]>
2017
17
4
107
Polyharmonic functions with negative coefficients
Polyharmonic functions with negative coefficients
en
en
A 2p times continuously differentiable complex-valued mapping \(F=u+i v\) in a domain \( \mathcal D \subset \mathbb C\) is polyharmonic if \(F\) satisfies the polyharmonic equation \(\underbrace{\Delta\cdot\cdot\cdot\Delta}_\text{p} F= 0\), where \(p \in \mathbb N^{+}\) and \(\Delta\) represents the complex Laplacian operator. The main aim of this paper is to introduce a subclasses of polyharmonic mappings. Coefficient conditions, distortion bounds, extreme
points, of the subclasses are obtained.
437
447
K.
Al-Shaqsi
R.
Al-Khal
Univalent functions
polyharmonic mappings
extreme points.
Article.1.pdf
[
[1]
Y. Avci, E. Zlotkiewicz, On harmonic univalent mappings, Ann. Univ. Mariae Curie-Skodowska Sect. A, 44 (1990), 1-7
##[2]
J. Clunie, T. Shell-Small, Harmonic univalent functions, Ann. Acad. Aci. Fenn. Ser. A I Math., 9 (1984), 3-25
##[3]
J. M. Jahangiri, Coefficient bounds and univalence criteria for harmonic functions with negative coefficients, Ann. Univ. Mariae Curie Sklodowska Sect A., 52 (1998), 57-66
##[4]
J. M. Jahangiri, Harmonic functions starlike in the unit disk, J. Math. Anal. Appl., 235 (1999), 470-477
##[5]
J. Qiao, X. Wang, On p-harmonic univalent mapping, Acta Math. Sci. A, 32 (2012), 588-600
##[6]
H. Silverman , Harmonic univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51 (1998), 283-289
##[7]
H. Silverman, E. M. Silvia, Subclasses of harmonic univalent functions, New Zealand J. Math., 28 (1999), 275-284
]
Results on soft extremally disconnectedness of soft topological spaces
Results on soft extremally disconnectedness of soft topological spaces
en
en
Molodtsov [D. Molodtsov, Global optimization, control, and games, III, Comput. Math. Appl., \({\bf 37}\) (1999), 19--31] studied the concept of soft sets. The concept of soft sets is introduced as a general mathematical tool for dealing with uncertainty. In this paper, we give some basic relations about different classes of soft sets and soft closure operator. The purpose of this paper is to introduce soft extremally disconnected spaces via soft sets. Furthermore, some relations of soft sets and soft closure via soft extremally disconnected spaces have been investigated.
448
464
Baravan A.
Asaad
Soft sets
soft extremally disconnected spaces
soft \(\lambda\)-open sets where \(\lambda\in \{regular، \alpha، pre، semi، b، \beta\}\).
Article.2.pdf
[
[1]
M. Akdag, A. Ozkan, Soft \(\alpha\)-open sets and soft \(\alpha\)-continuous functions, Abstr. Appl. Anal., 2014 (2014 ), 1-7
##[2]
M. Akdag, A. Ozkan , Soft b-open sets and soft b-continuous functions, Math. Sci. (Springer), 8 (2014), 1-9
##[3]
I. Arockiarani, A. A. Lancy, Generalized soft g\(\beta\)-closed sets and soft gs\(\beta\)-closed sets in soft topological spaces, Int. J. Math. Arch., 4 (2013), 17-23
##[4]
B. Chen, Soft semi-open sets and related properties in soft topological spaces, Appl. Math. Inf. Sci., 7 (2013), 287-294
##[5]
D.-G. Chen, E. C. C. Tsang, D. S. Yeung, X.-Z. Wang, The parameterization reduction of soft sets and its applications, Comput. Math. Appl., 49 (2005), 757-763
##[6]
S. Das, S. K. Samanta, Soft metric, Ann. Fuzzy Math. Inform., 6 (2013), 77-94
##[7]
F. Feng, Y. B. Jun, X.-Z. Zhao, Soft semirings, Comput. Math. Appl., 56 (2008), 2621-2628
##[8]
D. N. Georgiou, A. C. Megaritis, V. I. Petropoulos, On soft topological spaces, Appl. Math. Inf. Sci., 7 (2013), 1889-1901
##[9]
S. Hussain, B. Ahmad, Some properties of soft topological spaces, Comput. Math. Appl., 62 (2011), 4058-4067
##[10]
G. Ilango, M. Ravindran, On soft preopen sets in soft topological spaces, Int. J. Math. Res., 5 (2013), 399-409
##[11]
