]>
2022
25
1
101
\(r\)-fuzzy \(\delta\)-\(\ell\)-open sets and fuzzy upper (lower) \(\delta\)-\(\ell\)-continuity via fuzzy idealization
\(r\)-fuzzy \(\delta\)-\(\ell\)-open sets and fuzzy upper (lower) \(\delta\)-\(\ell\)-continuity via fuzzy idealization
en
en
In this study, the concepts of \(r\)-fuzzy \(\delta\)-\(\ell\)-open and \(r\)-fuzzy strong \(\beta\)-\(\ell\)-open sets are defined in a fuzzy ideal topological space \((X,\tau,\ell)\) based on the sense of \v{S}ostak. Some properties of these sets along with their mutual relationships are discussed with the help of examples. Also, the concepts of fuzzy upper and lower \(\delta\)-\(\ell\)-continuous (resp. strong \(\beta\)-\(\ell\)-continuous) multifunctions are introduced and studied. Moreover, the decomposition of fuzzy upper (resp. lower) semi-\(\ell\)-continuity and the decomposition of fuzzy upper (resp. lower) \(\alpha\)-\(\ell\)-continuity are obtained. Finally, we constructed a new form of \(r\)-fuzzy connected set called \(r\)-fuzzy \(\ell\)-connected and studied some of its properties via fuzzy ideals.
1
9
I. M.
Taha
Department of Basic Sciences
Department of Mathematics, Faculty of Science
Higher Institute of Engineering and Technology
Sohag University
Egypt
Egypt
imtaha2010@yahoo.com
Fuzzy ideal topological space
\(r\)-fuzzy \(\delta\)-\(\ell\)-open (resp. strong \(\beta\)-\(\ell\)-open) set
fuzzy upper and lower \(\delta\)-\(\ell\)-continuity (resp. strong \(\beta\)-\(\ell\)-continuity)
connectedness
Article.1.pdf
[
[1]
S. E. Abbas, Fuzzy S-irresolute mappings, Appl. Math. Comput.,, 155 (2004), 329-343
##[2]
S. E. Abbas, M. A. Hebeshi, I. M. Taha, On fuzzy upper and lower semi-continuous multifunctions, J. Fuzzy Math., 22 (2014), 951-962
##[3]
S. E. Abbas, M. A. Hebeshi, I. M. Taha, On upper and lower almost weakly continuous fuzzy multifunctions, Iran. J. Fuzzy Syst., 12 (2015), 101-114
##[4]
S. E. Abbas, M. A. Hebeshi, I. M. Taha, On fuzzy upper and lower β-irresolute multifunctions, J. Fuzzy Math., 23 (2015), 171-187
##[5]
J. Albrycht, M. Matłoka, On fuzzy multivalued functions, Fuzzy Sets and Systems, 12 (1984), 61-69
##[6]
T. M. Al-shami, Somewhere dense sets and ST1-spaces, Punjab Univ. J. Math., 49 (2017), 101-111
##[7]
T. M. Al-shami, Soft somewhere dense sets on soft topological spaces, Commun. Korean Math. Soc., 33 (2018), 1341-1356
##[8]
T. M. Al-shami, T. Noiri, More notions and mappings via somewhere dense sets, Afr. Mat.,, 30 (2019), 1011-1024
##[9]
I. Beg, Continuity of fuzzy multifunctions, J. Appl. Math. Stochastic Anal., 12 (1999), 17-22
##[10]
M. A. Hebeshi, I. M. Taha, On upper and lower α-continuous fuzzy multifunctions, J. Intell. Fuzzy Systems, 28 (2015), 2537-2546
##[11]
M. A. Hebeshi, I. M. Taha, On fuzzy upper and lower almost β-continuous multifunctions, J. Fuzzy Math., 24 (2016), 15-29
##[12]
H. X. Li, V. C. Yen, Fuzzy Sets and Fuzzy Decision Making, CRC Press, London (1995)
##[13]
N. S. Papageorgiou, Fuzzy topology and fuzzy multifunctions, J. Math. Anal. Appl., 109 (1985), 397-425
##[14]
A. A. Ramadan, A. A. Abd El-latif, Fuzzy pairwise multifunctions, Asian J. Math. Comput. Res., 2 (2015), 219-234
##[15]
A. A. Ramadan, Y. C. Kim, M. K. El-Gayyar, Smooth Ideals, J. Korean Inst. Intell. Syst., 12 (2002), 90-95
##[16]
A. P. Sostak, On a fuzzy topological structure, Rend. Circ. Mat. Palermo (2) Suppl., 11 (1985), 89-103
##[17]
I. M. Taha, On r-fuzzy ℓ-open sets and continuity of fuzzy multifunctions via fuzzy ideals, J. Math. Comput. Sci., 10 (2020), 2613-2633
##[18]
I. M. Taha, On fuzzy upper and lower α-ℓ-continuity and their decomposition, J. Math. Comput. Sci., 11 (2021), 427-441
##[19]
I. M. Taha, S. E. Abbas, A Study on Fuzzy Multifunctions in Šostak's Sense: To Investigate More Structure of Fuzzy Upper and Fuzzy Lower Continuous Multifunctions, Lambert Academic Publishing, Germany (2017)
##[20]
E. Tsiporkova-Hristoskova, B. De Baets, E. Kerre, A fuzzy inclusion based approach to upper inverse images under fuzzy multivalued mappings, Fuzzy Sets and Systems, 85 (1997), 93-108
##[21]
E. Tsiporkova, B. De Baets, E. Kerre, Continuity of fuzzy multivalued mappings, Fuzzy Sets and Systems, 94 (1998), 335-348
##[22]
L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353
##[23]
H.-J. Zimmermann, Fuzzy Set Theory–and its Applications, Kluwer Academic Publishers, Boston (1991)
]
Expressions and dynamical behavior of solutions of a class of rational difference equations of fifteenth-order
Expressions and dynamical behavior of solutions of a class of rational difference equations of fifteenth-order
en
en
The main goal of this paper, is to obtain the forms of the solutions of the
following nonlinear fifteenth-order difference equations
\[
x_{n+1}=\frac{x_{n-14}}{\pm 1\pm x_{n-2}x_{n-5}x_{n-8}x_{n-11}x_{n-14}},\ \
\ \ n=0,1,2,\ldots,\]
where the initial conditions \(x_{-14},x_{-13},\ldots,x_{0}\) are arbitrary real
numbers. Moreover, we investigate stability, boundedness, oscillation and
the periodic character of these solutions. Finally, we confirm the results
with some numerical examples and graphs by using Matlab program.
