]>
2022
24
1
0
Weak prime \(\mathtt{L}\)--fuzzy filters of semilattices
Weak prime \(\mathtt{L}\)--fuzzy filters of semilattices
en
en
The concept of weak prime \(\mathtt{L}\)--fuzzy filter of a semilattice \(S\) is introduced and example are given. A characterization of weak prime \(\mathtt{L}\)--fuzzy filters is established and prime filters of \(S\) are identified with weak prime \(\mathtt{L}\)--fuzzy filters. Also, minimal weak prime \(\mathtt{L}\)--fuzzy filters are characterized.
1
9
Ch. Santhi Sundar
Raj
Department of Engineering Mathematics
Andhra University
India
santhisundarraj@yahoo.com
K. Ramanuja
Rao
Deaprtment of Mathematics
Fiji National Uniersity
FIJI
ramanuja.kotti@fnu.ac.fj
B.
Subrahmanyam
Department of Engineering Mathematics
Andhra University
India
bollasubrahmanyam@gamil.com
Bounded semilattice
\(\mathtt{L}\)--fuzzy filter
prime \(\mathtt{L}\)--fuzzy filter
weak prime \(\mathtt{L}\)--fuzzy filter
frame
Article.1.pdf
[
[1]
J. A. Goguen, $L$-fuzzy sets, J. Math. Anal. Appl., 18 (1967), 145-174
##[2]
N. Kuroki, On fuzzy ideals and fuzzy bi-ideals in semigroups, Fuzzy Sets Systems, 5 (1981), 203-215
##[3]
W. J. Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems, 8 (1982), 133-139
##[4]
D. S. Malik, J. N. Mordeson, Extensions of fuzzy subrings and fuzzy ideals, Fuzzy Sets Systems, 45 (1992), 245-251
##[5]
T. K. Mukherjee, M. K. Sen, On fuzzy ideals of a ring I, Fuzzy Sets and Systems, 21 (1987), 99-104
##[6]
A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512-517
##[7]
Ch. Santhi Sundar Raj, B. Subrahmanyam, G. Sujatha, S. Nageswara Rao, L-fuzzy ideals of Semilattices, Int. J. Math. Trends Tech., 66 (2020), 160-175
##[8]
Ch. Santhi Sundar Raj, B. Subrahmanyam, U. M. Swamy, Fuzzy Filters of Meet-Semilattices, Int. J. Math. Appl., 7 (2019), 67-76
##[9]
Ch. Santhi Sundar Raj, B. Subrahmanyam, U. M. Swamy, Prime L-fuzzy filters of a Semilattice, Ann. Fuzzy Math. Inform., 20 (2020), 79-87
##[10]
U. M. Swamy, K. L. N. Swamy, Fuzzy Prime Ideals of Rings, J. Math. Anal. Appl., 134 (1988), 94-103
##[11]
L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338-353
]
Some properties of generalized \((s,k)\)-Bessel function in two variables
Some properties of generalized \((s,k)\)-Bessel function in two variables
en
en
The devotion of this paper is to study the Bessel function of two variables
in \(k\)-calculus. we discuss the generating function of \(k\)-Bessel function
in two variables and develop its relations. After this we introduce the
generalized \((s,k)\)-Bessel function of two variables which help to develop
its generating function. The \(s\)-analogy of \(k\)-Bessel function in two
variables is also discussed. Some recurrence relations of the generalized \(
(s,k)\)-Bessel function in two variables are also derived.
10
21
R. S.
Ali
Department of Mathematics
University of Sargodha
Pakistan
rsafdar0@gmail.com
S.
Mubeen
Department of Mathematics
University of Sargodha
Pakistan
smjhanda@gmail.com
K. S.
Nisar
Department of Mathematics, College of Arts and Sciences, Wadi Aldawaser, 11991
Prince Sattam bin Abdulaziz University
Kingdom of Saudi Arabia
n.sooppy@psau.edu.sa
S.
Araci
Department of Economics, Faculty of Economics, Administrative and Social Sciences
Hasan Kalyoncu University
Turkey
serkan.araci@hku.edu.tr
G.