A. Kandil, O. A. E. Tantawy, S. A. El-Sheikh, A. M. Abd El-latif, \(\gamma\)-operation and decompositions of some forms of soft continuity in soft topological spaces, Ann. Fuzzy Math. Inform., 7 (2014), 181-196
##[12]
A. Kandil, O. A. E. Tantawy, S. A. El-Sheikh, A. M. Abd El-latif, Soft semi compactness via soft ideals, Appl. Math. Inf. Sci. , 8 (2014), 2297-2306
##[13]
Z. Kong, L.-Q. Gao, L.-F. Wong, S. Li, The normal parameter reduction of soft sets and its algorithm, Comput. Math. Appl., 56 (2008), 3029-3037
##[14]
P. K. Maji, R. Biswas, A. R. Roy, Soft set theory, Comput. Math. Appl., 45 (2003), 555-562
##[15]
P. K. Maji, A. R. Roy, R. Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl., 44 (2002), 1077-1083
##[16]
D. Molodtsov, Soft set theory—first results, Global optimization, control, and games, III,, Comput. Math. Appl., 37 (1999), 19-31
##[17]
D.-W. Pei, D.-Q. Miao, From soft sets to information systems, IEEE International Conference on Granular Computing, Beijing, China, 2 (2005), 617-621
##[18]
M. Shabir, M. Naz, On soft topological spaces, Comput. Math. Appl., 61 (2011), 1786-1799
##[19]
Ş. Yüksel, N. Tozlu, Z. G. Ergül, Soft regular generalized closed sets in soft topological spaces, Int. J. Math. Anal. (Ruse), 8 (2014), 355-367
##[20]
Y. Yumak, A. K. Kaymakcı, Soft \(\beta\)-open sets and their applications, J. New Theory, 4 (2015), 80-89
##[21]
I. Zorlutuna, H. Çakır, On continuity of soft mappings, Appl. Math. Inf. Sci. , 9 (2015), 403-409
##[22]
Y. Zou, Z. Xiao, Data analysis approaches of soft sets under incomplete information, Knowl.-Based Syst., 21 (2008), 941-945
]
Integral inequalities via generalized convex functions
Integral inequalities via generalized convex functions
en
en
In this paper, we introduce and investigate a new class of
generalized convex functions, called generalized log-convex
function. We establish some new Hermite-Hadamard integral
inequalities via generalized log-convex functions. Our results
represent refinement and improvement of the previously known
results. Several special cases are also discussed. The concepts and
techniques of this paper may stimulate further research in this
field.
465
476
Muhammad Aslam
Noor
Khalida Inayat
Noor
Farhat
Safdar
Generalized convex functions
generalized \(\log\)-convex functions
Hermite-Hadamard type inequalities
Article.3.pdf
[
[1]
M. Alomari, M. Darus, S. S. Dragomir , New inequalities of Simpson’s type for s-convex functions with applications, Res. Rep. Collect., 12 (2009), 1-18
##[2]
G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen, Generalized convexity and inequalities, J. Math. Anal. Appl., 335 (2007), 1294-1308
##[3]
B. C. Carlson , Special functions of applied mathematics, Academic Press, New York (1977)
##[4]
G. Cristescu, Improved integral inequalities for products of convex functions, JIPAM. J. Inequal. Pure Appl. Math., 6 (2005), 1-6
##[5]
G. Cristescu, L. Lupşa , Non-connected convexities and applications, Applied Optimization, Kluwer Academic Publishers, Dordrecht (2002)
##[6]
M. R. Delavar, S. S. Dragomir, On \(\eta\)-convexity, Math. Inequal. Appl., 20 (2016), 203-216
##[7]
M. R. Delavar, F. Sajadian, Hermite-Hadamard type integral inequalities for log-\(\eta\)-convex function , Math. Comp. Sci., 1 (2016), 86-92
##[8]
S. S. Dragomir, C. E. M. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, RGMIA Monographs, Victoria University, Australia (2000)
##[9]
M. E. Gordji, M. R. Delavar, M. De La Sen, On \(\varphi\) convex functions, J. Math. Inequal., 10 (2016), 173-183
##[10]
M. E. Gordji, S. S. Dragomir, M. R. Delavar, An inequality related to \(\eta\)-convex functions, II, Int. J. Nonlinear Anal. Appl., 6 (2015), 27-33
##[11]
D. H. Hyers, S. M. Ulam, Approximately convex functions, Proc. Amer. Math. Soc., 3 (1952), 821-828
##[12]
