Bi-Bazilevič functions based on the Mittag-Leffler-type Borel distribution associated with Legendre polynomials
Volume 24, Issue 3, pp 235--245
http://dx.doi.org/10.22436/jmcs.024.03.05
Publication Date: February 28, 2021
Submission Date: December 18, 2020
Revision Date: December 31, 2020
Accteptance Date: January 18, 2021
-
1411
Downloads
-
2387
Views
Authors
Sheza. M. El-Deeb
- Department of Mathematics, College of Science and Arts, Al-Badaya, Qassim University, Buraidah, Saudi Arabia.
- Department of Mathematics, Faculty of Science, Damietta University, New Damietta 34517, Egypt.
G. Murugusundaramoorthy
- Department of Mathematics, School of Advanced Sciences, Vellore Institute Technology University, Vellore-632014, India.
Alhanouf Alburaikan
- Department of Mathematics, College of Science and Arts, Al-Badaya, Qassim University, Buraidah, Saudi Arabia.
Abstract
In this paper, using the Mittag-Leffler-type Borel distribution, the
authors introduce a new class of bi-Bazilevič functions defined in the open
unit disc associated with Legendre polynomials, we find estimates for the
general Taylor-Maclaurin coefficients of the functions in the subclass
introduced, and the Fekete-Szego problem is solved.
Share and Cite
ISRP Style
Sheza. M. El-Deeb, G. Murugusundaramoorthy, Alhanouf Alburaikan, Bi-Bazilevič functions based on the Mittag-Leffler-type Borel distribution associated with Legendre polynomials, Journal of Mathematics and Computer Science, 24 (2022), no. 3, 235--245
AMA Style
El-Deeb Sheza. M., Murugusundaramoorthy G., Alburaikan Alhanouf, Bi-Bazilevič functions based on the Mittag-Leffler-type Borel distribution associated with Legendre polynomials. J Math Comput SCI-JM. (2022); 24(3):235--245
Chicago/Turabian Style
El-Deeb, Sheza. M., Murugusundaramoorthy, G., Alburaikan, Alhanouf. "Bi-Bazilevič functions based on the Mittag-Leffler-type Borel distribution associated with Legendre polynomials." Journal of Mathematics and Computer Science, 24, no. 3 (2022): 235--245
Keywords
- Bi-Bazilevič functions
- coefficient estimates
- Mittag-Leffler-type
- Borel distribution
- Legendre polynomials
MSC
References
-
[1]
F. M. Al-Aboudi, n-Bazilevic functions, Abstr. Appl. Anal., 2012 (2012), 1--10
-
[2]
S. Abelman, K. A. Selvakumaran, M. M. Rashidi, S. D. Purohit, Subordination conditions for a class of non-Bazilevic type defined by using fractional q-calculus operators, Facta Univ. Ser. Math. Inform., 32 (2017), 255--267
-
[3]
A. A. Amer, M. Darus, Distortion theorem for certain class of Bazilevic functions, Int. J. Math. Anal., 6 (2012), 591--597
-
[4]
A. Attiya, Some applications of Mittag-Leffler function in the unit Disk, Filomat, 30 (2016), 2075--2081
-
[5]
D. Bansal, J. K. Prajapat, Certain geometric properties of the Mittag-Leffler functions, Complex Var. Elliptic Equ., 61 (2016), 338--350
-
[6]
D. A. Brannan, J. G. Clunie, Aspects of Contemporary Complex Analysis, Academic Press, London-New York (1980)
-
[7]
D. A. Brannan, J. Clunie, W. E. Kirwan, Coefficient estimates for a class of star-like functions, Canadian J. Math., 22 (1970), 476--485
-
[8]
D. A. Brannan, T. S. Taha, On some classes of bi-univalent functions, Studia Univ. Babe¸s-Bolyai Math., 31 (1986), 70--77
-
[9]
M. Caglar, H. Orhan, N. Yagmur, Coefficient bounds for new subclasses of bi-univalent functions, Filomat, 27 (2013), 1165--1171
-
[10]
P. L. Duren, Univalent Functions, Springer-Verlag, New York (1983)
-
[11]
E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Class. Anal., 2 (2013), 49--60
-
[12]
A. Ebadian, N. E. Cho, E. A. Adegani, S. Bulut, T. Bulboaca, Radii problems for some classes of analytic functions associated with Legendre polynomials of odd degree, J. Inequal. Appl., 2020 (2020), 12 pages
-
[13]
S. M. El-Deeb, B. M. El-Matary, New subclasses of bi-univalent functions connected with aq--analogue of convolution based upon the Legendre polynomials, Stud. Univ. Babes¸-Bolyai Math., (2020), accepted for publications
-
[14]
B. A. Frasin, An application of an operator associated with generalized Mittag-Leffler function, Konuralp J. Math., 7 (2019), 199--202