Rahman
Department of Mathematics and Statistics
Hazara University
Pakistan
gauhar55uom@gmail.com
\(k\)-Bessel function
generalized \((s,k)\)-Bessel function
generalized \((s,k)\)-Bessel function in two variables
Article.2.pdf
[
[1]
P. Agarwal, M. Jleli, M. Tomar, Certain Hermite-Hadamard type inequalities via generalized $k$-fractional integrals, J. Inequal. Appl., 2017 (2017), 1-10
##[2]
R. Diaz, E. Pariguan, On hypergeometric functions and pochhammer $k$-symbol, Divulg. Mat., 15 (2007), 179-192
##[3]
R. Diaz, C. Teruel, $q,k$-Generalized Gamma and Beta Functions, J. Nonlinear Math. Phys., 12 (2008), 118-134
##[4]
H. Exton, $q$-Hypergeometric Functions and Applications, Halstead Press, New York (1983)
##[5]
G. Farid, G.-M. Habibullah, An extension of Hadamard fractional integral, Int. J. Math. Anal., 9 (2015), 471-482
##[6]
G. Farid, A. Ur Rehman, M. Zahra, On Hadamard-type inequalities for $k$-fractional integrals, Konuralp J. Math., 4 (2016), 79-86
##[7]
G. Gasper, M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge (1990)
##[8]
K. S. Gehlot, Differential Equation of $k$-Bessel's Function and its Properties, Nonlinear Anal. Differ. Equ., 2 (2014), 61-67
##[9]
C.-J. Huang, G. Rahman, K. S. Nisar, A. Ghaffar, F. Qi, Some inequalities of the Hermite-Hadamard type for k-fractional conformable integrals, Aust. J. Math. Anal. Appl., 16 (2019), 1-9
##[10]
S. Iqbal, S. Mubeen, M. Tomar, On Hadamard $k$-fractional integrals, J. Fract. Calc. Appl., 9 (2019), 255-267
##[11]
F. H. Jakson, The Application of Basic Numbers to Bessel's and Legendre's Functions, Proc. London Math. Soc. (2), 2 (1905), 192-220
##[12]
C. G. Kokologiannaki, Properties and inequalities of generalized $k$-gamma, beta and zeta functions, Int. J. Contemp. Math. Sci., 5 (2010), 653-660
##[13]
V. Krasniqi, A limit for the $k$-gamma and $k$-beta function, Int. Math. Forum, 5 (2010), 1613-1617
##[14]
S. Li, Y. Dong, $k$-Hypergeometric series solutions to one type of non-homogeneous $k$-hypergeometric equations, Symmetry, 2019 (2019), 1-11
##[15]
M. Mansour, Determining the $k$-generalized gamma function $\Gamma_k(x)$ by functional equations, Int. J. Contemp. Math. Sci., 4 (2009), 1037-1042
##[16]
F. Merovci, Power product inequalities for the $\Gamma_k$ function, Int. J. Math. Anal. (Ruse), 4 (2010), 1007-1012
##[17]
S. Mubeen, Solution of some integral equations involving confluen $k$-hypergeometric functions, Appl. Math., 4 (2013), 9-11
##[18]
S. Mubeen, G. M. Habibullah, An integral representation of some $k$-hypergeometric functions, Int. Math. Forum, 7 (2012), 203-207
##[19]
S. Mubeen, S. Iqbal, Gruss type integral inequalities for generalized Riemann-Liouville $k$-fractional integrals, J. Inequal. Appl., 2016 (2016), 1-13
##[20]
S. Mubeen, S. Iqbal, Z. Iqbal, On Ostrowski type inequalities for generalized k-fractional integrals, J. Inequal. Spec. Funct., 8 (2017), 107-118
##[21]
S. Mubeen, C. G. Kokologiannaki, G. Rahman, M. Arshad, Z. Iqbal, Properties of generalized hypergeometric $k$-functions via $k$-fractional calculus, Far East J. Appl. Math., 96 (2017), 351-372
##[22]
S. Mubeen, M. Naz, A. Rehman, G. Rahman, Solutions of $k$-hypergeometric differential equations, J. Appl. Math., 2014 (2014), 1-13
##[23]
S. Mubeen, A. Rehman, A Note on $k$-Gamma function and Pochhammer $k$-symbol, J. Inf. Math. Sci., 6 (2014), 93-107
##[24]
K. S. Nisar, G. Rahman, J. S. Choi, S. Mubeen, M. Arshad,, Certain Gronwall type inequalities associated with Riemann-Liouville $k$-and hadamard $k$-fractional derivatives and their applications, East Asian Math. J., 34 (2018), 249-263
##[25]
F. Qi, S. Habib, S. Mubeen, M. N. Naeem, Generalized $k$-fractional conformable integrals and related inequalities, AIMS Math., 4 (2019), 343-358
##[26]