C. P. Niculescu, The Hermite-Hadamard inequality for log-convex functions, Nonlinear Anal., 75 (2012), 662-669
##[13]
C. P. Niculescu, L. E. Persson, Convex functions and their applications, A contemporary approach, CMS Books in Mathematics/Ouvrages de Mathmatiques de la SMC, Springer, New York (2006)
##[14]
M. A. Noor, On Hadamard integral inequalities involving two log-preinvex functions, JIPAM. J. Inequal. Pure Appl. Math., 8 (2007), 1-6
##[15]
M. A. Noor, K. I. Noor, M. U. Awan, Hermite-Hadamard inequalities for relative semi-convex functions and applications, Filomat, 28 (2014), 221-230
##[16]
M. A. Noor, K. I. Noor, M. U. Awan, Some characterizations of harmonically log-convex functions, Proc. Jangjeon Math. Soc., 17 (2014), 51-61
##[17]
M. A. Noor, K. I. Noor, M. U. Awan, Generalized convexity and integral inequalities, Appl. Math. Inf. Sci., 9 (2015), 233-243
##[18]
M. A. Noor, K. I. Noor, S. Iftikhar, F. Safdar, Integral inequaities for relative harmonic (\(s,\eta\))-convex functions, Appl. Math. Comput. Sci., 1 (2016), 27-34
##[19]
M. A. Noor, K. I. Noor, F. Safdar, Generalized geometrically convex functions and inequalities, J. Inequal Appl., 2017 (2017 ), 1-19
##[20]
M. A. Noor, K. I. Noor, F. Safdar, Integral inequalities via generalized (\(\alpha,m\))-convex functions, J. Nonlinear Funct. Anal., 2017 (2017 ), 1-13
##[21]
J. E. Pečarić, F. Proschan, Y. L. Tong, Convex functions, partial orderings, and statistical applications, Mathematics in Science and Engineering, Academic Press, Inc., Boston, MA (1992)
##[22]
M. Z. Sarikaya, On Hermite Hadamard inequalities for product of two log-\(\varphi\)- convex functions, Int. J. Modern Math. Sci., 6 (2013), 184-191
##[23]
M. Tunç, Some integral inequalities for logarithmically convex functions , J. Egyptian Math. Soc., 22 (2014), 177-181
]
Inverse eigenvalue problems for centrosymmetric matrices under a central principal submatrix constraint
Inverse eigenvalue problems for centrosymmetric matrices under a central principal submatrix constraint
en
en
This article considers an inverse eigenvalue problem for
centrosymmetric matrices under a central principal submatrix
constraint and the corresponding optimal approximation problem. We
first discuss the specified structure of centrosymmetric matrices
and their central principal submatrices. Then we give some necessary
and sufficient conditions for the solvability of the inverse
eigenvalue problem, and we derive an expression for its general
solution. Finally, we obtain an expression for the solution
to the corresponding optimal approximation problem.
477
487
Li-Jun
Zhao
Ru
Huang
Centrosymmetric matrix
central principal submatrix
inverse eigenvalue problem
optimal approximation problem
Article.4.pdf
[
[1]
A. L. Andrew, Eigenvectors of certain matrices , Linear Algebra and Appl., 7 (1973), 157-162
##[2]
A. Borobia, R. Canogar, The real nonnegative inverse eigenvalue problem is NP-hard, Linear Algebra Appl., 522 (2017), 127-139
##[3]
M. T. Chu, Inverse eigenvalue problems, SIAM Rev., 40 (1998), 1-39
##[4]
L.-F. Dai, M.-L. Liang, W.-Y. Ma, Optimization problems on the rank of the solution to left and right inverse eigenvalue problem, J. Ind. Manag. Optim., 11 (2015), 171-183
##[5]
L. Datta, S. D. Morgera, On the reducibility of centrosymmetric matrices–applications in engineering problems, Circuits Systems Signal Process., 8 (1989), 71-96
##[6]
P. Deift, T. Nanda, On the determination of a tridiagonal matrix from its spectrum and a submatrix, Linear Algebra Appl. , 60 (1984), 43-55
##[7]
G. H. Golub, C. F. Van Loan, Matrix computations, Third edition, Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD (1996)
##[8]
I. J. Good , The inverse of a centrosymmetric matrix , Technometrics, 12 (1970), 925-928
##[9]
