]>
2021
22
1
95
The category of soft topological spaces and the \(T_0\)-reflection
The category of soft topological spaces and the \(T_0\)-reflection
en
en
Soft topological spaces represent the objects of a category named SOFTOP. In this paper, we will study some properties of arrows in SOFTOP. We give also the construction of the \(T_0\)-reflection of a soft topological space illustrated by other results related to separation axioms.
1
8
Abdelwaheb
Mhemdi
Department of Mathematics, Faculty of Sciences and Humanities in Aflaj
Prince Sattam Bin Abdul-Aziz University
Kingdom of Saudi Arabia
mhemdiabd@gmail.com
Soft set
soft topological spaces
reflective subcategory
separation axioms
Article.1.pdf
[
[1]
K. Belaid, O. Echi, S. Lazaar, $T_{(\alpha, \beta)}$-spaces and the Wallman compactification, Int. J. Math. Math. Sci., 2004 (2004), 3717-3735
##[2]
N. Cagman, S. Karatas, S. Enginoglu, Soft topology, Comput. Math. Appl., 62 (2011), 351-358
##[3]
D. G. Chen, E. C. C. Tsang, D. S. Yeung, X. Z. Wang, The parameterization reduction of soft sets and its applications, Comput. Math. Appl., 49 (2005), 757-763
##[4]
D. N. Georgiou, A. C. Megaritis, Soft set theory and topology, Appl. Gen. Topol., 15 (2014), 93-109
##[5]
D. N. Georgiou, A. C. Megaritis, V. I. Petropoulos, On soft topological spaces, Appl. Math. Inf. Sci., 7 (2013), 1889-1901
##[6]
A. Grothendieck, Éléments de géométrie algébrique. I. Le langage des schémas, Inst. Hautes Études Sci. Publ. Math., 4 (1960), 1-228
##[7]
A. Grothendieck, J. A. Dieudonné, Eléments de géométrie algébrique, Springer-Verlag, Berlin (1971)
##[8]
H. Herrlich, G. Strecker, Categorical topology--Its origins as exemplified by the unfolding of the theory of topological reflections and coreflections before 1971, in: Handbook of the history of general topology, 1997 (1997), 255-341
##[9]
S. Hussain, B. Ahmad, Some properties of soft topological spaces, Comput. Math. Appl., 62 (2011), 4058-4067
##[10]
H.-P. A. Künzi, T. A. Richmond, $T_i$-ordered reflections, Appl. Gen. Topol., 6 (2005), 207-216
##[11]
S. Lazaar, A. Mhemdi, On some properties of $T_{0}-$ordered reflection, Appl. Gen. Topol., 15 (2014), 43-54
##[12]
S. Mac Lane, Categories for the Working Mathematician, Springer-Verlag, New York (1971)
##[13]
P. K. Maji, R. Biswas, A. R. Roy, Soft set theory, Comput. Math. Appl., 45 (2003), 555-562
##[14]
P. K. Maji, A. R. Roy, R. Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl., 44 (2002), 1077-1083
##[15]
W. K. Min, A note on soft topological spaces, Comput. Math. Appl., 62 (2011), 3524-3528
##[16]
D. Molodtsov, Soft set theory-first results, Comput. Math. Appl., 37 (1999), 19-31
##[17]
D. A. Molodtsov, V. Y. Leonov, D. V. Kovkov, Soft sets technique and its application, Nechetkie Sistemy i Myagkie Vychisleniya, 1 (2006), 8-39
##[18]
D. Pei, D. Miao, From soft sets to information systems, IEEE Int. Conf. Granular Comput., 2005 (2005), 617-621
##[19]
M. Shabir, M. Naz, On soft topological spaces, Comput. Math. Appl., 61 (2011), 1786-1799
##[20]
I. Zorlutuna, M. Akdag, W. K. Min, S. Atmaca, Remarks on soft topological spaces, Ann. Fuzzy Math. Inform., 3 (2012), 171-185
]
A parabolic transform and averaging methods for integro-partial differential equations
A parabolic transform and averaging methods for integro-partial differential equations
en
en
Averaging methods of the integro-partial differential equation is studied, without any restrictions on the characteristic form of the partial differential operators. By using the parabolic transform and the averaging methods, the integro-partial differential equation can be solved.
9
15
Mahmoud M.
El-Borai
Department of Mathematics and Computer Science, Faculty of Science
Alexandria University
Egypt
m_m_elborai@yahoo.com
Hamed Kamal
Awad
Department of Mathematics, Faculty of Science
Damanhour University
Egypt
hamedk66@sci.dmu.edu.eg
Randa Hamdy M.
