Unified degenerate Apostol-type Bernoulli, Euler, Genocchi, and Fubini 	polynomials
    
        
        
            
            
                
                    
                        - 
                            1794
                            Downloads
                        
 
                        - 
                            3016
                            Views
                        
 
                    
                 
                
             
         
     
    
    
    Authors
    
                Burak  Kurt
                
        
                                        - Department of the Mathematics, Faculty of Education, Akdeniz University, TR-07070 Antalya, Turkey.
                                    
        
    Abstract
    Recently, Acala in [N. G. Acala, Eur. J. Pure Appl. Math., \(\bf 13\) (2020), 587--607, N. G. Acala, J. Math. Comput. Sci., \(\bf 23\) (2021), 10--25] introduced and investigated the
Apostol-type Bernoulli, Euler, Genocchi and Fubini polynomials. Acala gave
some identities and symmetric relations for those polynomials.
In this paper, we define the unified degenerate Apostol-type Bernoulli, Euler,
Genocchi, and Fubini polynomials. We give identities and recurrence relations, symmetric
relation, and summation formulas.
 
    
    
    Share and Cite
    
        
        
            ISRP Style
                                                            Burak  Kurt, Unified degenerate Apostol-type Bernoulli, Euler, Genocchi, and Fubini 	polynomials, Journal of Mathematics and Computer Science, 25 (2022), no. 3, 259--268
         
        
            AMA Style
                                                            Kurt Burak, Unified degenerate Apostol-type Bernoulli, Euler, Genocchi, and Fubini 	polynomials. J Math Comput SCI-JM. (2022); 25(3):259--268
         
        
        
            Chicago/Turabian Style
                                                            Kurt, Burak. "Unified degenerate Apostol-type Bernoulli, Euler, Genocchi, and Fubini 	polynomials." Journal of Mathematics and Computer Science, 25, no. 3 (2022): 259--268
         
     
            
    Keywords
    
                -  The Apostol-Bernoulli
 
                -  Apostol-Euler
 
                -  Apostol-Genocchi two-variable Fubini polynomials
 
                -  degenerate Bernoulli polynomials
 
                -  degenerate Stirling numbers of the second kind
 
                -  degenerate unified Apostol-type Bernoulli
 
                -  Euler, Genocchi, and Fubini polynomials
 
            
    
        
    MSC
    
    
        
    References
        
                - 
            [1]
            
                                N. G. Acala, A unification of the generalized multiparameter Apostol-type Bernoulli, Euler, Fubini, and Genocchi polynomials of higher order, Eur. J. Pure Appl. Math., 13 (2020), 587--607
                            
            
        
 
        
                - 
            [2]
            
                                L. Carlitz, A note on Bernoulli and Euler polynomials of the second kind, Scripta Math., 25 (1961), 323--330
                            
            
        
 
        
                - 
            [3]
            
                                L. Carlitz, Degenerate Stirling, Utilitas Math.,, 15 (1979), 51--88
                            
            
        
 
        
                - 
            [4]
            
                                G. Chen, L. Chen, Some identities involving the Fubini polynomials and Euler polynomials, Mathematics, 6 (2018), 6 pages
                            
            
        
 
        
                - 
            [5]
            
                                U. Duran, S. Araci, M. Açıkgöz, A note on q-Fubini polynomials, Adv. Stud. Contemp. Math., 29 (2019), 211--224
                            
            
        
 
        
                - 
            [6]
            
                                W. A. Khan, A novel kind of the type 2 poly-Fubini polynomials and numbers, Preprint, 2020 (2020), 1--14
                            
            
        
 
        
                - 
            [7]
            
                                D. S. Kim, G.-W. Jang, H.-I. Kwon, T. Kim, Two variable higher order degenerate Fubini polynomials, Proc. Jangjeon Math. Soc., 21 (2018), 5--22
                            
            
        
 
        
                - 
            [8]
            
                                D. S. Kim, T. Kim, G.-W. Jang, A note on degenerate Fubini polynomials, Proc. Jangjeon Math. Soc., 20 (2017), 521--531
                            
            
        
 
        
                - 
            [9]
            
                                T. Kim, D. S. Kim, G.-W. Jang, J. Kwon, Symmetry identities for Fubini polynomials, Symmetry, 10 (2018), 1--7
                            
            
        
 
        
                - 
            [10]
            
                                D. S. Kim, T. Kim, H.-I. Kwon, J.-W. Park, Two variable higher order Fubini polynomials, J. Korean Math. Soc., 55 (2018), 975--986
                            
            
        
 
        
                - 
            [11]
            
                                M.-Q. Luo, H. M. Srivastava, Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials, J. Math. Anal. Appl., 308 (2005), 290--302
                            
            
        
 
        
                - 
            [12]
            
                                M. A. Özarslan, Unified Apostol-Bernoulli, Euler and Genocchi polynomials, Comput. Math. Appl, 62 (2011), 2452--2462
                            
            
        
 
        
                - 
            [13]
            
                                S. K. Sharma, W. A. Khan, C. S. Ryoo, A parametric kind of the degenerate Fubini numbers and polynomials, Mathematics, 8 (2020), 1--13
                            
            
        
 
        
                - 
            [14]
            
                                S. K. Sharma, W. A. Khan, C. S. Ryoo, A parametric kind of Fubini polynomials of complex variable, Mathematics, 8 (2020), 1--16
                            
            
        
 
        
                - 
            [15]
            
                                D.-D. Su, Y. He, Some identities for the two variable Fubini polynomials, Mathematics, 7 (2019), 1--11
                            
            
        
 
        
                - 
            [16]
            
                                H. M. Srivastava, J. Choi, Series associated with the zeta and related functions, Kluwer Academic Publishers, Dordrecht (2001)
                            
            
        
 
        
                - 
            [17]
            
                                H. M. Srivastava, M. Garg, S. Choudhary, A new generalization of the Bernoulli and related polynomials, Russ. J. Math. Phys., 17 (2010), 251--261
                            
            
        
 
        
                - 
            [18]
            
                                H. M. Srivastava, B. Kurt, V. Kurt, Identities and relations involving the modified degenerate hermite-based ApostolBernoulli and Apostol-Euler polynomials, Rev. R. Acad. Cienc. Exactas Fıs. Nat. Ser. A Mat., 113 (2019), 1299--1313
                            
            
        
 
        
                - 
            [19]
            
                                H. M. Srivastava, H. L. Manocha, A treatise on generating functions, Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley & Sons, Inc.], New York (1984)