X. Y. Hu, L. Zhang, Least-square approximation solutions to a class of matrix problems, (Chinese) Hunan Daxue Xuebao, 17 (1990), 98-102
##[10]
Z. X. Jiang, Q. S. Lu, On optimal approximation of a matrix under a spectral restriction, (Chinese) Math. Numer. Sinica, 8 (1986), 47-52
##[11]
K. T. Joseph, Inverse eigenvalue problem in structural design, AIAA J., 30 (1992), 2890-2896
##[12]
M. Kimura, Some problems of stochastic processes in genetics, Ann. Math. Statist., 28 (1957), 882-901
##[13]
N. Li, A matrix inverse eigenvalue problem and its application, Linear Algebra Appl., 266 (1997), 143-152
##[14]
Z.-Y. Peng, X.-Y. Hu, L. Zhang, The inverse problem of centrosymmetric matrices with a submatrix constraint, J. Comput. Math., 22 (2004), 535-544
##[15]
Y. M. Ram, J. Caldwell, Physical parameters reconstruction of a free-free mass-spring system from its spectra, SIAM J. Appl. Math., 52 (1992), 140-152
##[16]
J. R. Weaver, Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenvalues, and eigenvectors, Amer. Math. Monthly, 92 (1985), 711-717
##[17]
J. Xu, D. X. Xie, Central symmetric least squares solution for matrix equation with a submatrix constraint, J. B. Inf. Sci. Technol. Univ. , 31 (2016), 31-35
##[18]
Q.-X. Yin, Construction of real antisymmetric and bi-antisymmetric matrices with prescribed spectrum data, Linear Algebra Appl., 389 (2004), 95-106
##[19]
L. A. Zhornitskaya, V. S. Serov, Inverse eigenvalue problems for a singular Sturm-Liouville operator on [0, 1], Inverse Problems, 10 (1994), 975-987
##[20]
F.-Z. Zhou, X.-Y. Hu, L. Zhang, The solvability conditions for the inverse eigenvalue problems of centro-symmetric matrices, Linear Algebra Appl., 364 (2003), 147-160
]
Distributed security storage model for large-scale data
Distributed security storage model for large-scale data
en
en
With the development of large-scale data, the increasingly users need
to store the data in the distributed storage system due to the fact
that the signal computer can not hold the massive data. However,
the users can not control the data access rules. So the transparent
security management of Large-scale data in distributed networks is a challenge.
To solve this issue, a distributed security storage model is proposed.
This security storage model can deal with the high concurrency and the
complexity of large-scale data management in the distributed environment.
The detailed designed of the transparent security storage system is provided
based on the security storage model. This system allows the users manage
their data and provides confidentiality protection, integrity protection, and
access permission control. Experiments exhibit that the distributed storage model
can improve the data security with I/O performance loss less than 5%.
488
505
Ming
Zhang
Wei
Chen
Yunpeng
Cao
Distributed storage system
transparent encryption
confidentiality
integrity control model.
Article.5.pdf
[
[1]
A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R. Douceur, J. Howell, J. R. Lorch, M. Theimer, R. P. Wattenhofer, FARSITE: Federated, available, and reliable storage for an incompletely trusted environment, Proceedings of the 5th Symposium on Operating Systems Design and Implementation, San Francisco, USA, 36 (2002), 1-14
##[2]
M. Blaze, A cryptographic file system for UNIX, 1st ACM Conference on Computer and Communications Security, ACM Press, (1993), 9-16
##[3]
P. D. Bovet, M. Cesati, Understanding the Linux Kernel: from I/O ports to process management, O’Reilly Media, Inc., (2005)
##[4]
G. Cattaneo, L. Catuogno, A. Del Sorbo, P. Persiano, The design and implementation of a transparent cryptographic file system for Unix, Proc. USENIX Annual Technical Conference, Boston, USA, (2001), 199-212
##[5]
K. E. Fu, Group sharing and random access in cryptographic storage file systems, Master’s thesis, Massachusetts Institute of Technology, Tech. Rep., Boston, USA, (1999)