Ali
Department of Mathematics, Faculty of Science
Damanhour University
Egypt
rhamdy1989@gmail.com
Averaging method
integro-partial differential equation
parabolic transform
existence and uniqueness of solutions
Article.2.pdf
[
[1]
A. Ben Lemlih, J. A. Ellison, Method of averaging and the quantum anharmonic oscillator, Phys. Rev. Lett., 55 (1985), 1950-1953
##[2]
M. M. El-Borai, Some probability densities and fundamental solutions of fractional evolution equations, Chaos Soliton Fractals, 14 (2002), 433-440
##[3]
M. M. El-Borai, Evolution equations without semi groups, J. Appl. Math. Comp., 149 (2004), 815-821
##[4]
M. M. El-Borai, H. K. Awad, R. H. M. Ali, Method of averaging for some parabolic partial differential equations, Acad. J. Appl. Math. Sci., 6 (2020), 1-4
##[5]
M. M. El-Borai, H. K. Awad, R. H. M. Ali, On averaging methods for general parabolic partial differential equation, J. Math. Computer Sci., 21 (2020), 164-175
##[6]
M. M. El-Borai, H. K. Awad, R. Hamdy, M. Ali, A parabolic transform and averaging methods for general partial differential equations, J. Adv. Math., 17 (2019), 352-361
##[7]
M. M. El-Borai, K. El-Said El-Nadi, A parabolic transform and some stochastic Ill-posed problem, British J. Math. Comput. Sci., 9 (2015), 418-426
##[8]
M. M. El-Borai, K. El-Said El-Nadi, On the solutions of Ill-posed Cauchy problems for some singular integro-partial differential equations, Global J. Math., 13 (2019), 899-905
##[9]
M. M. El-Borai, K. El-Said El-Nadi, E. G. El-Akabawy, On some fractional evolution equations, Comput. Math. Appl., 59 (2010), 1352-1355
##[10]
M. M. El-Borai, K. El-Said El-Nadi, H. A. Foad, On some fractional stochastic delay differential equations, Comput. Math. Appl., 59 (2010), 1165-1170
##[11]
M. M. El-Borai, W. G. El-Sayed, F. N. Ghaffoori, On the Cauchy problem for some parabolic fractional partial differential equations with time delays, J. Math. Syst. Sci., 6 (2016), 194-199
##[12]
M. M. El-Borai, O. L. Moustafa, F. H. Michael, On the correct formulation of a nonlinear differential equations in Banach space, Int. J. Math. Math. Sci., 26 (2001), 1-8
##[13]
A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs (1964)
##[14]
M. S. Krol, On the averaging method in nearly time-periodic advection-diffusion problems, SIAM J. Appl. Math., 51 (1991), 1622-1637
##[15]
M. H. Protter, H. F. Weinberger, Maximum principles in differential equations, Prentice-Hall, Englewood Cliffs (1967)
##[16]
F. Verhulst, On averaging methods for partial differential equations, In: Symmetry and perturbation theory, 1999 (1999), 79-95
]
Properties and applications of beta Erlang-truncated exponential distribution
Properties and applications of beta Erlang-truncated exponential distribution
en
en
In this article, we proposed a new four-parameter distribution called beta Erlang truncated exponential
distribution (BETE). Some important mathematical and statistical properties of the proposed distribution are examined.
The stochastic ordering result for the BETE was also discussed. Moreover, the \(r^{\rm th}\) moment, moment generating function, incomplete moments, mean deviations, Bonferroni and Lorenz curves, moments of residual life, Shannon and Renyi entropies, and Kullback--Leibler divergence measure are derived. The maximum-likelihood estimate for the unknown parameters of the BETE was established and assessed by the simulation studies. The maximum likelihood estimation of the stress-strength parameter is discussed and its asymptotic distribution is obtained.
The effectiveness and usefulness of the BETE are demonstrated by the use of three real data set, in which the BETE provide a better fit than some other existing distributions and demonstrated its capability in the stress-strength reliability analysis.
16
37
M.
Shrahili
Department of Statistics and Operations Research, College of Science
King Saud University
Saudi Arabia
msharahili@ksu.edu.sa
I.
Elbatal
Department of Mathematics and Statistics, College of Science
Faculty of Graduate Studies for Statistical Research
Imam Mohammad Ibn Saud Islamic University (IMSIU)
Cairo University
Saudi Arabia
Egypt
iielbatal@imamu.edu.sa
Isyaku
Muhammad
Department of Mechanical Engineering, School of Technology
Kano State Polytechnic
Nigeria
mmuhammad.mth@buk.edu.ng
Mustapha
Muhammad
Department of Mathematical Sciences, Faculty of Physical Sciences
Bayero University Kano (BUK)
Nigeria
mmuhammad.mth@buk.edu.ng
Erlang-truncated exponential distribution
beta-G distribution
moments
entropy
maximum likelihood estimation
stress-strength parameter estimation
Article.3.pdf
[
[1]
T. H. M. Abouelmagda, M. S. Hameda, L. Handiqueb, H. Goualc, M. M. Alid, H. M. Yousofe, N. C. Korkmazf, A new class of distributions based on the zero truncated Poisson distribution with properties and applications, J. Nonlinear Sci. Appl., 12 (2019), 152-164
##[2]
K. A. Adepoju, A. Chukwu, M. Wang, The Beta Power Exponential Distribution, J. Stat. Sci. Appl., 2 (2014), 37-46
##[3]
Z. Ahmad, M. Elgarhy, N. Abbas, A new extended alpha power transformed family of distributions: properties and applications, J. Statist. Model. Theory Appl., 1 (2018), 13-28
##[4]
Z. Ahmad, M. Elgarhy, G. G. Hamedani, A new Weibull-X family of distributions: properties, characterizations and applications, J. Stat. Distrib. Appl., 5 (2018), 1-18
##[5]
A. Akinsete, F. Famoye, C. Lee, The beta-Pareto distribution, Statistics, 42 (2008), 547-563
##[6]
M. Alizadeh, M. Rasekhi, H. M. Yousof, G. G. Hamedani, The transmuted Weibull-G family of distributions, Hacet. J. Math. Stat., 47 (2018), 1671-1689
##[7]
M. G. Bader, A. M. Priest, Statistical aspects of fiber and bundle strength in hybrid composites, Progress in Science and Engineering of Composites, 1982 (1982), 1129-1136
##[8]
R. A. R. Bantan, F. Jamal, C. Chesneau, M. Elgarhy, Type II Power Topp-Leone Generated Family of Distributions with Statistical Inference and Applications, Symmetry, 12 (2020), 1-24
