Cone \(A_{b}\)-metric space and some coupled fixed point theorems
Volume 24, Issue 3, pp 246--255
http://dx.doi.org/10.22436/jmcs.024.03.06
Publication Date: March 06, 2021
Submission Date: April 10, 2020
Revision Date: January 28, 2021
Accteptance Date: January 29, 2021
-
1275
Downloads
-
2695
Views
Authors
K. Anthony Singh
- Department of Mathematics, D. M. College of Science, Dhanamanjuri University, Imphal (Manipur), India.
M. R. Singh
- Department of Mathematics, Manipur University, Canchipur (Manipur), India.
M. Bina Devi
- Department of Mathematics, D. M. College of Science, Dhanamanjuri University, Imphal (Manipur), India.
Th. Chhatrajit Singh
- Department of Mathematics, Manipur Technical University, Takyelpat (Manipur)-795004, India.
Abstract
In this paper, we extend the definition of coupled fixed point to mappings on cone \(A_{b}\)-metric space and prove some coupled fixed point theorems. Our results extend the coupled fixed point results of Singh and Singh [K. A. Singh, M. R. Singh, J. Math. Comput. Sci., \(\bf 10\) (2020), 891--905] to cone \(A_{b}\)-metric space. An example is also given to illustrate the validity of our result.
Share and Cite
ISRP Style
K. Anthony Singh, M. R. Singh, M. Bina Devi, Th. Chhatrajit Singh, Cone \(A_{b}\)-metric space and some coupled fixed point theorems, Journal of Mathematics and Computer Science, 24 (2022), no. 3, 246--255
AMA Style
Singh K. Anthony, Singh M. R., Devi M. Bina, Singh Th. Chhatrajit, Cone \(A_{b}\)-metric space and some coupled fixed point theorems. J Math Comput SCI-JM. (2022); 24(3):246--255
Chicago/Turabian Style
Singh, K. Anthony, Singh, M. R., Devi, M. Bina, Singh, Th. Chhatrajit. "Cone \(A_{b}\)-metric space and some coupled fixed point theorems." Journal of Mathematics and Computer Science, 24, no. 3 (2022): 246--255
Keywords
- Coupled fixed point
- cone metric space
- cone \(A_{b}\)-metric space
MSC
References
-
[1]
M. Abbas, B. Ali, Y. I. Suleiman, Generalized coupled common fixed point results in partially ordered A-metric space, Fixed Point Theory Appl., 2015 (2015), 24 pages
-
[2]
I. A. Bakhtin, The contraction mapping principle in quasimetric spaces, Funct. Anal. Ulianowsk Gos. Ped. Inst., 30 (1989), 26--37
-
[3]
D. Dhamodharan, R. Krishnakumar, Cone S-Metric Space and Fixed Point Theorems of Contractive Mappings, Ann. Pure Appl. Math., 14 (2017), 237--243
-
[4]
T. Gnana Bhaskar, V. Lakshmikantham, Fixed point in partially ordered metric spaces and applications, Nonlinear Anal., 65 (2006), 1379--1393
-
[5]
L.-G. Huang, X. Zhang, Cone metric spaces and fixed point theorem of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468--1476
-
[6]
V. Lakshmikantham, L. Ćirić, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal., 70 (2009), 4341--4349
-
[7]
N. Priyobarta, Y. Rohen, N. Mlaiki, Complex valued Sb-metric spaces, J. Math. Anal., 8 (2017), 13--24
-
[8]
F. Sabetghadam, H. P. Masiha, A. H. Sanatpour, Some coupled fixed point theorems in cone metric spaces, Fixed Point Theory Appl., 2009 (2009), 8 pages
-
[9]
S. Sedghi, N. Shobe, A. Aliouche, A generalization of fixed point in $S$-metric spaces, Mat. Vesnik, 64 (2012), 258--266
-
[10]
K. A. Singh, M. R. Singh, Some fixed point theorems of cone Sb-metric space, J. Indian Acad. Math., 40 (2018), 255--272
-
[11]
K. A. Singh, M. R. Singh, Some coupled fixed point theorems in cone Sb-metric space, J. Math. Comput. Sci., 10 (2020), 891--905
-
[12]
K. A. Singh, M. R. Singh, T. Chhatrajit Singh, Some fixed point theorems in cone Ab-metric space, Electron. J. Math. Anal. Appl., 9 (2021), 112--123
-
[13]
N. Souayah, N. Mlaiki, A fixed point theorem in Sb-metric spaces, J. Math. Computer Sci., 16 (2016), 131--139
-
[14]
M. Ughade, D. Turkoglu, S. Raj Singh, R. D. Daheriya, Some fixed point theorems in Ab-metric space, British J. Math. Comput. Sci., 19 (2016), 1--24