Degree of approximation for bivariate extension of blending type \(q\)-Durrmeyer operators based on Pólya distribution
Volume 24, Issue 3, pp 256--272
http://dx.doi.org/10.22436/jmcs.024.03.07
Publication Date: March 06, 2021
Submission Date: February 01, 2021
Revision Date: February 17, 2021
Accteptance Date: February 19, 2021
-
1245
Downloads
-
2815
Views
Authors
Edmond Aliaga
- Department of Mathematics, University of Prishtina, Prishtina, Kosovo.
Shpetim Rexhepi
- Mother Teresa University, Skopje, North Macedonia.
Abstract
In this paper we introduce a bivariate of \(q\)-Durrmeyer variant of generalized Bernstein operators by using Pólya distribution. The convergence rate of these operators is examined by means of the Lipschitz class and the modulus of continuity. Furthermore, we obtain a Voronovskaja type symptotic formula, error estimation in terms of the partial modulus of continuity and Peetre's K-functional.
Share and Cite
ISRP Style
Edmond Aliaga, Shpetim Rexhepi, Degree of approximation for bivariate extension of blending type \(q\)-Durrmeyer operators based on Pólya distribution, Journal of Mathematics and Computer Science, 24 (2022), no. 3, 256--272
AMA Style
Aliaga Edmond, Rexhepi Shpetim, Degree of approximation for bivariate extension of blending type \(q\)-Durrmeyer operators based on Pólya distribution. J Math Comput SCI-JM. (2022); 24(3):256--272
Chicago/Turabian Style
Aliaga, Edmond, Rexhepi, Shpetim. "Degree of approximation for bivariate extension of blending type \(q\)-Durrmeyer operators based on Pólya distribution." Journal of Mathematics and Computer Science, 24, no. 3 (2022): 256--272
Keywords
- Durrmeyer operators
- K-functional
- modulus of continuity
- Pólya distribution
MSC
References
-
[1]
P. N. Agrawal, B. Baxhaku, R. Chauhan, The approximation of bivariate Chlodowsky-Szasz-Kantorovich-Charlier-type operators, J. Inequal. Appl., 2017 (2017), 23 pages
-
[2]
A. Aral, V. Gupta, On the q analogue of Stancu-beta operators, Appl. Math. Lett., 25 (2012), 67--71
-
[3]
A. Aral, V. Gupta, R. P. Agarwal, Applications of q-Calculus in Operator Theory, Springer, New York (2013)
-
[4]
D. Barbosu, C. V. Muraru, A.-M. Acu, Some bivariate Durrmeyer operators based on q-integers, J. Math. Inequal., 11 (2017), 59--75
-
[5]
B. Baxhaku, P. N. Agrawal, Degree of approximation for bivariate extension of Chlodowsky-type q-Bernstein-StancuKantorovich operators, Appl. Math. Comput., 306 (2017), 56--72
-
[6]
P. L. Butzer, H. Berens, Semi-groups of operators and approximation, Springer, Berlin (2013)
-
[7]
O. Dogru, V. Gupta, Monotonicity and the asymptotic estimate of Bleimann Butzer and Hahn operators based on q-integers, Georgian Math. J.,, 12 (2005), 415--422
-
[8]
V. Gupta, Some approximation properties of q-Durrmeyer operators, Appl. Math. Comput.,, 197 (2008), 172--178
-
[9]
V. Gupta, A. Aral, Bernstein Durrmeyer operators based on two parameters, Facta Univ. Ser. Math. Inform., 31 (2016), 79--95
-
[10]
V. Gupta, T. M. Rassias, H. Sharma, q-Durrmeyer operators based on Polya distribution, J. Nonlinear Sci. Appl., 9 (2016), 1497--1504
-
[11]
N. Ispir, I. Buyukyazıcı, Quantitative estimates for a certain bivariate Chlodowsky-Szasz-Kantorovich type operators, Math. Commun., 21 (2016), 31--44
-
[12]
A. Lupas, A q-analogue of the Bernstein operator, Seminar on Numerical and Statistical Calculus, Univ. ”Babes¸- Bolyai”, Cluj-Napoca, 1987 (1987), 85--92
-
[13]
C. V. Muraru, A. M. Acu, Some approximation properties of q-Durrmeyer-Schurer operators, Sci. Stud. Res. Ser. Math. Inform., 23 (2013), 77--84
-
[14]
G. Nowak, Approximation properties for generalized q-Bernstein polynomials, J. Math. Anal. Appl., 350 (2009), 50--55
-
[15]
G. M. Phillips, Bernstein polynomials based on the q-integers, Ann. Numer. Math., 4 (1997), 511--518
-
[16]
R. Ruchi, B. Baxhaku, P. N. Agrawal, GBS operators of bivariate Bernstein-Durrmeyer-type on a triangle, Math. Methods Appl. Sci.,, 41 (2018), 2673–2683
-
[17]
D. D. Stancu, Approximation of functions by a new class of linear polynomial operators, Rev. Roumaine Math. Pures Appl., 13 (1968), 1173--1194
-
[18]
I. V. Volkov, On the convergence of a sequence of linear positive operators in the space of continuous funtions of two variables, Dokl. Akad. Nauk SSSR,, 115 (1957), 17--19