##[9]
R. E. Barlow, F. Proschan, Statistical theory of Reliability and life testing, Holt, Rinehart and Winston, New York-Montreal (1975)
##[10]
W. Barreto-Souza, G. M. Cordeiro, A. B. Simas, Some results for beta Frechet distribution, Comm. Statist. Theory Methods, 40 (2011), 798-811
##[11]
W. Barreto-Souza, A. H. S. Santos, G. M. Cordeiro, The beta generalized exponential distribution, J. Stat. Comput. Simul., 80 (2010), 159-172
##[12]
Z. W. Birnbaum, S. C. Saunders, Estimation for a family of life distributions with applications to fatigue, J. Appl. Probability, 6 (1969), 328-347
##[13]
P. J. Boland, T. Hu, M. Shaked, J. G. Shanthikumar, Stochastic ordering of order statistics II, in: Modeling uncertainty, 2005 (2005), 607-623
##[14]
P. J. Boland, M. Shaked, J. G. Shanthikumar, Stochastic ordering of order statistics, Handbook of Statistics, 1988 (1998), 89-103
##[15]
G. Casella, R. L. Berger, Statistical Inference, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove (1990)
##[16]
G. M. Cordeiro, A. J. Lemonte, The $\beta$-Birnbaum-Saunders distribution: an improved distribution for fatigue life modeling, Comput. Statist. Data Anal., 55 (2011), 1445-1461
##[17]
G. M. Cordeiro, A. J. Lemonte, The beta Laplace distribution, Statist. Probab. Lett., 81 (2011), 973-982
##[18]
G. M. Cordeiro, A. J. Lemonte, The beta-half-Cauchy distribution, J. Probab. Stat., 2011 (2011), 1-18
##[19]
G. M. Cordeiro, A. B. Simas, B. D. Stosic, Explicit expressions for moments of the beta Weibull distribution, arXiv, 2008 (2008), 1-17
##[20]
A. R. El-Alosey, Random sum of new type of mixture of distribution, Int. J. Statist. Syst., 2 (2007), 49-57
##[21]
N. Eugene, C. Lee, F. Famoye, Beta-normal distribution and its applications, Comm. Statist. Theory Methods, 31 (2002), 497-512
##[22]
R. E. Glaser, Bathtub and related failure rate characterizations, J. Amer. Statist. Assoc., 75 (1980), 667-672
##[23]
A. A. Jafari, S. Tahmasebi, M. Alizadeh, The beta-Gompertz distribution, Rev. Colombiana Estadist., 37 (2014), 141-158
##[24]
E. Mahmoudi, The beta generalized Pareto distribution with application to lifetime data, Math. Comput. Simulation, 81 (2011), 2414-2430
##[25]
M. Muhammad, Generalized Half Logistic Poisson Distributions, Comm. Stat. Appl. Methods, 24 (2017), 353-365
##[26]
M. Muhammad, Poisson-odd generalized exponential family of distributions: theory and applications, Hacet. J. Math. Stat., 47 (2018), 1652-1670
##[27]
M. Muhammad, L. Liu, A New Extension of the Generalized Half Logistic Distribution with Applications to Real Data, Entropy, 21 (2019), 1-37
##[28]
S. Nadarajah, S. Kotz, The beta Gumbel distribution, Math. Probl. Eng., 2004 (2004), 323-332
##[29]
S. Nadarajah, S. Kotz, The beta exponential distribution, Reliab. Eng. Syst. Safety, 91 (2006), 689-697
##[30]
A. K. Nanda, S. Das, Stochastic orders of the Marshall-Olkin extended distribution, Statist. Probab. Lett., 82 (2012), 295-302
##[31]
V. Nekoukhou, The Beta-Rayleigh Distribution on the Lattice of Integers, J. Statist. Res. Iran, 12 (2015), 205-224
##[32]
V. Nekoukhou, M. H. Alamatsaz, A family of skew-symmetric-Laplace distributions, Statist. Papers, 53 (2012), 685-696
##[33]
M. D. Nichols, W. J. Padgett, A bootstrap control chart for Weibull percentiles, Quality Reliab. Eng. Int., 22 (2006), 141-151
##[34]
I. E. Okorie, A. C. Akpanta, J. Ohakwe, Marshall--Olkin generalized Erlang--truncated exponential distribution: Properties and applications, Cogent Math., 4 (2017), 1-19
##[35]
I. E. Okorie, A. C. Akpanta, J. Ohakwe, D. C. Chikezie, The Extended Erlang-Truncated Exponential distribution: Properties and application to rainfall data, Heliyon, 3 (2017), 1-12
##[36]
P. F. Paranaíba, E. M. M. Ortega, G. M. Cordeiro, R. R. Pescim, The beta Burr XII distribution with application to lifetime data, Comput. Statist. Data Anal., 55 (2011), 1118-1136
##[37]
R. R. Pescim, C. G. B. Demétrio, G. M. Cordeiro, E. M. Ortega, M. R. Urbano, The beta generalized half-normal distribution, Comput. Statist. Data Anal., 54 (2010), 945-957
##[38]
S. M. Ross, Stochastic processes, Second ed., John Wiley & Sons, New York (1996)
##[39]
A. Saboor, M. N. Khan, G. M. Cordeiro, I. Elbatal, R. R. Pescim, The Beta exponentiated Nadarajah-Haghighi distribution: Theory, regression model and application, Math. Slovaca, 69 (2019), 939-952
##[40]
M. Shaked, J. G. Shanthikumar, J. B. Valdez-Torres, Discrete probabilistic orderings in reliability theory, Statist. Sinica, 4 (1994), 567-579
##[41]
M. K. Shakhatreh, A. Yusuf, A. R. Mugdadi, The beta generalized linear exponential distribution, Statistics, 50 (2016), 1346-1362
##[42]
G. O. Silva, E. M. M. Ortega, G. M. Cordeiro, The beta modified Weibull distribution, Lifetime Data Anal., 16 (2010), 409-430
##[43]
D. Stoyan, Comparison methods for queues and other stochastic models, John Wiley & Sons, Chichester (1983)
##[44]
K. Zografos, N. Balakrishnan, On families of beta and generalized gamma-generated distributions and associated inference, Stat. Methodol., 6 (2009), 344-362
]
A modified extra-gradient method for a family of strongly pseudomonotone equilibrium problems in real Hilbert spaces
A modified extra-gradient method for a family of strongly pseudomonotone equilibrium problems in real Hilbert spaces
en
en
In this paper, we propose a modified extragradient method for solving a strongly pseudomonotone equilibrium problem in a real Hilbert space. A strong convergence theorem relative to our proposed method is proved and the proposed method has worked without having the information of a strongly pseudomonotone constant and the Lipschitz-type constants of a bifunction. We have carried out our numerical explanations to justify our well-established convergence results, and we can see that our proposed method has a substantial improvement over the time of execution and number iterations.