##[6]
E. Geron, A. Wool, CRUST: cryptographic remote untrusted storage without public keys, Int. J. Inf. Secur. , 8 (2007), 357-377
##[7]
E.-J. Goh, H. Shacham, N. Modadugu, D. Boneh, SiRiUS: Securing remote untrusted storage, Proceedings of the 10th Network and Distributed Systems Security Symposium, San Diego, USA, 3 (2003), 131-145
##[8]
R. Hasan, S. Myagmar, A. J. Lee, W. Yurcik, Toward a threat model for storage systems, FairFax, VA, USA, (2005), 94-102
##[9]
M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, K. Fu, Plutus: Scalable secure file sharing on untrusted storage, Proceedings of the 2nd USENIX File and StorageTechnologies, FairFax, VA, USA, 3 (2003), 29-42
##[10]
R. C. Merkle, A digital signature based on a conventional encryption function, Conference on the Theory and Application of Cryptographic Techniques, Springer, Berlin, Heidelberg, Santa Barbara, USA, (1987), 369-378
##[11]
E. L. Miler, D. D. Long, W. E. Freeman, B. Reed, Strong security for network-attached storage, Proceedings of the 1st USENIX File and Storage Technologies, Monterey, USA, (2002), 1-13
##[12]
D. P. O’Shanahan, CryptosFS: Fast cryptographic secure NFS, Master’s Thesis, The University of Dublin, Ireland (2000)
##[13]
E. Riedel, M. Kalahala, R. Swaminathan, A framework for evaluating storage system security, Proceedings of the USENIX Conference on File and Storage Technology, Monterey, USA, 2 (2002), 15-30
##[14]
A. Traeger, K. Thangavelu, E. Zadok, Round-trip privacy with NFSv4 , Proceedings of the 2007 ACM workshop on Storage security and survivability, Alexandria, Virginia, USA, (2007), 1-6
##[15]
L. Wang, B. Yang, A. Abraham, Distilling middle-age cement hydration kinetics from observed data using phased hybrid evolution, Soft Comput., 20 (2016), 3637-3656
##[16]
L. Wang, B. Yang, Y.-H. Chen, X.-Q. Zhang, J. Orchard, Improving neural-network classifiers using nearest neighbor partitioning, IEEE Trans. Neural Netw. Learn. Syst., 28 (2016), 2255-2267
##[17]
L. Wang, B. Yang, J. Orchard, Particle swarm optimization using dynamic tournament topology, Appl. Soft Comput., 48 (2016), 584-596
##[18]
Z. Wilcox-O’Hearn, B. Warner, Tahoe: the least-authority filesystem, Proceedings of the 4th ACM International Workshop on Storage Security and Survivability, Alexandria, Virginia, USA, (2008), 21-26
##[19]
C. P. Wright, M. C. Michael, E. Zadok, NCryptfs: A secure and convenient cryptographic file system, Proceedings of the USENIX Annual Technical Conference, San Antonio, USA (2003), 197-210
##[20]
F. Yingxun, L. Shengmei, S. Jiwu, A secure network disk system in cloud storage environment, J. Softw., 25 (2014), 1831-1843
##[21]
E. Zadok, I. Badulescu, A. Shender, Cryptfs: A stackable vnode level encryption file system, Technical Report CUCS- 021-98, Computer Science Department, Columbia University, New York (1998)
##[22]
T. Zhong, J.-Z. Geng, H. Xiong, Z.-G. Qin, The data integrity verification mechanism based on SBT in cloud storage, , J. Univ. Electron. Sci. Technol. China, 6 (2014), 929-933
]
Proximal forward-backward splitting method for zeros of sum accretive operators for a fixed point set and inverse problems
Proximal forward-backward splitting method for zeros of sum accretive operators for a fixed point set and inverse problems
en
en
In this paper, we investigate regularization method via a proximal point algorithm for solving treating sum of two accretive operators and fixed point problems. Strong convergence theorems are established in the framework of Banach spaces. Also we apply our result to variational inequalities and equilibrium problems. Furthermore, an illustrative numerical example is presented.
506
526
K.
Sitthithakerngkiet
K.
Promluang
P.
Thounthong
P.