F. Qi, G. Rahman, S. M. Hussain, W. S. Du, K. S. Nisar, Some inequalities of Čebyšev Type for conformable $k$-Fractional integral operators, Symmetry, 2018 (2018), 1-16
##[27]
G. Rahman, M. Arshad, S. Mubeen, Some results on generalized hypergeometric $k$-functions, Bull. Math. Anal. Appl., 8 (2016), 66-77
##[28]
G. Rahman, K. S. Nisar, A. Ghaffar, F. Qi, Some inequalities of the Grüss type for conformable $k$-fractional integral operators, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 114 (2020), 1-9
##[29]
G. Rahman, S. Mubeen, K. S. Nisar, On generalized $k$-fractional derivative operator, AIMS Math., 5 (2019), 1936-1945
##[30]
E. D. Rainville, Special functions, Macmillan Co., New York (1960)
##[31]
M. Samraiz, E. Set, M. Hasnain, G. Rahman, On an extension of Hadamard fractional derivative, J. Inequal. Appl., 2019 (2019), 1-15
##[32]
E. Set, M. A. Noor, M. U. Awan, A. Gözpinar, Generalized Hermite-Hadamard type inequalities involving fractional integral operators, J. Inequal. Appl., 2017 (2017), 1-10
##[33]
R. F. Swarthow, An Addition Theorem and Some Product Formulas for the Hahn-Exton $q$-Bessel Functions, Canad. J. Math., 44 (1992), 867-878
##[34]
A. Tanguria, R. Sharma, Advanced $q$-Bessel Function of Two Variables, Int. J. Sci. Eng. Res., 5 (2014), 2229-5518
##[35]
M. Tomar, S. Mubeen, J. S. Choi, Certain inequalities associated with Hadamard $k$-fractional integral operators, J. Inequal. Appl., 2016 (2016), 1-14
]
Some new results of fixed point in dislocated quasi-metric spaces
Some new results of fixed point in dislocated quasi-metric spaces
en
en
In this paper, we introduce some new fixed point theorems in a dislocated quasi-metric space. We present several fixed point theorems, which generalize and improve some comparable fixed point results. Moreover, we provide some examples to illustrate our results.
22
32
S.
Mhanna
University Sultan Moulay Slimane
Equipe de recherche MATIC
Morocco
mhanna.soufiane@gmail.com
O.
Baiz
University Ibn Zohr
Lab. Eng. Sci. and Energies
Morocco
H.
Benaissa
University Sultan Moulay Slimane
FP of Khouribga
Morocco
D. El
Moutawakil
University Sultan Moulay Slimane
Equipe de recherche MATIC
Morocco
Fixed point
dislocated quasi-metric spaces
contraction mapping
Article.3.pdf
[
[1]
C. T. Aage, J. N. Salunke, The results on fixed points in dislocated and dislocated quasi-metric space, Appl. Math. Sci., 2 (2008), 2941-2948
##[2]
C. T. Aage, J. N. Salunke, Some results of fixed point theorem in dislocated quasi-metric spaces, Bull. Marathadawa Math. Soc., 9 (2008), 1-5
##[3]
M. A. Ahmed, F. M. Zeyada, G. F. Hasan, Fixed point theorems in generalized types of dislocated metric spaces and its applications, Thai J. Math., 11 (2013), 67-73
##[4]
S. Banach, Modélisation numérique du comportement irréversible des métaux ductiles soumis à grandes déformations avec endommagement, Fund. Math., 3 (1992), 133-181
##[5]
S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Math. Inform. Univ. Ostrav., 1 (1993), 5-11
##[6]
T. Dominguez Benavides, M. A. Khamsi, S. Samadi, Uniformly Lipschitzian mappings in modular function spaces, Nonlinear Anal., 46 (2001), 267-278
##[7]
A. Hajji, E. Hanebaly, Fixed point theorem and its application to perturbed integral equations in modular function spaces, Electron. J. Differ. Equ., 2005 (2005), 1-11
##[8]
P. Hitzler, A. K. Seda, Dislocated topologies, J. Electr. Eng., 51 (2000), 3-7
##[9]
P. Hitzler, Generalized metrics and topology in logic programming semantics, Ph. D Thesis, School of Mathematics, Applied Mathematics and Statistics, National University Ireland, University college Cork (2001)
##[10]
E. Karapınar, D. O'Regan, A. Roldán López de Hierro, N. Shahzad, Fixed point theorems in new generalized metric spaces, J. Fixed Point Theory Appl., 18 (2016), 645-671
##[11]