10
22
A. M.
Ahmed
Department of Mathematics, College of Science
Department of Mathematics, Faculty of Science
Jouf University
Al Azhar University
Saudi Arabia
Egypt
amaahmed@ju.edu.sa
Samir Al
Mohammady
Department of Mathematics, College of Science
Department of Mathematics, Faculty of Science
Jouf University
Helwan University
Saudi Arabia
Egypt
senssar@ju.edu.sa
Lama Sh.
Aljoufi
Department of Mathematics, College of Science
Jouf University
Saudi Arabia
lamashuja11@gmail.com
Recursive sequence
oscillation
semicycles
stability
periodicity
solutions of difference equations
Article.2.pdf
[
[1]
R. P. Agarwal, Difference equations and inequalities, Marcel Dekker, New York (2000)
##[2]
R. P. Agarwal, E. M. Elsayed, Periodicity and stability of solutions of higher order rational difference equation, Adv. Stud. Contemp. Math., 17 (2008), 181-201
##[3]
A. M. Ahmed, On the dynamics of a higher order rational difference equation, Discrete Dyn. Nat. Soc., 2011 (2011), 1-8
##[4]
, On the recursive sequence $x_{n+1}=(a+b x_{n-1})/(A+B x^k_{n})$, J. Appl. Math. Inform., 27 (2009), 275-289
##[5]
A. M. Ahmed, A. M. Youssef, A solution form of a class of higher-order rational difference equations, J. Egyptian Math. Soc., 21 (2013), 248-253
##[6]
M. Aloqeili, Dynamics of a rational difference equation, Appl. Math. Comput., 176 (2006), 768-774
##[7]
A. M. Amleh, J. Hoag, G. Ladas, A difference equation with eventually periodic solutions, Comput. Math. Appl., 36 (1998), 401-404
##[8]
C. Cinar, On the positive solutions of the difference equation $x_{n+1}=(x_{n-1})/(1+x_nx_{n-1})$, Appl. Math. Comput., 150 (2004), 21-24
##[9]
C. Cinar, On the difference equation $x_{n+1}=\frac{x_{n-1}}{-1+x_nx_{n-1}}$, Appl. Math. Comput., 158 (2004), 813-816
##[10]
C. Cinar, On the positive solutions of the difference equation $x_{n+1}=\frac{ax_{n-1}}{1+bx_n x_{n-1}}$, Appl. Math. Comput., 156 (2004), 587-590
##[11]
R. Devault, V. L. Kocic, D. Stutson, Global behavior of solutions of the nonlinear difference equation $x_{n+1}=p_n+x_{n-1}/x_n$, J. Difference Equ. Appl., 11 (2005), 707-719
##[12]
E. M. Elsayed, On the difference equation $x_{n+1}=\frac{x_{n-5}}{-1+x_{n-2}x_{n-5}}$, Int. J. Contemp. Math. Sci., 3 (2008), 1657-1664
##[13]
E. M. Elsayed, M. A. Marwa, Expressions and dynamical behavior of rational recursive sequences, J. Comput. Anal. Appl.,, 28 (2020), 67-78
##[14]
E. A. Grove, G. Ladas, Periodicities in nonlinear difference equations, Chapman & Hall/CRC, Boca Raton (2005)
##[15]
R. Karatas, C. Cinar, D. Simsek, On positive solutions of the difference equation $x_{n+1}=\frac{x_{n-5}}{1+x_{n-2}x_{n-5}}$, Int. J. Contemp. Math. Sci., 1 (2006), 495-500
##[16]
V. L. Kocic, G. Ladas, Global behavior of nonlinear difference equations of higher order with applications, Kluwer Academic Publishers, Dordrecht (1993)
##[17]
M. R. S. Kulenovic, G. Ladas, Dynamics of second order rational difference equations with open problems and conjectures, Chapman & Hall/CRC, Florida (2001)
]
Asymptotic behavior of traveling waves for non-quasi-monotone system with delay
Asymptotic behavior of traveling waves for non-quasi-monotone system with delay
en
en
This paper is concerned with a population dynamic model with delay. In this work, by
rewriting the equation and using the Ikehara's theorem, we show the exact asymptotic behavior of the profile as \(\xi\rightarrow\)-\(\infty\) for critical speed.