-
[15]
B. A. Frasin, T. Al-Hawary, F. Yousef, Some properties of a linear operator involving generalized Mittag-Leffler function, Stud. Univ. Babes¸-Bolyai Math., 65 (2020), 67--75
-
[16]
B. A. Frasin, M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24 (2011), 1569--1573
-
[17]
M. Garg, P. Manohar, S. L. Kalla, A Mittag-Leffler-typefunction of two variables, Integral Transforms Spec. Funct., 24 (2013), 934--944
-
[18]
S. P. Goyal, P. Goswami, Estimate for initial Maclaurin coefficients of bi-univalent functions for a class defined by fractional derivatives, J. Egyptian Math. Soc., 20 (2012), 179--182
-
[19]
T. Hayami, S. Owa, Coefficient bounds for bi-univalent functions, PanAmer. Math. J., 22 (2012), 15--26
-
[20]
Y. C. Kim, H. M. Srivastava, The Hardy space for a certain subclass of Bazileviˇc functions, Appl. Math. Comput., 183 (2006), 1201--1207
-
[21]
Y. C. Kim, T. Sugawa, A note on Bazilevic functions, Taiwanese J. Math., 13 (2009), 1489--1495
-
[22]
V. Kiryakova, Generalized Fractional Calculus and Applications, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, New York (1994)
-
[23]
N. N. Lebedev, Special functions and their applications, Dover Publications, New York (1972)
-
[24]
M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18 (1967), 63--68
-
[25]
X.-F. Li, A.-P. Wang, Two new subclasses of bi-univalent functions, Int. Math. Forum, 7 (2012), 1495--1504
-
[26]
W. C. Ma, D. Minda, A unified treatment of some special classes of functions, In: Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA, 1994 (1994), 157--169
-
[27]
S. S. Miller, P. T. Mocanu, Differential Subordination: Theory and Applications, CRC Press, New York and Basel (2000)
-
[28]
G. M. Mittag-Leffler, Sur la nouvelle fonction E(x), C. R. Acad. Sci. Paris,, 137 (1903), 554--558
-
[29]
G. Murugusundaramoorthy, S. M. El-Deeb, Second Hankel determinant for a class of analytic functions of the MittagLeffler-type Borel distribution related with Legendre polynomials, Turkish World Math. Soc. J. Appl. Engineering Math., 2021 (2021), accepted for publications
-
[30]
G. Murugusundaramoorthy, T. Janani, S. D. Purohit, Coefficient estimate of bi-Bazilevic functions associated with fractional q-calculus operators, Fund. Inform., 151 (2017), 49--62
-
[31]
E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in z < 1, Arch. Rational Mech. Anal., 32 (1969), 100--112
-
[32]
K. I. Noor, K. Ahmad, On higher order Bazilevic functions, Internat. J. Modern Phys. B, 27 (2013), 14 pages
-
[33]
K. A. Selvakumaran, H. A. AL-Kharsani, D. Baleanu, S. D. Purohi, K. S. Nisar, Inclusion relationships for some subclasses of analytic functions associated with generalized Bessel functions, J. Comput. Anal. Appl., 24 (2018), 81--90
-
[34]
C. Selvaraj, C. S. Moni, Subordination results for a class of Bazilevic functions with respect to symmetric points, Stud. Univ. Babes¸-Bolyai Math., 58 (2013), 23--30
-
[35]
R. Singh, On Bazilevic functions, Proc. Amer. Math. Soc., 38 (1973), 261--271
-
[36]
H. M. Srivastava, S. Bulut, M. Caglar, N. Yagmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, 27 (2013), 831--842
-
[37]
H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), 1188--1192
-
[38]
H. M. Srivastava, G. Murugusundaramoorthy, K. Vijaya, Coefficient estimates for some families of bi-Bazilevic functions of the Ma-Minda type involving the Hohlov operator, J. Class. Anal.,, 2 (2013), 167--181
-
[39]
T. S. Taha, Topics in Univalent Function Theory, Ph.D. Thesis, University of London (1981)
-
[40]
A. K. Wanas, J. A. Khuttar, Applications of Borel distribution series on analytic functions, Earthline J. Math. Sci., 4 (2020), 71--82
-
[41]
Z.-G. Wang, H.-T. Wang, Y. Sun, A class of multivalent non-Bazilevic functions involving the Cho-Kwon-Srivastava operator, Tamsui Oxf. J. Math. Sci., 26 (2010), 1--19
-
[42]
A. Wiman, Über die Nullstellen der Funktionen $E^a(x)$, Acta Math., 29 (1905), 217--134
-
[43]
P. Zaprawa, On the Fekete-Szego problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin, 21 (2014), 169--178