E. Karapinar, P. Salimi, Dislocated metric space to metric spaces with some fixed point theorems, Fixed Point Theory Appl., 2013 (2013), 1-19
##[12]
S. Li, A. Zada, R. Shah, T. Li, Fixed point theorems in dislocated quasi-metric spaces, J. Nonlinear Sci. Appl., 10 (2017), 4695-4703
##[13]
S. T. Patel, M. Patel, Some results of fixed point theorem in dislocated quasi metric space, Int. J. Res. Mod. Eng. Technol., 1 (2013), 20-24
##[14]
M. Sarwar, M. U. Rahman, G. Ali, Some fixed point results in dislocated quasi metric ($dq$-metric) spaces, J. Inequal. Appl., 2014 (2014), 1-11
##[15]
F. M. Zeyada, G. H. Hassan, M. A. Ahmed, A generalisations of a fixed point theorem due to Hitzler and Seda in dislocated quasi-metric spaces, Arab. J. Sci. Eng., 31 (2006), 111-114
]
Generalized fractional delay functional equations with Riemann-Stieltjes and infinite point nonlocal conditions
Generalized fractional delay functional equations with Riemann-Stieltjes and infinite point nonlocal conditions
en
en
In the current work, we investigate the solvability of a general class of fractional delay functional equations subject to an infinite point non-classical condition, and the Riemann-Stieltjes integral condition as well. First, the existence of solutions is investigated. Second, the continuous dependence of solution is studied in three different cases. Third, illustrative examples are given to support our results. Our work extends some developments published recently in that field.
33
48
M. I.
Youssef
Department of Mathematics, College of Science
Department of Mathematics, Faculty of Education
Jouf University
Alexandria University
Saudi Arabia
Egypt
miyoussef283@gmail.com
Fractional integro-differential equation
existence of solutions
infinite point non-classical condition
Riemann-Stieltjes nonlocal condition
delay function
Article.4.pdf
[
[1]
R. P. Agarwal, M. Meehan, D. O'Regan, Fixed Point Theory and Applications, Cambridge University Press, Cambridge (2001)
##[2]
R. Almeida, A. B. Malinowska, T. Odzijewicz, Fractional differential equations with dependence on the Caputo-Katugampola derivative, J. Comput. Nonlinear Dynam., 11 (2016), 1-11
##[3]
A. T. Assanova, On the theory of nonlocal problems with integral conditions for systems of equations of hyperbolic type, Ukrainian Math. J., 70 (2019), 1514-1525
##[4]
T. M. Atanacković, S. Pilipović, B. Stanković, D. Zorica, Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes, John Wiley & Sons, Hoboken (2014)
##[5]
G. Avalishvili, M. Avalishvili, D. Gordeziani, On a nonlocal problem with integral boundary conditions for a multidimensional elliptic equation, Appl. Math. Lett., 24 (2011), 566-571
##[6]
R. Barretta, F. Marotti de Sciarra, Constitutive boundary conditions for nonlocal strain gradient elastic nano-beams, Internat. J. Engrg. Sci., 130 (2018), 187-198
##[7]
A. Bellen, M. Zennaro, Numerical methods for delay differential equations, Oxford University Press, New York (2003)
##[8]
V. Daftardar-Gejji, Fractional Calculus and Fractional Differential Equations, Birkhauser, Singapore (2019)
##[9]
M. M. Elborai, M. I. Youssef, On stochastic solutions of nonlocal random functional integral equations, Arab J. Math. Sci., 25 (2019), 180-188
##[10]
A. El-Sayed, R. Gamal, Infinite point and Riemann-Stieltjes integral conditions for an integro-differential equation, Nonlinear Anal. Model. Control, 24 (2019), 733-754
##[11]
M. A. E. Herzallah, Notes on some fractional calculus operators and their properties, J. Fract. Calc. Appl., 5 (2014), 1-10
##[12]
U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860-865
##[13]
U. N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6 (2014), 1-15
##[14]
A. I. Kozhanov, Nonlocal problems with integral conditions for elliptic equations, Complex Var. Elliptic Equ., 64 (2019), 741-752
##[15]