23
28
Yong-Hui
Zhou
School of Mathematics and Statistics
HeXi University
P. R. China
2823877618@qq.com
Wen-Di
Li
School of Mathematics and Statistics
HeXi University
P. R. China
lwd12280213@163.com
Yan-Ru
Che
School of Mathematics and Statistics
HeXi University
P. R. China
2496231775@qq.com
Traveling waves
Ikehara's theorem
asymptotic behavior
Article.3.pdf
[
[1]
J. Carr, A. Chmaj, Uniqueness of travelling waves for nonlocal monostable equations, Proc. Amer. Math. Soc., 132 (2004), 2433-2439
##[2]
T. Faria, W. Huang, J. Wu, Traveling waves for delayed reaction diffusion equations with nonlocal response, Proc. R. Soc. Lond. Ser. A, 462 (2006), 229-261
##[3]
T. Faria, S. Trofimchuk, Nonmonotone travelling waves in a single species reaction-diffusion equation with delay, J. Differential Equations, 228 (2006), 357-376
##[4]
J.-S. Guo, C.-H. Wu, Traveling wave front for a two-component lattice dynamical system arising in competition models, J. Differential Equations, 252 (2012), 4357-4391
##[5]
J. Huang, X. Zou, Existence of traveling wavefronts of delayed reaction diffusion systems without monotonicity, Discrete Contin. Dyn. Syst., 9 (2003), 925-936
##[6]
Y. Li, W.-T. Li, Y.-R. Yang, Stability of traveling waves of a diffusive susceptible-infective-removed (SIR) epidemic model, J. Math. Phys., 57 (2016), 1-28
##[7]
S. Ma, Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem, J. Differential Equations, 171 (2001), 294-314
##[8]
S. Ma, Traveling waves for nonlocal delayed diffusion equations via auxiliary equations, J. Differential Equations, 237 (2007), 259-277
##[9]
H. R. Thieme, X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reactiondiffusion models, J. Differential Equations, 195 (2003), 430-470
##[10]
S.-L. Wu, W.-T. Li, S.-Y. Liu, Oscillatory waves in reaction-diffusion equations with nonlocal delay and crossingmonostability, Nonlinear Anal. Real World Appl., 10 (2009), 3141-3151
##[11]
S.-L. Wu, S.-Y. Liu, Uniqueness of non-monotone traveling waves for delayed reaction-diffusion equations, Appl. Math. Lett., 22 (2009), 1056-1061
##[12]
S.-L. Wu, S.-Y. Liu, Traveling waves for delayed non-local diffusion equations with crossing-monostability, Appl. Math. Comput., 217 (2010), 1435-1444
##[13]
S.-L. Wu, S.-Y. Liu, Existence and uniqueness of traveling waves for non-monotone integral equations with application, J. Math. Anal. Appl., 365 (2010), 729-471
##[14]
J. Wu, X. Zou, Asymptotic and periodic boundary value problems of mixed FDEs and wave solutions of lattice differential equations, J. Differential Equations, 135 (1997), 315-357
##[15]
D. Xu, X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for a nonlocal epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 5 (2005), 1043-1056
##[16]
X.-Q. Zhao, W. Wang, Fisher waves in an epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 4 (2004), 1117-1128
]
Third Hankel determinant and Zalcman functional for a class of starlike functions with respect to symmetric points related with sine function
Third Hankel determinant and Zalcman functional for a class of starlike functions with respect to symmetric points related with sine function
en
en
In this article we define a class of starlike functions with respect to
symmetric points in the domain of sine function. Also, we investigate
coefficients bounds and upper bounds for the third order Hankel determinant for
this defined class. We also evaluate the Zalcman functional \(|a_{3}^{2}-a_{5}|\). Specializing the parameters, we improve Zalcman
functional for the class of starlike functions.
29
36
Muhammad Ghaffar
Khan
Institute of Numerical Sciences
Kohat University of Science and Technology
Pakistan
ghaffarkhan020@gmail.com
Bakhtiar
Ahmad
AhmadGovt. Degree College Mardan
Pakistan
pirbakhtiarbacha@gmail.com
Gangadharan
Murugusundaramoorthy
Department of Mathematics, School of Advanced Sciences
Vellore Institute Technology University Vellore - 632014
India
gmsmoorthy@yahoo.com
Wali Khan
Mashwani
Institute of Numerical Sciences
Kohat University of Science and Technology
Pakistan
mashwanigr8@gmail.com
Sibel
Yalçin
Department of Mathematics, Faculty of Arts and Sciences
Bursa Uludag University
Turkey
syalcin@uludag.edu.tr
Timilehin Gideon
Shaba
Department of Mathematics, Physical Sciences
University of Ilorin
Nigeria
shabatimilehin@gmail.com
Zabidin
Salleh
Department of Mathematics, Faculty of Ocean Engineering Technology and Informatics
University Malaysia Terengganu
Malaysia
zabidin@umt.edu.my
Analytic functions
subordinations
sine function
Hankel determinant
Zalcman functional
Article.4.pdf
[
[1]
M. Arif, M. Raza, H. Tang, S. Hussain, H. Khan, Hankel determinant of order three for familiar subsets of analytic functions related with sine function, Open Math., 17 (2019), 1615-1630
##[2]
K. O. Babalola, On H3 (1) Hankel determinant for some classes of univalent functions, Inequal. Theory Appl., 6 (2007), 1-7
##[3]
D. Bansal, J. Sokol, Zalcman conjecture for some subclass of analytic functions, J. Fract. Calc. Appl., 8 (2017), 1-5
##[4]
J. E. Brown, A. Tsao, On the Zalcman conjecture for starlike and typically real functions, Math. Z., 191 (1986), 467-474
##[5]
N. E. Cho, B. Kowalczyk, O. S. Kwon , A. Lecko, J. Sim, Some coefficient inequalities related to the Hankel determinant for strongly starlike functions of order alpha, J. Math. Inequal., 11 (2017), 429-439
