On Tribonacci \(I\)-convergent sequence spaces
Volume 24, Issue 3, pp 225--234
http://dx.doi.org/10.22436/jmcs.024.03.04
Publication Date: February 23, 2021
Submission Date: January 06, 2021
Revision Date: January 25, 2021
Accteptance Date: January 31, 2021
-
1251
Downloads
-
2928
Views
Authors
Vakeel A. Khan
- Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India.
Izhar Ali Khan
- Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India.
SK Ashadul Rahaman
- Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India.
Ayaz Ahmad
- Department of Mathematics, National Institute of Technology, Patna-800005, India.
Abstract
In this paper, we use the notion of ideal convergence (\(I\)-convergence) to introduce Tribonacci \(I\)-convergent sequence spaces, that is, \(c_{_{0}}^{I} (T), c_{_{}}^{I} (T) \) and \(l_{_{\infty}}^{I} (T)\) as a domain of regular Tribonacci matrix \(T=(t_{jn})\) (constructed by the Tribonacci sequence). We also present few inclusion relations and prove some topological and algebraic properties based results with respect to these spaces.
Share and Cite
ISRP Style
Vakeel A. Khan, Izhar Ali Khan, SK Ashadul Rahaman, Ayaz Ahmad, On Tribonacci \(I\)-convergent sequence spaces, Journal of Mathematics and Computer Science, 24 (2022), no. 3, 225--234
AMA Style
Khan Vakeel A., Khan Izhar Ali, Rahaman SK Ashadul, Ahmad Ayaz, On Tribonacci \(I\)-convergent sequence spaces. J Math Comput SCI-JM. (2022); 24(3):225--234
Chicago/Turabian Style
Khan, Vakeel A., Khan, Izhar Ali, Rahaman, SK Ashadul, Ahmad, Ayaz. "On Tribonacci \(I\)-convergent sequence spaces." Journal of Mathematics and Computer Science, 24, no. 3 (2022): 225--234
Keywords
- Tribonacci sequence
- regular Tribonacci matrix
- Tribonacci \( I \)-convergence
- Tribonacci \( I \)-Cauchy
- Tribonacci \(I\)-bounded
MSC
References
-
[1]
M. Aiyub, A. Esi, N. Subramanian, Poisson Fibonacci binomial matrix on rough statistical convergence on triple sequences and its rate, J. Intel. Fuzzy Syst., 36 (2019), 3439--3445
-
[2]
M. J. Bharathi, S. Velmurugan, N. Subramanian, R. Srikanth, On Triple sequence space of Bernstein operator of rough Iλ-statistical convergence of weighted g(A), J. Intel. Fuzzy Syst., 36 (2019), 13--27
-
[3]
I. Bruce, A modified Tribonacci sequence, Fibonacci Quart., 22 (1984), 244--246
-
[4]
M. Catalani, Identities for Tribonacci-related sequences, arXiv, New York (2002)
-
[5]
E. Choi, Modular Tribonacci numbers by matrix method, J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math., 20 (2013), 207--221
-
[6]
R. G. Cooke, Infinite matrices and sequence spaces, Dover, New York (2014)
-
[7]
H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241--244
-
[8]
M. Feinberg, , Fibonacci--Tribonacci, Fibonacci Quart., 1 (1963), 71--74
-
[9]
R. Filipow, J. Tryba, Ideal convergence versus matrix summability, Studia Math., 245 (2019), 101--127
-
[10]
F. T. Howard, A Tribonacci Identity, Fibonacci Quart., 39 (2001), 352--357
-
[11]
M. Kemal Ozdemir, A. Esi, N. Subramanian, Rough convergence of Bernstein fuzzy I-convergent of χf (Δ, p) 3I (F) space defined by Orlicz function, J. Intel. Fuzzy Syst., 37 (2019), 1--7
-
[12]