L. T. P. Ngoc, N. A. Triet, A. P. N. Dinh, N. T. Long, Existence and exponential decay of solutions for a wave equation with integral nonlocal boundary conditions of memory type, Numer. Funct. Anal. Optim., 38 (2017), 1173-1207
##[16]
A. Ricardo, Variational Problems Involving a Caputo-Type Fractional Derivative, J. Optim. Theory Appl., 174 (2017), 276-294
##[17]
H. G. Sun, Y. Zhang, D. Baleanu, W. Chen, Y. Q. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul., 64 (2018), 213-231
##[18]
K. Szymańska-Dębowska, On the existence of solutions for nonlocal boundary value problems, Georgian Math. J., 22 (2015), 273-279
##[19]
M. I. Youssef, Caputo-Katugampola fractional Volterra functional differential equations with a vanishing lag function, J. Nonlinear Sci. Appl., 13 (2020), 293-302
##[20]
M. I. Youssef, On the solvability of a general class of a coupled system of stochastic functional integral equations, Arab J. Basic Appl. Sci., 27 (2020), 142-148
]
Wavelet neural network based controller design for non-affine nonlinear systems
Wavelet neural network based controller design for non-affine nonlinear systems
en
en
This paper addresses the design of wavelet neural network(WNN) based control scheme for non-affine nonlinear system with unknown control direction. Wavelet neural network is employed to approximate the uncertain part of control system. Since the learning capability of WNN is superior than any conventional NN for system identification. The update laws are derived from Lyapunov stability theory with Nussbaum technique so that all signals in closed loop system are stable and bounded. Finally, simulation example and analysis are provided to prove the effectiveness of controller.
49
58
Pramendra
Kumar
Department of Applied Mathematics
Gautam Buddha University
India
kumar.pramendra@rediffmail.com
Vikas
Panwar
Department of Applied Mathematics
Gautam Buddha University
India
vikasdma@gmail.com
Non-affine Nonlinear system
Lyapunov stability theory
wavelet neural network
Nussbaum function
Article.5.pdf
[
[1]
P. J. Antsaklis, K. M. Passino, Eds, An Introduction to Intelligent and Autonomous Control, Kluwer Academic Publishers,, New York (1993)
##[2]
S. S. Ge, C. C. Hang, T. Zhang, Nonlinear Adaptive Control using neural networks and its applications to CSTR system, J. process. Control, 9 (1999), 313-323
##[3]
S. S. Ge, F. Hong, T. H. Lee, Adaptive neural control of nonlinear time-delay systems with unknown virtual control coefficients, IEEE Trans. Syst. Man Cybern:B, 34 (2004), 499-516
##[4]
S. S. Ge, J. Wang, Robust adaptive tracking for time-varying uncertain nonlinear systems with unknown control coefficients, IEEE Trans. Automat. Control, 48 (2003), 1463-1469
##[5]
Z.-G. Hou, A.-M. Zou, F.-X. Wu, L. Cheng, M. Tan, Adaptive dynamic surface control of a class of uncertain nonlinear systems in pure-feedback form using fuzzy backstepping approach, 4th IEEE Conference on Automation Science and Engineering, 2008 (2008), 821-826
##[6]
C.-F. Hsu, C.-M. Lin, T.-T. Lee, Wavelet Adaptive Backstepping Control for a Class of Nonlinear Systems, IEEE Trans. Neural Netw., 17 (2006), 1175-1183
##[7]
H. K. Khalil, Adaptive output feedback control of nonlinear systems represented by input–output models, IEEE Trans. Automat. Control, 41 (1996), 177-188
##[8]
M. Krstic, I. Kanellakopoulos, P. Kokotovic, Nonlinear and Adaptive Control Design, Wiley, New York (1995)
##[9]
P. Kumar, V. Panwar, D. Singh, An adaptive RBF controller for a class of non-affine nonlinear systems, Int. J. Math. Comput. Sci., 16 (2021), 67-77
##[10]
F. L. Lewis, A. Yesildirek, K. Liu, Multilayer neural-net robot controller with guaranteed tracking performance, IEEE Trans. Neural Netw., 7 (1996), 388-399
##[11]