##[6]
N. E. Cho, V. Kumar, S. S. Kumar, V. Ravichandran, Radius problems for starlike functions associated with the Sine function, Bull. Iranian Math. Soc., 45 (2019), 213-232
##[7]
H. O. Guney, G. Murugusundaramoorthy, H. M. Srivastava, The second hankel determinant for a certain class of bi-close-to-convex function, Results Math.,, 74 (2019), 1-13
##[8]
W. K. Hayman, On the second Hankel determinant of mean univalent functions, Proc. London Math. Soc, 18 (1968), 77-94
##[9]
A. Jangteng, S. A. Halim, M. Darus, Coefficient inequality for a function whose derivative has a positive real part, J. Inequal. Pure Appl. Math., 7 (2006), 1-5
##[10]
F. R. Keogh, E. P. Merkes, Coefficient inequality for certain subclasses of analytic functions, Proc. Amer. Math. Soc., 20 (1969), 8-12
##[11]
M. G. Khan, B. Ahmad, G. Muraugusundaramoorthy, R. Chinram, W. K. Mashwani, Applications of Modified Sigmoid Functions to a Class of Starlike Functions, J. Funct. Spaces, 2020 (2020), 1-8
##[12]
M. G. Khan, B. Ahmad, J. Sokol, Z. Muhammad, W. K. Mashwani, R. Chinram, P. Petchkaew, Coefficient problems in a class of functions with bounded turning associated with Sine function, Eur. J. Pure Appl. Math., 14 (2021), 53-64
##[13]
A. Lecko, Y. J. Sim, B. Smiarowska, The sharp bound of the Hankel determinant of the third kind for starlike functions of order 1/2, Complex Anal. Oper. Theory, 13 (2019), 2231-2238
##[14]
R. J. Libera, E. J. Złotkiewicz, Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc., 87 (1983), 251-257
##[15]
W. C. Ma, The Zalcman conjecture for close-to-convex functions, Proc. Amer. Math. Soc., 104 (1988), 741-744
##[16]
S. Mahmood, M. Jabeen, S. N. Malik, H. M. Srivastava, R. Manzoor, S. M. J. Riaz, Some coefficient inequalities of q-starlike functions associated with conic domain defined by q-derivative, J. Funct. Spaces, 2018 (2018), 1-13
##[17]
S. Mahmood, I. Khan, H. M. Srivastava, S. N. Malik, Inclusion relations for certain families of integral operators associated with conic regions, J. Inequal. Appl., 59 (2019), 1-11
##[18]
S. Mahmood, H. M. Srivastava, N. Khan, Q. Z. Ahmad, B. Khan, I. Ali, Upper bound of the third Hankel determinant for a subclass of q-starlike functions, Symmetry, 11 (2019), 1-13
##[19]
S. Mahmood, H. M. Srivastava, S. N. Malik, Some subclasses of uniformly univalent functions with respect to symmetric points, Symmetry, 11 (2019), 1-14
##[20]
J. W. Noonan, D. K. Thomas, On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc., 223 (1976), 337-346
##[21]
H. Orhan, N. Magesh, J. Yamini, Bounds for the second Hankel determinant of certain bi-univalent functions, Turkish J. Math., 40 (2016), 679-687
##[22]
C. Pommerenke, On the coefficients and Hankel determinants of univalent functions, J. London Math. Soc., 41 (1966), 111-122
##[23]
C. Pommerenke, On the Hankel determinants of univalent functions, Mathematika, 14 (1967), 108-112
##[24]
C. Pommerenke, Univalent Functions, Vandenhoeck & Ruprecht, Gottingen (1975)
##[25]
R. K. Raina, J. Sokoł, On coefficient estimates for a certain class of starlike functions, Hacet. J. Math. Stat., 44 (2015), 1427-1433
##[26]
V. Ravichandran, S. Verma, Bound for the fifth coefficient of certain starlike functions, C. R. Math. Acad. Sci. Paris, 353 (2015), 505-510
##[27]
M. Raza, S. N. Malik, Upper bound of third Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli, J. Inequal. Appl., 2013 (2013), 1-8
##[28]
K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan, 11 (1959), 72-75
##[29]
M. Shafiq, H. M. Srivastava, N. Khan, Q. Z. Ahmad, M. Darus, S. Kiran, An upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with k-Fibonacci numbers, Symmetry, 12 (2020), 1-17
##[30]
L. Shi, M. G. Khan, B. Ahmad, Some geometric properties of a family of analytic functions involving a generalized q-operator, Symmetry,, 12 (2020), 1-11
##[31]
H. M. Srivastava, Q. Z. Ahmad, N. Khan, N. Khan, B. Khan, Hankel and Toeplitz determinants for a subclass of q-starlike functions associated with a general conic domain, Mathematics, 7 (2019), 1-15
##[32]
H. M. Srivastava, Q. Z. Ahmad, M. Darus, N. Khan, B. Khan, N. Zaman, H. H. Shah, Upper bound of the third Hankel determinant for a subclass of close-to-convex functions associated with the lemniscate of Bernoulli, Mathematics, 7 (2019), 1-10
##[33]
H. M. Srivastava, B. Khan, N. Khan, Q. Z. Ahmad, Coefficient inequalities for q-starlike functions associated with the Janowski functions, Hokkaido Math. J., 48 (2019), 407-425
##[34]
H. M. Srivastava, B. Khan, N. Khan, M. Tahir, S. Ahmad, N. Khan, Upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with the q-exponential function, Bull. Sci. Math., 167 (2021), 1-16
##[35]
P. Zaprawa, Third Hankel determinants for subclasses of univalent functions, Mediterr. J. Math., 14 (2017), 1-10
]
Picture fuzzy sets in UP-algebras by means of a special type
Picture fuzzy sets in UP-algebras by means of a special type
en
en
The concept of picture fuzzy sets was first introduced by Cuong and Kreinovich [B. C. Cuong, V. Kreinovich, Proceedings of the Third World Congress on Information and Communication Technologies WIICT, (2013), 1--6] in 2013, which is direct extensions of the fuzzy sets and the intuitionistic fuzzy sets.