38
48
Habib ur
Rehman
KMUTTFixed Point Research Laboratory, KMUTT-Fixed Point Theory and Applications Research Group, SCL 802 Fixed Point Laboratory, Department of Mathematics, Faculty of Science
King Mongkut's University of Technology Thonburi (KMUTT)
Thailand
hrehman.hed@gmail.com
Nuttapol
Pakkaranang
KMUTTFixed Point Research Laboratory, KMUTT-Fixed Point Theory and Applications Research Group, SCL 802 Fixed Point Laboratory, Department of Mathematics, Faculty of Science
King Mongkut's University of Technology Thonburi (KMUTT)
Thailand
nuttapol.pak@mail.kmutt.ac.th
Azhar
Hussain
Department of Mathematics
University of Sargodha
Pakistan
hafiziqbal30@yahoo.com
Nopparat
Wairojjana
Applied Mathematics Program, Faculty of Science and Technology
Valaya Alongkorn Rajabhat University under the Royal Patronage (VRU)
Thailand
nopparat@vru.ac.th
Equilibrium problem
strongly pseudomonotone bifunction
strong convergence theorem
Lipschitz-type conditions
variational inequality problems
Article.4.pdf
[
[1]
J. Abubakar, P. Kumam, H. ur Rehman, A. H. Ibrahim, Inertial iterative schemes with variable step sizes for variational inequality problem involving pseudomonotone operator, Mathematics, 8 (2020), 1-25
##[2]
J. Abubakar, K. Sombut, H. ur Rehman, A. H. Ibrahim, An accelerated subgradient extragradient algorithm for strongly pseudomonotone variational inequality problems, Thai J. Math., 18 (2020), 166-187
##[3]
M. Adeel, K. A. Khan, Ð. Pečarić, J. Pečarić, Generalization of the Levinson inequality with applications to information theorey, J. Inequal. Appl., 2019 (2019), 1-19
##[4]
F. Alvarez, H. Attouch, An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Anal., 9 (2001), 3-11
##[5]
H. H. Bauschke, P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer, New York (2017)
##[6]
A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009), 183-202
##[7]
M. Bianchi, S. Schaible, Generalized monotone bifunctions and equilibrium problems, J. Optim. Theory Appl., 90 (1996), 31-43
##[8]
E. Blum, From optimization and variational inequalities to equilibrium problems, Math. Student, 63 (1994), 123-145
##[9]
P. L. Combettes, S. A. Hirstoaga, Equilibrium programming in hilbert spaces, J. Nonlinear Convex Anal., 6 (2005), 117-136
##[10]
S. Dafermos, Traffic equilibrium and variational inequalities, Transportation Sci., 14 (1980), 42-54
##[11]
M. C. Ferris, J. S. Pang, Engineering and economic applications of complementarity problems, SIAM Rev., 39 (1997), 669-713
##[12]
S. D. Flam, A. S. Antipin, Equilibrium programming using proximal-like algorithms, Math. Programming, 78 (1996), 29-41
##[13]
F. Giannessi, A. Maugeri, P. M. Pardalos, Equilibrium problems: nonsmooth optimization and variational inequality models, Springer, New York (2001)
##[14]
D. V. Hieu, Parallel extragradient-proximal methods for split equilibrium problems, Math. Model. Anal., 21 (2016), 478-501
##[15]
D. V. Hieu, New extragradient method for a class of equilibrium problems in Hilbert spaces, Appl. Anal., 97 (2017), 811-824
##[16]
D. V. Hieu, Convergence analysis of a new algorithm for strongly pseudomontone equilibrium problems, Numer. Algorithms, 77 (2018), 983-1001
##[17]
A. N. Iusem, W. Sosa, Iterative algorithms for equilibrium problems, Optimization, 52 (2003), 301-316
##[18]
I. V. Konnov, Application of the proximal point method to nonmonotone equilibrium problems, J. Optim. Theory Appl., 119 (2003), 317-333
##[19]
I. Konnov, Equilibrium models and variational inequalities, Elsevier B. V., Amsterdam (2007)
##[20]
A. Krylatov, V. Zakharov, T. Tuovinen, Optimization Models and Methods for Equilibrium Traffic Assignment, Springer, Cham (2020)
##[21]
X. Li, A. Hussain, M. Adeel, E. Savas, Fixed point theorems for $Z_{\theta}$-contraction and applications to nonlinear integral equations, IEEE Access, 7 (2019), 120023-120029
##[22]
E. Ofoedu, Strong convergence theorem for uniformly l-lipschitzian asymptotically pseudocontractive mapping in real Banach space, J. Math. Anal. Appl., 321 (2006), 722-728
##[23]
B.T. Polyak, Some methods of speeding up the convergence of iteration methods, U.S.S.R. Comput. Math. Math. Phys., 4 (1964), 1-17
##[24]
T. D. Quoc, P. N. Anh, L. D. Muu, Dual extragradient algorithms extended to equilibrium problems, J. Global Optim., 52 (2011), 139-159
##[25]
S. Takahashi, W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl., 331 (2007), 506-515
##[26]
J. V. Tiel, Convex analysis: an introductory text, Wiley, New York (1984)
##[27]
D. Q. Tran, M. L. Dung, V. H. Nguyen, Extragradient algorithms extended to equilibrium problems, Optimization, 57 (2008), 749-776
##[28]
H. ur Rehman, D. Gopal, P. Kumam, Generalizations of darbo's fixed point theorem for new condensing operators with application to a functional integral equation, Demonstr. Math., 52 (2019), 166-182
##[29]
H. ur Rehman, P. Kumam, A. B. Abubakar, Y. J. Cho, The extragradient algorithm with inertial effects extended to equilibrium problems, Comput. Appl. Math., 39 (2020), 1-26
##[30]