Kumam
Regularization method
proximal point algorithm
zero points
accretive operators
inverse problems
Article.6.pdf
[
[1]
K. Aoyama, H. Iiduka, W. Takahashi, Weak convergence of an iterative sequence for accretive operators in Banach spaces, Fixed Point Theory Appl., 2006 (2006 ), 1-13
##[2]
V. Barbu, Nonlinear semigroups and differential equations in Banach spaces, Translated from the Romanian, Editura Academiei Republicii Socialiste România, Bucharest; Noordhoff International Publishing, Leiden (1976)
##[3]
E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student, 63 (1994), 123-145
##[4]
F. E. Browder, Fixed-point theorems for noncompact mappings in Hilbert space, Proc. Nat. Acad. Sci. U.S.A., 53 (1965), 1272-1276
##[5]
S. Y. Cho, X.-L. Qin, L. Wang, Strong convergence of a splitting algorithm for treating monotone operators , Fixed Point Theory Appl., 2014 (2014 ), 1-15
##[6]
P. L. Combettes, S. A. Hirstoaga, Equilibrium programming in Hilbert spaces , J. Nonlinear Convex Anal., 6 (2005), 117-136
##[7]
J.-P. Gossez, E. Lami Dazo, Some geometric properties related to the fixed point theory for nonexpansive mappings, Pacific J. Math., 40 (1972), 565-573
##[8]
S. Kitahara, W. Takahashi, Image recovery by convex combinations of sunny nonexpansive retractions, Topol. Methods Nonlinear Anal., 2 (1993), 333-342
##[9]
N. Lehdili, A. Moudafi, Combining the proximal algorithm and Tikhonov regularization, Optimization, 37 (1996), 239-252
##[10]
L.-S. Liu, Ishikawa-type and Mann-type iterative processes with errors for constructing solutions of nonlinear equations involving m-accretive operators in Banach spaces , Nonlinear Anal. , 34 (1998), 307-317
##[11]
G. López, V. Martín-Márquez, F.-H. Wang, H.-K. Xu, Forward-backward splitting methods for accretive operators in Banach spaces, Abstr. Appl. Anal., 2012 (2012 ), 1-25
##[12]
H. Manaka, W. Takahashi, Weak convergence theorems for maximal monotone operators with nonspreading mappings in a Hilbert space, Cubo, 13 (2011), 11-24
##[13]
B. Martinet, Régularisation d’inéquations variationnelles par approximations successives, (French) Rev. Française Informat. Recherche Opérationnelle, 4 (1970), 154-159
##[14]
Y. Qing, S. Y. Cho, A regularization algorithm for zero points of accretive operators , Fixed Point Theory Appl., 2013 (2013 ), 1-9
##[15]
S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces , J. Math. Anal. Appl., 67 (1979), 274-276
##[16]
R. T. Rockafellar , Monotone operators and the proximal point algorithm, SIAM J. Control Optimization, 14 (1976), 877-898
##[17]
D. R. Sahu, J. C. Yao, The prox-Tikhonov regularization method for the proximal point algorithm in Banach spaces, J. Global Optim., 51 (2011), 641-655
##[18]
Y.-L. Song, L.-C. Ceng, Weak and strong convergence theorems for zeroes of accretive operators in Banach spaces, J. Appl. Math., 2014 (2014 ), 1-11
##[19]
T. Suzuki, Strong convergence of Krasnoselskii and Mann’s type sequences for one-parameter nonexpansive semigroups without Bochner integrals, J. Math. Anal. Appl., 305 (2005), 227-239
##[20]
W. Takahashi, Viscosity approximation methods for resolvents of accretive operators in Banach spaces , J. Fixed Point Theory Appl., 1 (2007), 135-147
##[21]
W. Takahashi, Introduction to nonlinear and convex analysis, Yokohama Publishers, Yokohama (2009)
##[22]
S. Takahashi, W. Takahashi, M. Toyoda, Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces , J. Optim. Theory Appl., 147 (2010), 27-41
##[23]
A. N. Tikhonov, Solution of incorrectly formulated problems and the regularization method, Soviet Meth. Dokl., 4 (1963), 1035-1038
##[24]
A. N. Tikhonov, Improper problems of optimal planning and stable methods of their solution, Soviet Meth. Dokl., 6 (1965), 1264-1267
##[25]
A. N. Tikhonov, V. Y. Arsenin , Solutions of ill-posed problems, Translated from the Russian, Preface by translation editor Fritz John, Scripta Series in Mathematics, V. H. Winston & Sons, Washington, D.C.: John Wiley & Sons, New York-Toronto, Ont.-London (1977)
]
\(4\)-step \(5\)-point hybrid block method for the direct solution of second order initial value problems
\(4\)-step \(5\)-point hybrid block method for the direct solution of second order initial value problems
en
en
Block methods for the numerical solution of ordinary differential equations (ODEs) are quite prominent in recent literature and second order initial value problems (IVPs) which falls in the family of ODEs is also a well explored area for the application of block methods. The introduction of hybrid block method methods for the solution of second order IVPs has gained good grounds in literature as the presence of off-grid points in the block method has increased the accuracy of the hybrid block methods. However, recent studies still continue to introduce new block methods that will perform more favourably than previously existing when compared in terms of error. Hence, a hybrid block method of order six is presented in this article to compete with previously existing methods of the same order and higher order. The methodology adopted in this article presents a new approach for developing the hybrid block method which is simple to implement and less computationally tiresome. The numerical results show this new \(4\)-step \(5\)-point hybrid block method performing better than previously existing methods.