In this paper, we applied the concept of picture fuzzy sets in UP-algebras to introduce the eight new concepts of picture fuzzy sets by means of a special type: special picture fuzzy UP-subalgebras, special picture fuzzy near UP-filters, special picture fuzzy UP-filters, special picture fuzzy implicative UP-filters, special picture fuzzy comparative UP-filters, special picture fuzzy shift UP-filters, special picture fuzzy UP-ideals, and special picture fuzzy strong UP-ideals.
Also, we discuss the relationship between the eight new concepts of picture fuzzy sets in UP-algebras.
This idea is extended to the lower and upper level subsets of picture fuzzy sets in UP-algebras.
Moreover, we define a picture fuzzy set in the same way as a characteristic function and study its characterizations from the related subset.
37
72
Sunisa
Yuphaphin
Department of Mathematics, School of Science
University of Phayao
Thailand
sunisayuphaphin@gmail.com
Pimwaree
Kankaew
Department of Mathematics, School of Science
University of Phayao
Thailand
pimwaree.kk@gmail.com
Nattacha
Lapo
Department of Mathematics, School of Science
University of Phayao
Thailand
nattachalapo.pp@gmail.com
Ronnason
Chinram
Algebra and Applications Research Unit, Division of Computational Science, Faculty of Science
Prince of Songkla University
Thailand
ronnason.c@psu.ac.th
Aiyared
Iampan
Department of Mathematics, School of Science
University of Phayao
Thailand
aiyared.ia@up.ac.th
UP-algebra
picture fuzzy set
special picture fuzzy UP-subalgebra
special picture fuzzy near UP-filter
special picture fuzzy UP-filter
special picture fuzzy implicative UP-filter
special picture fuzzy shift UP-filter
special picture fuzzy UP-ideal
special picture fuzzy strong UP-ideal
Article.5.pdf
[
[1]
M. A. Ansari, A. Haidar, A. N. A. Koam, On a graph associated to UP-algebras, Math. Comput. Appl., 23 (2018), 1-12
##[2]
M. A. Ansari, A. N. A. Koam, A. Haider, Rough set theory applied to UP-algebras, Ital. J. Pure Appl. Math., 42 (2019), 388-402
##[3]
K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96
##[4]
K. T. Atanassov, New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems, 61 (1994), 137-142
##[5]
B. C. Cuong, Picture fuzzy sets, J. Comput. Sci. Cybernet., 30 (2014), 409-420
##[6]
B. C. Cuong, V. Kreinovich, Picture fuzzy sets-a new concept for computational intelligence problems, Proceedings of the Third World Congress on Information and Communication Technologies WIICT, 2013 (2013), 1-6
##[7]
N. Dokkhamdang, A. Kesorn, A. Iampan, Generalized fuzzy sets in UP-algebras, Ann. Fuzzy Math. Inform., 16 (2018), 171-190
##[8]
A. H. Ganie, S. Singh, P. K. Bhatia, Some new correlation coefficients of picture fuzzy sets with applications, Neural Comput. Appl., 32 (2020), 12609-12625
##[9]
T. Guntasow, S. Sajak, A. Jomkham, A. Iampan, Fuzzy translations of a fuzzy set in UP-algebras, J. Indones. Math. Soc, 23 (2017), 1-19
##[10]
A. Iampan, A new branch of the logical algebra: UP-algebras, J. Algebra Relat. Topics, 5 (2017), 35-54
##[11]
A. Iampan, Introducing fully UP-semigroups, Discuss. Math. Gen. Algebra Appl., 38 (2018), 297-306
##[12]
A. Iampan, Multipliers and near UP-filters of UP-algebras, J. Discrete Math. Sci. Cryptogr., 2019 (2019), 1-14
##[13]
A. Iampan, A. Satirad, M. Songsaeng, A note on UP-hyperalgebras, J. Algebr. Hyperstruct. Log. Algebr., 1 (2020), 77-95
##[14]
A. Iampan, M. Songsaeng, G. Muhiuddin, Fuzzy duplex UP-algebras, Eur. J. Pure Appl. Math., 13 (2020), 459-471
##[15]
Y. Imai, K. Iseki, On axiom systems of propositional calculi. XIV, Proc. Japan Acad., 42 (1966), 19-22
##[16]
K. Iseki, An algebra related with a propositional calculus, Proc. Japan Acad., 42 (1966), 26-29
##[17]
H. S. Kim, Y. H. Kim, On BE-algebras, Sci. Math. Jpn., 66 (2007), 113-116
##[18]
C. Prabpayak, U. Leerawat, On ideals and congruences in KU-algebras, Sci. Magna, 5 (2009), 54-57
##[19]
A. Satirad, R. Chinram, A. Iampan, Four new concepts of extensions of KU/UP-algebras, Missouri J. Math. Sci., 32 (2020), 138-157
##[20]
A. Satirad, A. Iampan, Topological UP-algebras, Discuss. Math. Gen. Algebra Appl., 39 (2019), 231-250
##[21]
A. Satirad, P. Mosrijai, A. Iampan, Formulas for finding UP-algebras, Int. J. Math. Comput. Sci., 14 (2019), 403-409
##[22]