T. Li, N. Pintus, G. Viglialoro, Properties of solutions to porous medium problems with different sources and boundary conditions, Z. Angew. Math. Phys., 70 (2019), 1-18
##[12]
T. Li, G. Viglialoro, Analysis and explicit solvability of degenerate tensorial problems, Bound. Value Probl., 2018 (2018), 1-13
##[13]
X. Li, D. Wang, Z. Peng, G. Sun, Adaptive fuzzy control for a class of non-affine systems, International Conference on Intelligent Control and Information Processing, 561--565 (2010), -
##[14]
W. Lin, C. Qian, Adaptive control of nonlinearly parameterized systems: A nonsmooth feedback framework, IEEE Trans. Automat. Control, 47 (2002), 757-774
##[15]
L. Liu, J. Huang, Global robust stabilization of cascade-connected systems with dynamic uncertainties without knowing the control direction, IEEE Trans. Automat. Control, 51 (2006), 1693-1699
##[16]
Z. Liu, G. Lai, Y. Zhang, X. Chen, C. L. P. Chen, Adaptive neural control for a class of nonlinear time-varying delay systems with unknown hysteresis, IEEE Trans. Neural Netw. Learn. Syst., 25 (2014), 2129-2140
##[17]
W. Meng, Q. Yang, J. Si, Y. Sun, Adaptive Neural Control of a Class of Output-Constrained non-affine Systems, IEEE Trans. Cybernet., 46 (2016), 85-95
##[18]
W. Meng, Q. Yang, Y. Ying, Y. Sun, Z. Yang, Y. Sun, Adaptive Power Capture Control of Variable-Speed Wind Energy Conversion Systems With Guaranteed Transient and Steady-State Performance, IEEE Trans. Energy Convers., 28 (2013), 716-725
##[19]
V. Panwar, Wavelet neural network-based H∞ trajectory tracking for robot manipulators using fast terminal sliding mode control, Robotica, 35 (2016), 1-16
##[20]
M. M. Polycarpou, Stable adaptive neural control scheme for nonlinear systems, IEEE Trans. Automat. Control, 41 (1996), 447-451
##[21]
Z. Qu, Robust Control of Nonlinear Uncertain Systems, John Wiley & Sons, New York (1998)
##[22]
B. Ren, S. S. Ge, C.-Y. Su, T. H. Lee, Adaptive Neural Control for a Class of Uncertain Nonlinear Systems in Pure-Feedback Form With Hysteresis Input, IEEE Trans. Syst. Man Cybern: B, 39 (2009), 431-443
##[23]
S. Sastry, M. Bodson, Adaptive Control: Stability, Convergence, and Robustness, Prentice-Hall, Upper Saddle River, NJ (1989)
##[24]
J. J. Slotine, W. Li, Applied Nonlinear Control, Prentice hall, Englewood Cliffs (1991)
##[25]
V. I. Utkin, Sliding Modes in Control and Optimization, Springer-Verlag, Berlin (1992)
##[26]
G. Viglialoro, T. E. Woolley, Boundedness in a parabolic-elliptic chemotaxis system with nonlinear diffusion and sensitivity and logistic source, Math. Methods Appl. Sci., 41 (2018), 1809-1824
##[27]
D. Wang, J. Huang, W. Lan, X. Li, Neural network based robust adaptive control of nonlinear systems with unmodeled dynamics, Math. Comput. Simulation, 79 (2009), 1745-1753
##[28]
A. Young, C. Cao, N. Hovakimyan, E. Lavretsky, An adaptive approach to non-affine control design for aircraft applications, AIAA Guidance, Navigation, and Control Conference and Exhibit, 2006 (2006), 1-28
##[29]
J. Zhang, G. G. Walter, Y. Miao, W. N. W. Lee, Wavelet neural networks for function learning, IEEE Trans. Signal Process., 43 (1995), 1485-1497
]
On right chain ordered semihypergroups
On right chain ordered semihypergroups
en
en
The purposes of this paper are to introduce generalizations of the right chain ordered semigroups to the context of the right chain ordered semihypergroups. Furthermore, we present the concepts of prime, completely prime, semiprime, and completely semiprime right hyperideals of ordered semihypergroups. We also introduce the idea of associated prime right hyperideals. Moreover, we give some characterizations of prime, completely prime, semiprime, and completely semiprime right hyperideals of ordered semihypergroups. Finally, we obtain necessary and sufficient prime right hyperideal conditions to be a semiprime right hyperideal.
