
A. Hassan, A. R. Khan, Generalization of Ostrowski inequality via fractional integrals, Submitted, (), -
##[9]
H. Kavurmaci, M. Avci, M. E. O¨ zdemir, New inequalities of hermite-hadamard type for convex functions with applications, J. Inequal. Appl., 2011 (2011), 1-11
##[10]
A. R. Khan, F. Mehmood, F. Nawaz, A. Nazir, Some Remarks on Results Related to r-Convex Function, J. Math. Fund. Sci., 53 (2021), 67-85
##[11]
U. S. Kirmaci, Improvement and further generalization of inequalities for differentiable mappings and applications, Comput. Math. Appl., 55 (2008), 485-493
##[12]
U. S. Kirmaci, M. Klaricˇic´ Bakula, M. E. O¨ zdemir, J. Pecˇaric´, Hadamard-type inequalities for s-convex functions, Appl. Math. Comput., 193 (2007), 26-35
##[13]
W. J. Liu, W. S. Wen, J. K. Park, Hermite-Hadamard type inequalities for MT-convex functions via classical integrals and fractional integrals, J. Nonlinear Sci. Appl., 9 (2016), 766-777
##[14]
D. S. Mitrinovi´c, I. B. Lackovi´, Hermite and convexity, Aequationes Math., 28 (1985), 229-232
##[15]
M. A. Noor, M. U. Awan, Some integral inequalities for two kinds of convexities via fractional integrals, Transylv. J. Math. Mech., 5 (2013), 129-136
##[16]
A. Owusu-Hemeng, P. Kwasi Sarpong, J. Ackora-Prah, The Role of Concave and Convex Functions in the Study of Linear & Non-Linear Programming, Dama International Journal of Researchers, 3 (2018), 15-29
##[17]
C. E. M. Pearce, J. Peˇcari´, Inequalities for differentiable mappings with application to special means and quadrature formulae, Appl. Math. Lett., 13 (2000), 51-55
##[18]
J. E. Peˇcari´c, F. Proschan, Y. L. Tong, Convex functions, partial orderings, and statistical applications, Academic Press, Boston (1992)
##[19]
M. Z. Sarikaya, E. Set, M. E. O¨ zdemir, On some new inequalities of Hadamard type involving h-convex functions, Acta Math. Univ. Comenian. (N.S.), 79 (2010), 265-272
]
On the elliptical solutions of models connected to the short pulse equation
On the elliptical solutions of models connected to the short pulse equation
en
en
In the present paper, we
consider a special hierarchy of equations comprising the short pulse equation, the sine-Gordon integrable hierarchy and the elastic beam equation. These equations are highly non-linear and rely on transformations to arrive at solutions. Previously, recursion operators and hodograph mappings were successful in reducing these equations. However, we show that via the
conservation laws or the one-parameter Lie group, the special hierarchy may be integrated and will admit the exact solutions that feature elliptical functions.
381
389
S.
Jamal
School of Mathematics
University of the Witwatersrand
South Africa
sameeerah.Jamal@wits.ac.za
R.