A. Satirad, P. Mosrijai, A. Iampan, Generalized power UP-algebras, Int. J. Math. Comput. Sci., 14 (2019), 17-25
##[23]
T. Senapati, Y. B. Jun, K. P. Shum, Cubic set structure applied in UP-algebras, Discrete Math. Algorithms Appl., 10 (2018), 1-23
##[24]
T. Senapati, G. Muhiuddin, K. P. Shum, Representation of UP-algebras in interval-valued intuitionistic fuzzy environment, Ital. J. Pure Appl. Math., 38 (2017), 497-517
##[25]
P. Singh, Correlation coefficients for picture fuzzy sets, J. Intell. Fuzzy Systems, 28 (2015), 591-604
##[26]
J. Somjanta, N. Thuekaew, P. Kumpeangkeaw, A. Iampan, Fuzzy sets in UP-algebras, Ann. Fuzzy Math. Inform., 12 (2016), 739-756
##[27]
G. Wei, Some cosine similarity measures for picture fuzzy sets and their applications to strategic decision making, Informatica, 28 (2017), 547-564
##[28]
G. Wei, Some similarity measures for picture fuzzy sets and their applcations, Iran. J. Fuzzy Syst., 15 (2018), 77-89
##[29]
G. Wei, H. Gao, The generalized Dice similarity measures for picture fuzzy sets and their applications, Informatica, 29 (2018), 107-124
##[30]
L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338-353
]
A second order convergent initial value method for singularly perturbed system of differential-difference equations of convection diffusion type
A second order convergent initial value method for singularly perturbed system of differential-difference equations of convection diffusion type
en
en
In this article, a system of second order singularly perturbed delay differential equations of convection diffusion type problem is considered. An asymptotic expansion approximation of the solution is constructed. Further the asymptotic expansion approximation is numerically approximated using the Runge Kutta methods and hybrid finite difference methods. The error estimate is obtained and it is of almost second order. Numerical examples are given to illustrate the present method.
73
83
L. S.
Senthilkumar
Department of Mathematics, Faculty of Engineering and Technology
SRM Institute of Science and technology
India
senthilkumarlsveni@gmail.com
R.
Mahendran
Department of Mathematics, Faculty of Engineering and Technology
SRM Institute of Science and technology
India
mahi2123@gmail.com
V.
Subburayan
Department of Mathematics, Faculty of Engineering and Technology
SRM Institute of Science and technology
India
suburayan123@gmail.com
Delay differential equations
singularly perturbed problem
asymptotic expansion approximation
initial value method
Shishkin mesh
Article.6.pdf
[
[1]
R. P. Agarwal, Y. M. Chow, Finite-difference methods for boundary-value problems of differential equations with deviating arguments, Comput. Math. Appl. Ser. A, 12 (1986), 1143-1153
##[2]
G. M. Amiraliyev, C. Cimen, Numerical method for a singularly perturbed convection-diffusion problem with delay, Appl. Math. Comput., 216 (2010), 2351-2359
##[3]
P. M. Basha, V. Shanthi, Fitted mesh method for a weakly coupled system ofsingularly perturbed reaction-convectiondiffusion problems with discontinuous source term, Ain Shams Eng. J., 9 (2018), 1089-1101
##[4]
Z. Cen, Parameter-uniform finite difference scheme for a system of coupled singularly perturbed convection-diffusion equations, Int. J. Comput. Math, 82 (2005), 177-192
##[5]
Z. Cen, A hybrid finite difference scheme for a class of singularly perturbed delay differential equations, Neural Parallel Sci. Comput., 16 (2008), 303-308
##[6]
Z. Cen, A. Xu, A. Le, A second-order hybrid finite difference scheme for a system of singularly perturbed initial value problems, J. Comput. Appl. Math., 234 (2010), 3445-3437
##[7]
Z. Cen, A. Xu, A. Le, L.-B. Liu, A uniformly convergent hybrid difference scheme for a system of singularly perturbed initial value problems, Int. J. Comput. Math., 97 (2020), 1058-1086
##[8]
C. Clavero, J. L. Gracia, F. J. Lisbona, An almost third order finite difference scheme for singularly perturbed reactiondiffusion systems, J. Comput. Appl. Math., 234 (2010), 2501-2515
##[9]
V. Y. Glizer, Asymptotic analysis and solution of a finite-horizon $H_\infty$ control problem for singularly-perturbed linear systems with small state delay, J. Optim. Theory Appl., 117 (2003), 295-325
##[10]
S. A. Gourley, Y. Kuang, A stage structured predator-prey model and its dependence on maturation delay and death rate, J. Math. Biol., 49 (2004), 188-200