H. ur Rehman, P. Kumam, I. K. Argyros, N. A. Alreshidi, W. Kumam, W. Jirakitpuwapat, A self-adaptive extra-gradient methods for a family of pseudomonotone equilibrium programming with application in different classes of variational inequality problems, Symmetry, 12 (2020), 1-27
##[31]
H. ur Rehman, P. Kumam, I. K. Argyros, W. Deebani, W. Kumam, Inertial extra-gradient method for solving a family of strongly pseudomonotone equilibrium problems in real hilbert spaces with application in variational inequality problem, Symmetry, 12 (2020), 1-24
##[32]
H. ur Rehman, P. Kumam, Y. J. Cho, Y. I. Suleiman, W. Kumam, Modified popov's explicit iterative algorithms for solving pseudomonotone equilibrium problems, Opti. Methods Soft., 2020 (2020), 1-32
##[33]
H. ur Rehman, P. Kumam, Y. J. Cho, P. Yordsorn, Weak convergence of explicit extragradient algorithms for solving equilibirum problems, J. Inequal. Appl., 1 (2019), 1-25
##[34]
H. ur Rehman, P. Kumam, S. Dhompongsa, Existence of tripled fixed points and solution of functional integral equations through a measure of noncompactness, Carpathian J. Math., 35 (2019), 193-208
##[35]
H. ur Rehman, P. Kumam, W. Kumam, M. Shutaywi, W. Jirakitpuwapat, The inertial sub-gradient extra-gradient method for a class of pseudo-monotone equilibrium problems, Symmetry, 12 (2020), 1-25
]
On the difference between geometric-arithmetic index and atom-bond connectivity index for trees
On the difference between geometric-arithmetic index and atom-bond connectivity index for trees
en
en
Let \(G\) be a simple and connected graph with vertex set \(V(G)\) and edge set \(E(G)\). The geometric-arithmetic index and atom-bond connectivity index of graph \(G\) are defined as \(GA(G)=\sum_{uv\in E(G)} \frac{2\sqrt{d_ud_v}}{d_u + d_v}\) and \(ABC(G)=\sum_{uv\in E(G)} \sqrt{\frac{d_u+d_v-2}{d_ud_v}}\), respectively, where the summation extends over all edges \(uv\) of \(G\), and \(d_u\) denotes the degree of vertex \(u\) in \(G\). Let \((GA-ABC)(G)\) denote the difference between \(GA\) and \(ABC\) indices of \(G\). In this note, we determine \(n\)-vertex binary trees with first three minimum \(GA-ABC\) values. We also present a lower bound for \(GA-ABC\) index of molecular trees with fixed number of pendant vertices.
49
58
Wan Nor Nabila Nadia Wan
Zuki
Faculty of Ocean Engineering Technology and Informatics
University Malaysia Terengganu
Malaysia
Roslan
Hasni
Faculty of Ocean Engineering Technology and Informatics
University Malaysia Terengganu
Malaysia
hroslan@umt.edu.my
Nor Hafizah Md.
Husin
Faculty of Ocean Engineering Technology and Informatics
University Malaysia Terengganu
Malaysia
Zhibin
Du
School of Mathematics and Statistics
Zhaoqing University
P. R. China
Abdul
Raheem
Department of Higher Education
Govt. Postgraduate College Asghar Mall Rawalpindi
Pakistan
Atom-bond connectivity index
geometric-arithmetic index
trees
Article.5.pdf
[
[1]
A. Ali, Z. Du, On the difference between atom-bond connectivity index and Randic index of binary and chemical trees, Int. J. Quantum Chem., 117 (2017), 1-15
##[2]
Q. Cui, Q. P. Qian, L. P. Zhong, The maximum atom-bond connectivity index for graphs with edge-connectivity one, Discrete Appl. Math., 220 (2017), 170-173
##[3]
K. C. Das, On geometric-arithmetic index of graphs, MATCH Commun. Math. Comput. Chem., 64 (2010), 619-630
##[4]
K. C. Das, I. Gutman, B. Furtula, On the first geometric-arithmetic index of graphs, Discrete Appl. Math., 159 (2011), 2030-2037
##[5]
K. C. Das, I. Gutman, B. Furtula, Survey on geometric-arithmetic indices of graphs, MATCH Commun. Math. Comput. Chem., 65 (2011), 595-644
##[6]
K. C. Das, N. Trinajstić, Comparison between the first geometric-arithmetic index and atom-bond connectivity index, Chem. Phsy. Lett., 497 (2010), 149-151
##[7]
J. Devillers, A. T. Balaban, Topological indices and related descriptors in QSAR and QSPAR, Gordon and Breach, Amsterdam (1999)
##[8]
D. Dimitrov, On the structural properties of trees with minimal atom-bond connectivity index III: Bounds on $B_1$- and $B_2$-branches, Discrete Appl. Math., 204 (2016), 90-116
##[9]
E. Estrada, Atom-bond connectivity and energetic of branched alkanes, Chem. Phsy. Lett., 463 (2008), 422-425
##[10]
E. Estrada, L. Torres, L. Rodriguez, I. Gutman, An atom-bond connectivity index: modelling the enthalpy of formation of alkanes, Indian J. Chem. Sect. A, 37 (1998), 849-855
##[11]
Y. Gao, Y. Shao, The smallest $ABC$ index of trees with $n$ pendant vertices, MATCH Commun. Math. Comput. Chem., 76 (2016), 141-158
##[12]
X. Ke, Atom-bond connectivity and geometric-arithmetic indices in random polyphenyl chain, submitted, (), -
##[13]
Z. Raza, A. A. Bhatti, A. Ali, More comparison between the first geometric-arithmetic index and atom-bond connectivity index, Miskolc Math. Notes, 17 (2016), 561-570
##[14]
J. M. Rodriguez, J. M. Sigarreta, Spectral properties of geometric-arithmetic index, Appl. Math. Comput., 277 (2016), 142-153
##[15]
Z. H. Shao, P. Wu, Y. Y. Gao, I. Gutman, X. J. Zhang, On the maximum $ABC$ index of graphs without pendent vertices, Appl. Math. Comput., 315 (2017), 298-312