Champala
School of Mathematics
University of the Witwatersrand
South Africa
Lie symmetries
elastic beam equations
sine-Gordon
Article.7.pdf
[
[1]
M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing, , New York, Dover (1972)
##[2]
A. R. Adem, Symbolic computation on exact solutions of a coupled Kadomtsev-Petviashvili equation: Lie symmetry analysis and extended tanh method, Comput. Math. Appl., 74 (2017), 1897-1902
##[3]
A. R. Adem, T. S. Moretlo, B. Muatjetjeja, A generalized dispersive water waves system: Conservation laws; symmetry reduction; travelling wave solutions; symbolic computation, Partial Differ. Equ. Appl. Math., 7 (2023), 1-6
##[4]
A. R. Adem, B. Muatjetjeja, Conservation laws and exact solutions for a 2D Zakharov-Kuznetsov equation, Appl. Math. Lett., 48 (2015), 109-117
##[5]
J. C. Brunelli, The short pulse hierarchy, J. Math. Phys., 46 (2005), 1-9
##[6]
J. Brunelli, The bi-Hamiltonian structure of the short pulse equation, Phys. Lett. A, 353 (2006), 475-478
##[7]
R. K. Bullough, P. J. Caudrey, H. M. Gibbs, The Double Sine-Gordon Equations: A Physically Applicable System of Equations, In: Solitons, Springer, 17 (1980), 107-141
##[8]
G. S. Franc¸a, J. F. Gomes, A. H. Zimerman, The higher grading structure of the WKI hierarchy and the two-component short pulse equation, J. High Energy Phys., 2012 (2012), 1-24
##[9]
Y. H. Ichikawa, K. Konno, M. Wadati, Nonlinear transverse oscillation of elastic beams under tension, J. Phys. Soc. Japan, 50 (1981), 1799-1802
##[10]
S. Jamal, A. H. Kara, Higher-order symmetries and conservation laws of multi-dimensional Gordon-type equations, Pramana - J. Phys., 77 (2011), 447-460
##[11]
S. Jamal, A. H. Kara, New higher-order conservation laws of some classes of wave and Gordon-type equations, Nonlinear Dyn., 67 (2012), 97-102
##[12]
S. Jamal, R. Maphanga, A conservation law treatment of nonlinear KdV hierarchies, J. Math., 2022 (2022), 1-10
##[13]
A. H. Kara, F. M. Mahomed, Relationship between symmetries and conservation laws, Int. J. Theor. Phys., 39 (2000), 23-40
##[14]
S. Liu, Z. Fu, S. Liu, Exact solutions to sine-Gordon-type equations, Phys. Lett. A, 351 (2006), 59-63
##[15]
F. Magri, A simple model of the integrable Hamiltonian equation, J. Math. Phys., 19 (1978), 1156-1162
##[16]
Y. Matsuno, A novel multi-component generalization of the short pulse equation and its multisoliton solutions, J. Math. Phys., 52 (2011), 1-22
##[17]
Y. Matsuno, Periodic solutions of the short pulse model equation, J. Math. Phys., 49 (2008), 1-18
##[18]
S. O. Mbusi, B. Muatjetjeja, A. R. Adem, Exact Solutions and Conservation Laws of a Generalized (1 + 1) Dimensional System of Equations via Symbolic Computation, Mathematics, 9 (2021), 1-10
##[19]
T. S. Moretlo, A. R. Adem, B. Muatjetjeja, A generalized (1 + 2)-dimensional Bogoyavlenskii-Kadomtsev-Petviashvili (BKP) equation: multiple exp-function algorithm; conservation laws; similarity solutions, Commun. Nonlinear Sci. Numer. Simul., 106 (2022), 1-9
##[20]
B. Muatjetjeja, Group classification and conservation laws of the generalized Klein-Gordon-Fock equation, Int. J. Mod. Phys. B, 30 (2016), 1-11
##[21]
B. Muatjetjeja, C. M. Khalique, Benjamin–Bona–Mahony Equation with Variable Coefficients: Conservation Laws, Symmetry, 6 (2014), 1026-1036
##[22]
B. Muatjetjeja, O. P. Porogo, eductions and exact solutions of the (2 + 1)-dimensional breaking soliton equation via conservation laws, Nonlinear Dyn., 89 (2017), 443-451
##[23]
P. J. Olver, Evolution equations possessing infinitely many symmetries, J. Math. Phys., 18 (1977), 1212-1215
##[24]
P. J. Olver, Application of Lie Groups to Differential Equations, Springer, New York (1993)
##[25]
A. Sakovich, S. Sakovich, The short pulse equation is integrable, J. Phys. Soc. Jpn., 74 (2005), 239-241
##[26]
A. Sakovich, S. Sakovich, Solitary wave solutions of the short pulse equation, J. Phys. A, 39 (2006), 1-361
##[27]
T. Sch¨afer, C. E. Wayne, Propagation of ultra-short optical pulses in cubic nonlinear media, Phys. D, 196 (2004), 90-105
##[28]
A. Sj ¨oberg, Double reduction of PDEs from the association of symmetries with conservation laws with applications, Appl. Math. Comput., 184 (2007), 608-616
##[29]
M. Wadati, K. Konno, Y. H. Ichikawa, New integrable nonlinear evolution equations, J. Phys. Soc. Japan, 47 (1979), 1698-1700
]
Analysis of a malaria transmission mathematical model considering immigration
Analysis of a malaria transmission mathematical model considering immigration
en
en
The aims of this paper are to study the local and global stability of the equilibrium points using a mathematical model for malaria disease. The model is based on five differential equations. The analysis of the stability was examined using the Lyapunov method. We prove that the disease free equilibrium point is locally and globally asymptotically stable when \(R_0<1\) and unstable when \(R_0>1\). On the other hand, the endemic equilibrium point is locally and globally asymptotically stable when \(R_0>1\).