527
534
Adeyeye
Oluwaseun
Hybrid
block method
order six
second order
initial value problems
Article.7.pdf
[
[1]
A. O. Adesanya, Block methods for direct solutions of general higher order initial value problems of ordinary differential equations, PhD Thesis, Federal University of Technology, Akure, Nigeria (2011)
##[2]
A. O. Adesanya, M. R. Odekunle, Continuous block hybrid predictor corrector method for the solution of \( y''=f(x,y,y')\), Int. J. Math. Soft Comput., 2 (2012), 35-42
##[3]
A. O. Adesanya, D. M. Udoh, A. M. Ajileye, A new hybrid block method for the solution of general third order initial value problems of ordinary differential equations, Int. J. Pure Appl. Math. , 86 (2013), 365-375
##[4]
T. A. Anake, D. O. Awoyemi, A. O. Adesanya, One-step implicit hybrid block method for the direct solution of general second order ordinary differential equations, IAENG Int. J. Appl. Math., 42 (2012), 224-228
##[5]
A. M. Badmus, A new eighth order implicit block algorithms for the direct solution of second order ordinary differential equations, Amer. J. Comput. Math., 4 (2014), 376-386
##[6]
A. A. James, O. A. Adesanya, K. M. Fasasi, Starting order seven method accurately for the solution of first initial value problems of first order ordinary differential equations, Progress Appl. Math., 6 (2013), 30-39
##[7]
S. J. Kayode, O. Adeyeye, A 3-step hybrid method for direct solution of second order initial value problems, Aust. J. Basic Appl. Sci., 5 (2011), 2121-2126
##[8]
S. J. Kayode, O. Adeyeye, Two-step two-point hybrid methods for general second order differential equations, Afr. J. Math. Comput. Sci. Res., 6 (2013), 191-196
##[9]
J. O. Kuboye, Z. Omar, Derivation of a six-step block method for direct solution of second order ordinary differential equations, Math. Comput. Appl., 20 (2015), 151-159
##[10]
Z. A. Majid, N. Z. Mokhtar, M. Suleiman, Direct two-point block one-step method for solving general second-order ordinary differential equations, Math. Probl. Eng., 2012 (2012 ), 1-16
##[11]
R. I. Okuonghae, M. N. O. Ikhile, A class of hybrid linear multistep methods with \(A(\alpha)\)-stability properties for stiff IVPs in ODEs, J. Numer. Math., 21 (2013), 157-172
##[12]
Z. Omar, J. O. Kuboye, A new implicit block method for solving second order ordinary differential equations directly, G.U. Journal of Science, 28 (2015), 689-694
##[13]
P. S. Phang, Z. A. Majid, M. Suleiman, Solving nonlinear two point boundary value problem using two step direct method, J. Qual. Measure. Anal., 7 (2011), 129-140
##[14]
K. Rauf, S. A. Aniki, S. Ibrahim, J. O. Omolehin, A zero-stable block method for the solution of third order ordinary differential equations, Pac. J. Sci. Tech., 16 (2015), 91-103
]
Classification of a new subclass of \(\xi^{(as)}\)-QSO and its dynamics
Classification of a new subclass of \(\xi^{(as)}\)-QSO and its dynamics
en
en
A quadratic stochastic operator (QSO) describes the time evolution of different species in biology. The main problem with regard to a nonlinear operator is to study its behavior. This subject has not been studied in depth; even QSOs, which are the simplest nonlinear operators, have not been studied thoroughly. In this paper we introduce a new subclass of \(\xi^{(as)}\)-QSO defined on 2D simplex. first we classify this subclass into 18 non-conjugate classes. Furthermore, we investigate the behavior of one class.