59
72
Pairote
Yiarayong
Department of Mathematics, Faculty of Science and Technology
Pibulsongkram Rajabhat University
Thailand
pairote0027@hotmail.com
Bijan
Davvaz
Department of Mathematics
Yazd University
Iran
Ronnason
Chinram
Division of Computational Science
Prince of Songkla University
Thailand
Ordered semihypergroup
prime right hyperideal
completely prime right hyperideal
semiprime right hyperideal
completely semiprime right hyperideal
Article.6.pdf
[
[1]
T. Changphas, B. Davvaz, Properties of hyperideals in ordered semihypergroups, Ital. J. Pure Appl. Math., 33 (2014), 425-432
##[2]
T. Changphas, P. Luangchaisri, R. Mazurek, On right chain ordered semigroups, Semigroup Forum, 96 (2018), 523-535
##[3]
B. Davvaz, P. Corsini, T. Changphas, Relationship between ordered semihypergroups and ordered semigroups by using pseudoorder, European J. Combin., 44 (2015), 208-217
##[4]
M. Farooq, A. Khan, B. Davvaz, Characterizations of ordered semihypergroups by the properties of their intersectional-soft generalized bi-hyperideals, Soft Comput, 22 (2018), 3001-3010
##[5]
M. Ferrero, R. Mazurek, A. Sant’Ana, On right chain semigroups, J. Algebra, 292 (2005), 574-584
##[6]
S. H. Ghazavi, S. M. Anvariyeh, S. Mirvakili, $EL^2$–hyperstructures Derived from (Partially) Quasi Ordered Hyperstructures, Iran. J. Math. Sci. Inform., 10 (2015), 99-114
##[7]
Z. Gu, X. Tang, Ordered regular equivalence relations on ordered semihypergroups, J. Algebra, 450 (2016), 384-397
##[8]
Z. Gu, X.Tang, Characterizations of (strongly) ordered regular relations on ordered semihypergroups, J. Algebra, 465 (2016), 100-110
##[9]
D. Heidari, B. Davvaz, On ordered hyperstructures, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 73 (2011), 85-96
##[10]
S. Omidi, B. Davvaz, Contribution to study special kinds of hyperideals in ordered semihyperrings, J. Taibah Univ. Sci., 11 (2017), 1083-1094
##[11]
S. Omidi, B. Davvaz, J .M. Zhan, An investigation on ordered algebraic hyperstructures, Acta Math. Sin. (Engl. Ser.), 33 (2017), 1107-1124
##[12]
J. Tang, B. Davvaz, Y. Luo, Hyperfilters and fuzzy hyperfilters of ordered semihypergroups, J. Intell. Fuzzy Systems, 29 (2015), 75-84
##[13]
J. Tang, B. Davvaz, X.-Y. Xie, An investigation on hyper S-posets over ordered semihypergroups, Open Math., 15 (2017), 37-56
##[14]
J. Tang, Y. Luo, X. Xie, A study on (strong) order-congruences in ordered semihypergroups, Turk. J. Math., 42 (2018), 1255-1271
##[15]
J. Tang, X. Xie, An investigation on left hyperideals of ordered semihypergroups, J. Math. Res. Appl., 37 (2017), 419-434
]
A general model of non-communicable diseases and its qualitative analysis without finding the eigenvalues
A general model of non-communicable diseases and its qualitative analysis without finding the eigenvalues
en
en
Obtaining the analytical solutions of a linear ordinary differential equations is impossible without finding the eigenvalues. In this study, a general linear model of non-communicable disease (NCD) is formulated using the compartmental analysis and its qualitative properties are analyzed without finding the eigenvalues. NCDs are diseases which are not passed from person to person. The proof of the qualitative properties of the general model including the existence and uniqueness of its solution and equilibrium, and the positivity and boundedness of its solutions are provided. The global stability of the general model is analyzed using the theorem of compartmental matrix and Lyapunov function. It is found that the model has one unique non-negative equilibrium which is globally exponentially stable. As a real-world example, the general model and its qualitative analysis are implemented to a NCD, namely venous thromboembolism (VTE) among pregnant and postpartum women. VTE is selected in this study as it is a major global health burden due to its association with disability and lower quality of life and death.
73
81
Auni Aslah
Mat Daud
Faculty of Ocean Engineering Technology and Informatics
University Malaysia Terengganu
Malaysia
auni_aslah@yahoo.com
Toh Cher
Qing
Faculty of Ocean Engineering Technology and Informatics
University Malaysia Terengganu
Malaysia
Mathematical modelling
qualitative analysis
non-communicable disease
venous thromboembolism
global stability
compartmental analysis
Article.7.pdf
[
]