##[16]
R. Todeschini, V. Consonni, Handbook of molecular descriptors, Wiley-VCH, Weinheim (2000)
##[17]
D. Vukičević, B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem., 46 (2009), 1369-1376
##[18]
S. L. Wei, X. L. Ke, G. L. Hao, Comparing the excepted values of atom-bond connectivity and geometric-arithmetic indices in random spiro chains, J. Inequal. Appl., 2018 (2018), 1-11
##[19]
D. B. West, Introduction to Graph Theory, Prentice-Hall, Upper Saddle River (2001)
##[20]
R. Xing, B. Zhou, F. M. Dong, On the atom-bond connectivity index of connected graphs, Discrete Appl. Math., 159 (2011), 1617-1630
##[21]
Y. Yuan, B. Zhou, N. Trinajstić, On geometric-arithmetic index, J. Math. Chem., 47 (2010), 833-841
##[22]
L. P. Zhong, Q. Cui, On a relation between the atom-bond connectivity and the first geometric-arithmetic indices, Discrete Appl. Math., 185 (2015), 249-253
]
Fourier expansions for Genocchi polynomials of higher order
Fourier expansions for Genocchi polynomials of higher order
en
en
In this paper, Fourier expansions and integral representations for Genocchi polynomials of higher order are established. Using the Fourier expansion, the explicit formula for Genocchi polynomials at rational arguments in terms of Hurwitz zeta function is also obtained.
59
72
Cristina B.
Corcino
Research Institute for Computational Mathematics and Physics
Cebu Normal University
Philippines
cristinacorcino@yahoo.com
Baby Ann A.
Damgo
Mathematics Department
Cebu Normal University
Philippines
babyann.damgo2@metroretail.com.ph
Roberto B.
Corcino
Research Institute for Computational Mathematics and Physics
Cebu Normal University
Philippines
rcorcino@yahoo.com
Genocchi polynomials
Bernoulli polynomials
Euler polynomials
Fourier series
Hurwitz zeta function
Article.6.pdf
[
[1]
S. Araci, M. Acikgoz, Applications of Fourier Series and Zeta Functions to Genocchi Polynomials, Appl. Math. Inf. Sci., 12 (2018), 951-955
##[2]
S. Araci, M. Acikgoz, Construction of Fourier expansion of Apostol Frobenius-Euler polynomials and its application, Adv. Difference Equ., 2018 (2018), 1-14
##[3]
S. Araci, E. Sen, M. Acikgoz, Theorems on Genocchi polynomials of higher order arising from Genocchi basis, Taiwanese J. Math., 18 (2014), 473-482
##[4]
A. Bayad, Fourier expansions for Apostol-Bernoulli, Apostol- Euler and Apostol-Genocchi polynomials, Math Comp., 80 (2011), 2219-2221
##[5]
R. V. Churchill, J. W. Brown, Complex variables and applications, McGraw-Hill, Boston (2009)
##[6]
C. B. Corcino, R. B. Corcino, Asymptotics of Genocchi polynomials and higher order Genocchi polynomials using residues, Afr. Mat., 2020 (2020), 1-13
##[7]
A. F. Horadam, Genocchi Polynomials, In: Application of Fibonacci Numbers, 1991 (1991), 145-166
##[8]
D. S. Kim, T. Kim, A Note on Higher-Order Bernoulli Polynomials, J. Inequal. Appl., 2013 (2013), 1-9
##[9]
M. Kir, H. Dutta, M. Acikgoz, S. Araci, Identities on Some Special Poynomials Derived from the Concepts of n-Normed Structures, Accretive Operators and Contraction Mappings, Iran. J. Sci. Technol. Trans. A Sci., 42 (2018), 787-792
##[10]
J. L. Lopez, N. M. Temme, Large degree asymptotics of generalized Bernoulli and Euler polynomials, J. Math. Anal. Appl., 363 (2010), 197-208
##[11]
Q.-M Luo, Fourier expansion and integral representations for the Apostol-Bernoulli and Apostol-Euler polynomials, Math. Comp., 78 (2009), 2193-2208
##[12]
Q.-M. Luo, Fourier expansions and integral representations for Genocchi polynomials, J. Integer Seq., 12 (2009), 1-9
##[13]
Q.-M. Luo, Extensions of the Genocchi Polynomials and their Fourier expansions and integral representations, Osaka J. Math., 48 (2011), 291-309
##[14]
Q.-M. Luo, H. M. Srivastava, Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials, J. Math. Anal. Appl., 308 (2005), 390-302
##[15]
Q.-M. Luo, H. M. Srivastava, Some generalizations of the Apostol-Genocchi polynomials and the Stirling numbers of the second kind, Appl. Math. Comput., 217 (2011), 5702-5728
##[16]
R. Niu, Fourier Series and Their Applications, Technical Reports (MIT), 2006 (2006), 1-13
]
Modified differential transform scheme for solving systems of first order ordinary differential equations
Modified differential transform scheme for solving systems of first order ordinary differential equations
en
en
In this paper, a modified differential transform scheme (MDTS) is proposed for solving systems of first order ordinary differential equations. This numerical scheme serves as an alternative approach that is designed based on the differential transform method (DTM), Laplace transform and Pade approximants. The proposed method would be able to overcome the difficulty of solving these types of problems and also, gives a virtuous approximation for the true solution of the problems in a large region. Preliminary results are presented based on some examples which illustrate the validity and applicability of the proposed scheme. Also, all the obtained results corresponded to exact solutions.