V. A. Khan, Yasmeen, H. Fatima, H. Altaf, Q.M.D. Lohani, Intuitionistic fuzzy I-convergent sequence spaces defined by compact operator, Cogent Math., 3 (2016), 8 pages
-
[13]
V. A. Khan, K. M. A. S. Alshlool, S. A. A. Abdullah, Spaces of ideal convergent sequences of bounded linear operators, Numer. Funct. Anal. Optim., 39 (2018), 1278--1290
-
[14]
V. A. Khan, K. M. A. S. Alshlool, S. A. A. Abdullah, R. K. A. Rababah, A. Ahmad, Some new classes of paranorm ideal convergent double sequences of σ-bounded variation over n-normed spaces, Cogent Math. Stat., 5 (2018), 13 pages
-
[15]
V. A. Khan, K. M. A. S. Alshlool, M. Alam, On Hilbert I-convergent sequence spaces, J. Math. Comput. Sci., 20 (2020), 225--233
-
[16]
V. A. Khan, K. Ebadullah, I-convergent difference sequence spaces defined by a sequence of moduli, J. Math. Comput. Sci., 2 (2012), 265--273
-
[17]
V. A. Khan, N. Khan, On Zweier I-convergent double sequence spaces, Filomat, 30 (2016), 3361--3369
-
[18]
V. A. Khan, A. A. H. Makharesh, K. M. A. S. Alshlool, S. A. A. Abdullah, H. Fatima, On fuzzy valued lacunary ideal convergent sequence spaces defined by a compact operator, J. Intel. Fuzzy Syst., 35 (2018), 4849--4855
-
[19]
V. A. Khan, R. K. A. Rababah, K. M. A. S. Alshlool, S. A. A. Abdullah, A. Ahmad, On Ideal convergence Fibonacci difference sequence spaces, Adv. Difference Equ., 2018 (2018), 14 pages
-
[20]
E. Kilic, Tribonacci sequences with certain indices and their sums, Ars. Combin., 86 (2008), 13--22
-
[21]
T. Koshy, Fibonacci and Lucus Numbers with Applications, Wiley, New York (2001)
-
[22]
P. Kostyrko, M. Macaj, T. Salat, Statistical convergence and I-convergence, Real Anal. Exch., New York (1999)
-
[23]
A. Scott, T. Delaney, V. Hoggatt JR, The Tribonacci sequence, Fibonacci Quart., 15 (1977), 193--200
-
[24]
H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2 (1951), 73--74
-
[25]
N. Subramanian, A. Esi, On Triple sequence of Bernstein operator of weighted rough Iλ-convergence, J. Class. Anal., 13 (2018), 45--62
-
[26]
N. Subramanian, A. Esi, Triple Pascal Sequence Spaces, Asian J. Math. Phys., 3 (2019), 13--22
-
[27]
N. Subramanian, A. Esi, V. A. Khan, The Rough Intuitionistic Fuzzy Zweier Lacunary Ideal Convergence of Triple Sequence spaces, J. Math. Stat., 14 (2018), 72--78
-
[28]
S. Pethe, Some identities for Tribonacci sequences, Fibonacci Quart., 26 (1988), 144--151
-
[29]
T. Salat, B. C. Tripathy, M. Ziman, On some properties of I-convergence, Tatra Mt. Math. Publ., 28 (2004), 279--286
-
[30]
T. Salat, B. C. Tripathy, M. Ziman, On I-convergence field, Ital. J. Pure Appl. Math., 17 (2005), 45--54
-
[31]
D. V. Shah, Some Tribonacci identities, Math. Today, 27 (2011), 1--9
-
[32]
W. R. Spickerman, Binet’s formula for the Tribonacci sequence, Fibonacci Quart., 20 (1982), 118--120
-
[33]
B. C. Tripathy, B. Hazarika, I-convergent sequence spaces associated with multiplier sequences, Math. Inequal. Appl., 11 (2008), 543--548
-
[34]
A. Wilansky, Summability through functional analysis, North-Holland Publishing Co., Amsterdam (1984)
-
[35]
C. C. Yalavigi, Properties of Tribonacci numbers, Fibonacci Quart., 10 (1972), 231--246
-
[36]
T. Yaying, B. Hazarika, On sequence spaces defined by the domain of a regular tribonacci matrix, Math. Slovaca, 70 (2020), 697--706