390
406
C.
Taftaf
Lab-Mia, Faculty of Sciences
Mohammed V University in Rabat
Morocco
taftaf.chaimaa@gmail.com
H.
Benazza
Lab-Mia, Faculty of Sciences
Mohammed V University in Rabat
Morocco
Y.
Louartassi
Superior School of Technology Sale
Mohammed V University in Rabat
Morocco
Z.
Hamidi
Laboratory M2PA, Department of mathematics \(\&\) informatics
ENS. University Sidi Mohamed Ben Abdellah. Fez
Morocco
Malaria
epidemic model
Lyapunov
endemic equilibrium
disease-free equilibrium
Article.8.pdf
[
[1]
D. Aldila, Dynamical analysis on a malaria model with relapse preventive treatment and saturated fumigation, Comput. Math. Methods Med., 2022 (2022), 1-19
##[2]
R. M. Anderson, R. M. May, Infectious diseases of humans: dynamics and control, Oxford University Press, Oxford (1992)
##[3]
J. L. Aron, Mathematical modelling of immunity to malaria, Math. Biosci., 90 (1988), 385-396
##[4]
T. Bakary, S. Boureima, T. Sado, A mathematical model of malaria transmission in a periodic environment, J. Biol. Dyn., 12 (2018), 400-432
##[5]
G. Birkhoff, G. C. Rota, Ordinary Differential Equations, Ginn, Boston (1982)
##[6]
N. Budhwar, S. Daniel, Stability Analysis of a Human-Mosquito Model of Malaria with Infective Immigrants, Int. J. Math. Comput. Sci., 11 (2017), 85-89
##[7]
N. Chitnis, Using Mathematical Models in Controlling the Spread of Malaria, Ph.D. Thesis, The University of Arizona, (2005), -
##[8]
N. Chitnis, J. M. Cushing, J. M. Hyman, Bifurcation analysis of a mathematical model for malaria transmission, SIAM J. Appl. Math., 67 (2006), 24-45
##[9]
N. Chitnis, J. M. Hyman, J. M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol., 70 (2008), 1272-1296
##[10]
K. Hattaf, Stability of fractional differential equations with new generalized hattaf fractional derivative, Math. Prob. Eng., 2021 (2021), 1-7
##[11]
Y. Louartassi, E. El Mazoudi, N. Elalami, A new generalization of lemma Gronwall-Bellman, Appl. Math. Sci. (Ruse), 6 (2012), 621-628
##[12]
G. Macdonald, The Epidemiology and Control of Malaria, Oxford University Press, Oxford (1957)
##[13]
A. M. Niger, A. B. Gumel, Mathematical analysis of the role of repeated exposure on malaria transmission dynamics, Differ. Equ. Dyn. Syst., 16 (2008), 251-287
##[14]
R. Ross, The prevention of malaria, John Murray, London (1911)
##[15]
A. G. M. Selvam, A. J. Priya, Analysis of a Discrete SEIR Epidemic Model, International Journal of Emerging Technologies in Computational and Applied Science, 12 (2015), 73-76
##[16]
J. Tumwiine, J. Y. T. Mugisha, L. S. Luboobi, A mathematical model for the dynamics of malaria in a human host and mosquito vector with temporary immunity, Appl. Math. Comput., 189 (2007), 1953-1965
##[17]
J. Tumwiine, J. Y. T. Mugisha, L. S. Luboobi, A host-vector model for malaria with infected immigrants, J. Math. Anal. Appl., 361 (2010), 139-149
##[18]
A. J. Wedajo, B. K. Bole, P. R. Koya, Analysis of SIR mathematical model for malaria disease with the inclusion of infected immigrants, IOSR J. Math., 14 (2018), 10-21
]