535
544
Izzat
Qaralleh
Quadratic stochastic operator
\(\ell\)-Volterra quadratic stochastic operator
\(\xi^{(s)}\)-quadratic stochastic operator
permuted \(\ell\)-Volterra quadratic stochastic operator
dynamics
Article.8.pdf
[
[1]
E. Akin, V. Losert, Evolutionary dynamics of zero-sum games, J. Math. Biol., 20 (1984), 231-258
##[2]
S. Bernstein, Solution of a mathematical problem connected with the theory of heredity, Ann. Math. Statistics, 13 (1942), 53-61
##[3]
R. N. Ganikhodzhaev , Quadratic stochastic operators, Lyapunov functions and tournaments, Russian Acad. Sci. Sb. Math., 76 (1993), 489-506
##[4]
R. N. Ganikhodzhaev, A chart of fixed points and Lyapunov functions for a class of discrete dynamical systems, Math. Notes., 56 (1994), 1125-1131
##[5]
N. N. Ganikhodzhaev, R. N. Ganikhodjaev, U. U. Jamilov, Quadratic stochastic operators and zero-sum game dynamics, Ergodic Theory Dynam. Systems, 35 (2015), 1443-1473
##[6]
R. Ganikhodzhaev, F. Mukhamedov, U. Rozikov, Quadratic stochastic operators and processes: results and open problems, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 14 (2011), 279-335
##[7]
R. Ganikhodzhaev, M. Saburov, K. Saburov, Schur monotone decreasing sequences, AIP Conf. Proc., 1575 (2013), 108-111
##[8]
R. D. Jenks, Quadratic differential systems for interactive population models, J. Differential Equations, 5 (1969), 497-514
##[9]
Y. L. Lyubich , Mathematical structures in population genetics, Springer-Verlag, Berlin (1992)
##[10]
F. Mukhamedov, A. F. Embong, On b-bistochastic quadratic stochastic operators, J. Inequal. Appl., 2015 (2015 ), 1-16
##[11]
F. Mukhamedov, N. Ganikhodjaev, Quantum Quadratic Operators and Processes, Springer, Berlin (2015)
##[12]
F. Mukhamedov, A. H. M. Jamal, On \(\xi^{s}\)-quadratic stochastic operators in 2-dimensional simplex, Proceedings of the 6th IMT-GT Conference on Mathematics, 2010 (2010 ), 1-14
##[13]
F. Mukhamedov, I. Qaralleh, W. N. F. A. W. Rozali, On \(\xi^{a}\)-quadratic stochastic operators on 2D simplex, Sains Malaysiana, 43 (2014), 1275-1281
##[14]
F. Mukhamedov, M. Saburov, On homotopy of volterrian quadratic stochastic operator, Appl. Math. Inf. Sci., 4 (2010), 47-62
##[15]
F. Mukhamedov, M. Saburov, A. H. M. Jamal, On dynamics of \(\xi^s\)-quadratic stochastic operators, Inter. Jour. Modern Phys., 9 (2012), 299-307
##[16]
F. Mukhamedov, M. Saburov, I. Qaralleh, Classification of \(\xi^{(s)}\)-Quadratic Stochastic Operators on 2D simplex, J. Phys. Conf. Ser., 2013 (2013 ), 1-9
##[17]
F. Mukhamedov, M. Saburov, I. Qaralleh, On \(\xi^{(s)}\)-quadratic stochastic operators on two dimensional simplex and their behavior, Abstr. Appl. Anal., 2013 (2013 ), 1-12
##[18]
M. Plank, Hamiltonian structures for the n-dimensional Lotka-Volterra equations, J. Math. Phys. , 36 (1995), 3520-3543
##[19]
U. A. Rozikov, A. Zada, On \(\ell\)- Volterra Quadratic stochastic operators, Int. J. Biomath., 3 (2010), 143-159
##[20]
U. A. Rozikov, A. Zada, \(\ell\)-Volterra quadratic stochastic operators: Lyapunov functions, trajectories,, Appl. Math. Inf. Sci., 6 (2012), 329-335
##[21]
U. A. Rozikov, U. U. Zhamilov, F-quadratic stochastic operators, Math. Notes., 83 (2008), 554-559
##[22]
M. Saburov, Dynamics of Double Stochastic Operators, J. Phys. Conf. Ser., 2016 (2016), 1-9
##[23]
F. E. Udwadia, N. Raju, Some global properties of a pair of coupled maps: quasi-symmetry, periodicity and syncronicity , Phys., 111 (1998), 16-26
##[24]
S. M. Ulam, Problems in Modern mathematics, Wiley, New York (1964)
##[25]
M. I. Zakharevic, The behavior of trajectories and the ergodic hypothesis for quadratic mappings of a simplex, Uspekhi Mat. Nauk, 33 (1978), 207-208
]