73
84
S.
Al-Ahmad
Faculty of Informatics and Computing
Universiti Sultan Zainal Abidin
Malaysia
I. M.
Sulaiman
Faculty of Informatics and Computing
Universiti Sultan Zainal Abidin
Malaysia
sulaimanib@unisza.edu.my
M.
Mamat
Faculty of Informatics and Computing
Universiti Sultan Zainal Abidin
Malaysia
Puspa Liza
Ghazali
Faculty of Informatics and Computing
Universiti Sultan Zainal Abidin
Malaysia
Systems of first order ordinary differential equations
differential transform method
Laplace transform
Pade approximants
Article.7.pdf
[
[1]
S. Al-Ahmad, M. Mamat, R. Al-Ahmad, Finding Differential Transform Using Difference Equations, IAENG Int. J. Appl. Math., 50 (2020), 127-132
##[2]
S. Al-Ahmad, M. Mamat, R. Al-Ahmad, I. M. Sulaiman, P. L. Ghazali, M. A. Mohamed, On New Properties of Differential Transform via Difference Equations, Int. J. Eng. Tech., 7 (2018), 321-324
##[3]
A. H. Ali, Applications of Differential Transform Method To Initial Value Problems, Amer. J. Eng. Res., 6 (2017), 365-371
##[4]
A. K. Alomari, N. Ratib Anakira, A. S. Bataineh, I. Hashim, Approximate solution of nonlinear system of BVP arising in fluid flow problem, Math. Probl. Eng., 2013 (2013), 1-7
##[5]
N. Anakira, Solution of system of ordinary differential equations by optimal homotopy asymptotic method, AIP Conference Proceedings, 2096 (2019), 1-5
##[6]
F. Ayaz, Solutions of the system of differential equations by differential transform method, Appl. Math. Comput., 147 (2004), 547-567
##[7]
G. A. Baker, Essentials of Padé approximants, Academic Press, London (1975)
##[8]
C. M. Bender, S. A. Orszag, Advanced mathematical methods for scientists and engineers I: Asymptotic methods and perturbation theory, Springer, New York (2013)
##[9]
J. Biazar, E. Babolian, R. Islam, Solution of the system of ordinary differential equations by Adomian decomposition method, Appl. Math. Comput., 147 (2004), 713-719
##[10]
J. Biazar, H. Ghazvini, He's variational iteration method for solving linear and non-linear systems of ordinary differential equations, Appl. Math. Comput., 191 (2007), 287-297
##[11]
C.-L. Chen, S.-H. Lin, C.-K. Chen, Application of Taylor transformation to nonlinear predictive control problem, Appl. Math. Modelling, 20 (1996), 699-710
##[12]
B. Ibis, Approximate analytical solutions for nonlinear Emden-Fowler type equations by differential transform method, arXiv, 2012 (2012), 1-7
##[13]
A. F. Jameel, N. R. Anakira, M. M. Rashidi, A. K. Alomari, A. Saaban, M. A. Shakhatreh, Differential Transformation Method For Solving High Order Fuzzy Initial Value Problems, Ital. J. Pure Appl. Math., 39 (2018), 194-208
##[14]
F. Mirzaee, Differential Transform Method for Solving Linear and Nonlinear Systems of Ordinary Differential Equations, Appl. Math. Sci. (Ruse), 5 (2011), 3465-3472
##[15]
S. Momani, V. S. Ertürk, Solutions of non-linear oscillators by the modified differential transform method, Comput. Math. Appl., 55 (2008), 833-842
##[16]
Z. M. Odibat, Differential transform method for solvin Volterra integral equation with separable kernels, Math. Comput. Modelling, 48 (2008), 1144-1149
##[17]
A. S. V. Ravi Kanth, K. Aruna, Differential transform method for solving linear and non-linear systems of partial differential equations, Phys. Lett. A, 372 (2008), 6896-6898
##[18]
M. Thongmoon, S. Pusjuso, The numerical solutions of differential transform method and the Laplace transform method for a system of differential equations, Nonlinear Anal. Hybrid Syst., 4 (2010), 425-431
##[19]
J. K. Zhou, Differential transformation and Application for electrical circuits, Huazhong University Press, Wuhan (1986)
]
A numerical study on time fractional Fisher equation using an extended cubic B-spline approximation
A numerical study on time fractional Fisher equation using an extended cubic B-spline approximation
en
en
A new extended cubic B-spline approximation for the numerical solution of the time-fractional fisher equation is formed and examined. The given non-linear partial differential equation through substitution is converted into a linear partial differential equation through substitution, using Taylor's series expansion. The time-fractional derivative is approximated in Caputo's sense while the space dimension is calculated using a new extended cubic B-spline. The proposed numerical technique is shown to be unconditionally stable and convergent. The errors are used for measuring the accuracy of the proposed technique. The graphical and numerical results are presented to illustrate the performance of the technique.