##[11]
M. K. Kadalbajoo, K. K. Sharma, Numerical treatment of boundary value problems for second order singularly perturbed delay differential equations, Comput. Appl. Math., 24 (2005), 151-172
##[12]
C. G. Lange, R. M. Miura, Singular perturbation analysis of boundary value problems for differential-difference equations. V. Small shifts with layer behavior, SIAM J. APPL. MATH., 54 (1994), 249-272
##[13]
A. Longtin, J. G. Milton, Complex oscillations in the human pupil light reflex with “mixed” and delayed feedback, Math. Biosci., 90 (1988), 183-199
##[14]
N. Madden, M. Stynes, A uniformly convergent numerical method for a coupled system of two singularly perturbed linear reaction–diffusion problems, IMA J. Numer. Anal.,, 23 (2003), 627-644
##[15]
M. Mariappan, J. J. H. Miller, V. Sigamani, A parameter-uniform first order convergent numerical method for a system of singularly perturbed second order delay differential equations, Boundary and interior layers, computational and asymptotic methods–BAIL 2014, Springer, Cham, 108 (2015), 183-195
##[16]
S. Matthews, E. O’Riordan, G. I. Shishkin, A numerical method for a system of singularly perturbed reaction–diffusion equations, J. Comput. Appl. Math., 145 (2002), 151-166
##[17]
W. G. Melesse, A. A. Tiruneh, G. A. Derese, Solving systems of singularly perturbed convection diffusion problems via initial value method, J. Appl. Math., 2020 (2020), 1-8
##[18]
J. Mohapatra, S. Natesan, Uniform convergence analysis of finite difference scheme for singularly perturbed delay differential equation on an adaptively generated grid, Numer. Math. Theory Methods Appl., 3 (2010), 1-22
##[19]
H. Ramos, J. Vigo-Aguiar, A new algorithm appropriate for solving singular and singularly perturbed autonomous initialvalue problems, Int. J. Comput. Math., 85 (2008), 603-611
##[20]
L. S. Senthilkumar, V. Subburayan, An improved initial value method for singularly perturbed convection diffusion delay differential equations, Adv. Math., Sci. J., 10 (2021), 991-1001
##[21]
V. Subburayan, N. Ramanujam, Asymptotic initial value technique for singularly perturbed convection–diffusion delay problems with boundary and weak interior layers, Appl. Math. Lett., 25 (2012), 2272-2278
##[22]
V. Subburayan, N. Ramanujam, An initial value technique for singularly perturbed convection-diffusion problems with a negative shift, J. Optim. Theory Appl., 158 (2013), 234-250
##[23]
V. Subburayan, N. Ramanujam, An asymptotic numerical method for singularly perturbed convection-diffusion problems with a negative shift, Neural Parallel Sci. Comput., 21 (2013), 431-446
##[24]
V. Subburayan, N. Ramanujam, An asymptotic numerical method for singularly perturbed weakly coupled system of convection-diffusion type differential equations, Novi Sad J. Math., 44 (2014), 53-68
##[25]
V. Subburayan, N. Ramanujam, Uniformly convergent finite difference schemes for singularly perturbed convection diffusion type delay differential equations, Differ. Equ. Dyn. Syst., 29 (2021), 139-155
##[26]
A. Tamilselvan, N. Ramanujam, V. Shanthi, A numerical method for singularly perturbed weakly coupled system of two second order ordinary differential equations with discontinuous source term, J. Comput. Appl. Math., 202 (2007), 203-216
##[27]
H. C. Tuckwell, Introduction to theoretical neurobiology. Vol. 1, Cambridge University Press, Cambridge (1988)
##[28]
J. Vigo-Aguiar, S. Natesan, A parallel boundary value technique for singularly perturbed two-point boundary value problems, J. Supercomput., 27 (2004), 195-206
]
Fixed point for fuzzy mappings in different generalized types of metric spaces
Fixed point for fuzzy mappings in different generalized types of metric spaces
en
en
The aim of the paper is to establish some fixed point theorems for fuzzy mappings satisfying an implicit relation in left and right quasi-metric spaces. These theorems generalize the corresponding results in [S. Heilpern, J. Math. Anal. Appl., \(\bf 83\) (1981), 566--569], [V. Popa, Stud. Cercet. Ştiinţ. Ser. Mat. Univ. Bacău, \(\bf 7\) (1997), 127--133].
84
90
A.
Kamal
Department of Mathematics, College of Sciences and Arts, Methnab
Department of Mathematics and Computer Science, Faculty of Science
Qassim University
Port Said University
Saudi Arabia
Egypt
ak.ahmed@qu.edu.sa
Asmaa M.
Abd-Elal
Department of Mathematics and Computer Science, Faculty of Science
Port Said University
Egypt
asmaamoh1221@yahoo.com
Fixed point
fuzzy mapping
\(lq\)-metric space
\(rq\)-metric space
Article.7.pdf
[
[1]
M. Abbas, B. Damjanovic, R. Lazovic, Fuzzy common fixed point theorems for generalized contractive mappings, Appl. Math. Lett., 23 (2010), 1326-1330
##[2]
H. M. Abu-Donia, Common fixed points theorems for fuzzy mappings in metric spaces under ϕ-contraction condition, Chaos Solitons Fractals, 34 (2007), 538-543
##[3]
A. Azam, M. Arshad, I. Beg, Fixed points of fuzzy contractive and fuzzy locally contractive maps, Chaos Solitons Fractals, 42 (2009), 2836-2841
##[4]
A. Azam, I. Beg, Common fixed points of fuzzy maps, Math. Comput. Model.,, 49 (2009), 1331-1336
##[5]
I. Beg, M. A. Ahmed, Fixed point for fuzzy contraction mappings satisfying an implicit relation, Mat. Vesnik, 66 (2014), 351-356
##[6]
R. K. Bose, D. Sahani, Fuzzy mappings and fixed point theorems, Fuzzy Sets and Systems, 21 (1987), 53-58
##[7]
A. P. Farajzadeh, A. Kaewcharoen, S. Plubtieng, An Application of Fixed Point Theory to a Nonlinear Differential Equation, Abstr. Appl. Anal., 2014 (2014), 1-7
##[8]
S. Heilpern, Fuzzy mappings and fixed point theorem, J. Math. Anal. Appl., 83 (1981), 566-569
##[9]
M. Imdad, J. Ali, A general fixed point theorem in fuzzy metric spaces via an implicit function, J. Appl. Math. Inform., 26 (2008), 591-603
##[10]
E. Karapinar, B. Samet, Generalized α − ψ-contractive type mappings and related fixed point theorems with applications, Abstr. Appl. Anal., 2012 (2012), 793-486
##[11]
B. S. Lee, S. J. Cho, A fixed point theorem for contractive type fuzzy mappings, Fuzzy Sets and Systems, 61 (1994), 309-312
##[12]
S. B. Nadler, Multivalued contraction mappings, Pacific J. Math., 30 (1969), 475-488
##[13]
V. Popa, Fixed point theorems for implicit contractive mappings, Stud. Cercet. Stiint. Ser. Mat. Univ. Bacau, 7 (1997), 127-133
##[14]
R. A. Rashwan, M. A. Ahmed, Common fixed point theorems for fuzzy mappings, Arch. Math. (Brno), 38 (2002), 219-226
##[15]
B. E. Rhoades, A common fixed point theorem for sequence of fuzzy mappings, Int. J. Math. Math. Sci., 8 (1995), 447-450
##[16]
L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338-353
]
Coupled fixed points in complex partial metric spaces
Coupled fixed points in complex partial metric spaces
en
en
In this paper, we obtain coupled fixed point theorems in complex partial
metric spaces under the different contractive conditions. Examples are
provided to support our results.
91
102
M.
Gunaseelan
Department of Mathematics
Sri Sankara Arts and Science College(Autonomous)
India
mathsguna@yahoo.com
M. S.
Khan
Department of Mathematics, College of Science
Sultan Qaboos University
Oman
mohammad@squ.edu.om
Y. Mahendra
Singh
Department of Humanities and Basic Sciences, Manipur Institute of Technology
A Constituent College of Manipur University
India
ymahenmit@rediffmail.com
K.
Tas
Department of Mathematics
Cankaya University
Turkey
kenan@cankaya.edu.tr
Coupled fixed point
complex valued metric space
complex partial metric space
Article.8.pdf
[
[1]
I. Altun, F. Sola, H. Simsek, Generalized contractions on partial metric spaces, Topology Appl., 157 (2010), 2778-2785
##[2]
H. Aydi, Some Coupled fixed point results on partial metric spaces, Int. J. Math. Math. Sci.,, 2011 (2011), 1-11
##[3]
A. Azam, B. Fisher, M. Khan, Common fixed point theorems in complex valued metric spaces, Numer. Funct. Anal. Optim., 32 (2011), 243-253
##[4]
T. G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal., 65 (2006), 1379-1393
##[5]
P. Dhivya, M. Marudai, Common fixed point theorems for mappings satisfying a contractive condition of rational expression on a ordered complex partial metric space, Cogent Math., 4 (2017), 1-10
##[6]
E. Karapinar, K. Taş, V. Rakočević, Advances on Fixed Point Results on Partial Metric Spaces, Springer,, Cham (2019)
##[7]
V. Lakshmikantham, L. Ćirić, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces and applications, Nonlinear Anal.,, 70 (2009), 4341-4349
##[8]
S. G. Matthews, Partial Metric Spaces, In: 8th British Colloquium for Theoretical Computer Science, Research Report 212, Dept. of Computer Science, University of Warwick (1992)
##[9]
S. G. Matthews, Partial metric topology, Proc. 8th summer conference on General topology and Applications, New York Acad. Sci., New York, 728 (1994), 183-197
##[10]
K. P. R. Rao, A. Sombabu, Suzuki type common fixed point theorems for four maps using α− admissible in partial ordered complex partial metric spaces, Commun. Nonlinear Anal., 5 (2018), 40-54
##[11]
F. Sabetghadam, H. P. Masiha, A. H. Sanatpour, Some coupled fixed point theorems in cone metric spaces, Fixed Point Theory Appl, 2009 (2009), 1-8
##[12]
B. Samet, C. Vetro, F. Vetro, From metric spaces to partial metric spaces, Fixed Point Theory Appl., 2013 (2013), 1-11
##[13]
W. Shatanawi, H. K. Nashine, N. Talat, Generalization of some coupled fixed point results on partial metric spaces, Int. J. Math. Math. Sci., 2012 (2012), 1-10
]