85
96
Tayyaba
Akram
School of Mathematical Sciences
Universiti Sains Malaysia
Malaysia
tayyaba.akram2020@gmail.com
Muhammad
Abbas
Department of Mathematics
University of Sargodha
Pakistan
Ajmal
Ali
School of Mathematical Sciences
Universiti Sains Malaysia
Malaysia
Time fractional Fisher equation
extended cubic B-spline
Caputo's derivative
stability
convergence
Article.8.pdf
[
[1]
H. F. Ahmed, Efficient methods for the analytical solution of the fractional generalized fisher equation, J. Fract. Calc. Appl., 10 (2019), 85-104
##[2]
A. Akgül, A novel method for a fractional derivative with non-local and non-singular kernel, Chaos Soliton Fractal, 114 (2018), 478-482
##[3]
A. Akgül, Reproducing kernel Hilbert space method based on reproducing kernel functions for investigating boundary layer flow of a Powell-Eyring non-Newtonian fluid, J. Taibah Uni. Sci., 13 (2019), 857-863
##[4]
A. Akgül, Solutions of the linear and nonlinear differential equations within the generalized fractional derivatives, Chaos, 29 (2019), 1-6
##[5]
A. Akgül, A. Cordero, J. R. Torregrosa, Solutions of fractional gas dynamics equation by a new technique, Math. Meth. Appl. Sci., 43 (2020), 1349-1358
##[6]
A. Akgül, M. Modanli, Crank-Nicholson difference method and reproducing kernel function for third order fractional differential equations in the sense of Atangana-Baleanu Caputo derivative, Chaos Soliton Fractal, 127 (2019), 10-16
##[7]
T. Akram, M. Abbas, A. I. Ismail, An extended cubic $B$-spline collocation scheme for time fractional sub-diffusion equation, AIP Conference Proceedings, 2184 (2019), 1-15
##[8]
T. Akram, M. Abbas, A. I. Ismail, Numerical solution of fractional cable equation via extended cubic $B$-spline, AIP Conference Proceedings, 2138 (2019), 1-7
##[9]
T. Akram, M. Abbas, A. I. Ismail, N. H. M. Ali, D. Baleanu, Extended cubic B-splines in the numerical solution of time fractional telegraph equation, Adv. Difference Equ., 2019 (2019), 1-20
##[10]
T. Akram, M. Abbas, M. B. Riaz, A. I. Ismail, N. M. Ali, An efficient numerical technique for solving time fractional Burgers equation, Alexand. Eng. J., 2020 (2020), 1-20
##[11]
T. Akram, M. Abbas, M. B. Riaz, A. I. Ismail, N. M. Ali, Development and analysis of new approximation of extended cubic $B$-spline to the non-linear time fractional Klein-Gordon equation, Fractals, 2020 (2020), 1-28
##[12]
M. M. Al Qurashi, Z. Korpinar, D. Baleanu, M. Inc, A new iterative algorithm on the time fractional Fisher equation: Residual power series method, Adv. Mech. Eng., 9 (2017), 1-8
##[13]
S. Arshed, Quintic $B$-spline method for time fractional superdiffusion fourth-order differential equation, Math. Sci., 11 (2017), 17-26
##[14]
R. L. Bagley, P. J. Torvik, A theoretical basis for the application of fractional calulus to visoelasticity, J. Rheology, 27 (1983), 201-210
##[15]
D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional calculus: Models and numerical methods, World Scientific Publishing Co. Pte. Ltd., Hackensack (2012)
##[16]
D. Baleanu, A. Fernandez, A. Akgül, {On a fractional operator combining proportional and classical differintegrals, Mathematics, 8 (2020), 1-13
##[17]
M. Caputo, Elasticita e dissipazione, Zanichelli, Bologna (1969)
##[18]
A. Demir, M. A. Bayrak, E. Ozbilge, An approximate solution of the time fractional fisher equation with small delay by residual power series method, Math. Probl. Eng., 2018 (2018), 1-8
##[19]
A. Esen, O. Tasbozan, Numerical solutions of time fractional Burgers equation, Acta Univ. Sapientiae Math., 7 (2015), 167-185
##[20]
R. A. Fisher, The wave of advance of advantageous genes, Annals of Eugenics, 7 (1937), 355-369
##[21]
M. M. Khader, K. M. Saad, A numerical study by using the Chebyshev collocation method for a problem of biological invasion: Fractional Fisher equation, Int. J. Biomath, 11 (2018), 1-15
##[22]
A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science B. V., Amsterdam (2006)
##[23]
R. L. Magin, Fractional calculus in bioengineering, Critical Rev. Biomed. Engineer., 32 (2004), 1-377
##[24]
R. E. Mickens, Relation between the time and space step-sizes in nonstandard finite difference schemes for the Fishers equation, Numer. Methods Partial Differential Equations, 13 (1997), 51-55
##[25]
S. T. Mohyud-Din, T. Akram, M. Abbas, A. I. Ismail, N. H. M. Ali, A fully implicit finite difference scheme based on extended cubic B-splines for time fractional advection-diffusion equation, Adv. Difference Equ., 2018 (2018), 1-17
##[26]
Z. Odibat, Approximations of fractional integrals and Caputo fractional derivatives, Appl. Math. Comput., 178 (2006), 527-533
##[27]
D. Olmos, B. D. Shizgal, A pseudo-spectral method of solution of Fisher's equation, J. Comput. Appl. Math., 193 (2006), 219-242
##[28]
D. A. Robinson, The use of control systems analysis in the neurophysiology of eye movements, Annual Rev. Neurosci., 4 (1981), 463-501
##[29]
S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York (1993)
##[30]
O. Tasbozan, A. Esen, Quadratic $B$-spline Galerkin method for numerical solutions of fractional telegraph equations, Bulletin Math. Sci. Appl., 18 (2017), 23-39
##[31]
R. Uddin, Comparison of the nodal integral method and non standard finite-difference schemes for the Fisher equation, SIAM J. Sci. Comput., 22 (2001), 1926-1942
##[32]
P. Veeresha, D. G. Prakasha, H. M. Baskonus, Novel simulations to the time‑fractional Fisher's equation, Math. Sci., 13 (2019), 33-42
##[33]
X. Zhang, J. Liu, An analytic study on time fractional Fisher equation using homotopy perturbation method, Walailak J. Sci. Tech., 11 (2014), 975-985
]