Weighted Gehring and Muckenhoupt classes and some inclusion properties with norm inequalities
Volume 24, Issue 3, pp 201--215
http://dx.doi.org/10.22436/jmcs.024.03.02
Publication Date: February 23, 2021
Submission Date: December 13, 2020
Revision Date: January 01, 2021
Accteptance Date: January 06, 2021
-
1262
Downloads
-
3321
Views
Authors
S. H. Saker
- Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.
M. H. Hassan
- Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.
Abstract
In this paper, we will prove some fundamental properties of the power mean
operator \(\mathcal{H}_{\lambda }w^{p}\) of order \(p\), which is defined by%
\[
\mathcal{H}_{\lambda }w^{p}\left( x\right) =\frac{1}{\Lambda \left( x\right)
}\int_{0}^{x}\lambda \left( s\right) w^{p}\left( s\right) ds,\text{ for }%
p\in \mathbb{R}^{+}\text{,}
\]
where \(\lambda \) and \(w\) are nonnegative functions and \(\Lambda \left(
x\right) =\int_{0}^{x}\lambda \left( s\right) ds\). Then by using these
properties we will establish some norm inequalities of the generalized
Muckenhoupt and Gehring weights and prove some fundamental relations between
them.
Share and Cite
ISRP Style
S. H. Saker, M. H. Hassan, Weighted Gehring and Muckenhoupt classes and some inclusion properties with norm inequalities, Journal of Mathematics and Computer Science, 24 (2022), no. 3, 201--215
AMA Style
Saker S. H., Hassan M. H., Weighted Gehring and Muckenhoupt classes and some inclusion properties with norm inequalities. J Math Comput SCI-JM. (2022); 24(3):201--215
Chicago/Turabian Style
Saker, S. H., Hassan, M. H.. "Weighted Gehring and Muckenhoupt classes and some inclusion properties with norm inequalities." Journal of Mathematics and Computer Science, 24, no. 3 (2022): 201--215
Keywords
- Hardy type inequality
- generalized Muckenhoupt class
- generalized Gehring class
- inclusion properties
MSC
References
-
[1]
R. P. Agarwal, D. O’Regan, S. H. Saker, Hardy Type Inequalities on Time Scales, Springer, Cham (2016)
-
[2]
L. Basile, L. D’Apuzzo, M. Squillante, Relations between Gehring classesand Muckenhoupt classes via the Hardy operator, Ricerche di Mat., 45 (1996), 157--178
-
[3]
L. Basile, L. D’Apuzzo, M. Squillante, The limit class of Gehring type $G_\infty$, Boll. Un. Mat. Ital. B (7), 11 (1997), 871--884
-
[4]
B. Bojarski, C. Sbordone, I. Wik, The Muckenhoupt class $A_1({\bf R})$, Studia Math., 101 (1992), 155--163
-
[5]
R. R. Coifman, C. Fefferman, Weighted norm inequalities for maximal weights and singular integrals, Studia Math., 51 (1974), 241--250
-
[6]
R. Corporente, Weighted Integral Inequalities, BMO-Spaces and Applications, Dissertation thesis, Italy (1991)
-
[7]
D. Cruz-Uribe, C. J. Neugebauer, The structure of the reverse Holder classes, Tran. Amer. Math. Soc., 347 (1995), 2941--2960
-
[8]
L. D’Apuzzo, C. Sbordone, Reverse Holder inequalities: A sharp result, Rend. Mat. Appl. (7), 10 (1990), 357--366
-
[9]
V. D. Didenko, A. A. Korenovskii, Power means and the reverse Holder inequality, Studia Math., 207 (2011), 85--95
-
[10]
V. D. Didenko, A. A. Korenovskii, The reverse Holder inequality for power means, J. Math. Sci. (N.Y.), 183 (2012), 762--771
-
[11]
M. Dindoš, T. Wall, The sharp $A_p$ constant for weights in a reverse-Hölder class, Rev. Mat. Iberoam., 25 (2009), 559--594
-
[12]
J. Garcia-Cuerva, J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Publishing Co., Amsterdam (1985)
-
[13]
F. W. Gehring, The $L\sp{p}$-integrability of the partial derivatives of a quasiconformal mapping, Bull. Amer. Math. Soc., 79 (1973), 465--466
-
[14]
F. W. Gehring, The $L\sp{p}$-integrability of the partial derivatives of a quasiconformal mapping, Acta Math., 130 (1973), 265--277
-
[15]
G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, Cambridge University Press, Cambridge (1934)
-
[16]
R. Hunt, B. Muckenhoupt, R. Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc., 176 (1973), 227--251
-
[17]
M. M. Iddrisu, C. A. Okpoti, Applications of Taylor series for Carleman’s inequality through Hardy inequality, Korean J. Math., 23 (2015), 655--664
-
[18]
R. Johnson, C. J. Neugebauer, Homeomorphisms preserving Ap, Rev. Mat. Iberoamericana, 3 (1987), 249--273
-
[19]
A. A. Korenovskii, The exact continuation of a reverse Holder inequality and Muckenhoupt’s conditions, Math. Notes, 52 (1992), 1192--1201
-
[20]
A. A. Korenovskii, V. V. Fomichev, Self-improvement of summability factors of functions satisfying the reverse H¨older inequality in limit cases, Ukrainian Math. J., 62 (2010), 552--563
-
[21]
N. Levinson, Generalizations of an inequality of Hardy, Duke Math. J., 31 (1964), 389--394
-
[22]
T. X. Li, N. Pintus, G. Viglialoro, Properties of solutions to porous medium problems with different sources and boundary conditions, Z. Angew. Math. Phys., 70 (2019), 18 pages
-
[23]
T. X. Li, G. Viglialoro, Analysis and explicit solvability of degenerate tensorial problems, Bound. Value Probl., 2018 (2018), 13 pages
-
[24]
N. A. Malaksiano, The exact inclusion of Gehring classes in Muckenhoupt classes, Mat. Zametki,, 70 (2001), 742--750
-
[25]
N. A. Malaksiano, The precise embeddings of one-dimensional Muckenhoupt classes in Gehring classes, Acta Sci. Math. (Szeged), 68 (2002), 237--248
-
[26]
B. Muckenhoupt, Hermite conjugate expansions, Trans. Amer. Math. Soc., 139 (1969), 243--260
-
[27]
B. Muckenhoupt, Mean convergence of Hermite and Laguerre series. II, Trans. Amer. Math. Soc., 147 (1970), 433--460
-
[28]
B. Mucheknhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207--226
-
[29]
B. Muckenhoupt, E. M. Stein, Classical expansions and their relation to conjugate harmonic functions, Trans. Amer. Math. Soc., 118 (1965), 17--92
-
[30]
J. Murica, G. Viglialoro, A singular elliptic problem related to the membrane equilibrium equations, Int. J. Comput. Math., 90 (2013), 2185--2196
-
[31]
A. Popoli, Sharp integrability exponents and constants for Muckenhoupt and Gehring weights as solutions to a unique equation, Ann. Acad. Sci. Fenn. Math., 43 (2018), 785--805
-
[32]
A. Popoli, Limits of the $A_p$ constants, J. Math. Anal. Appl., 478 (2019), 1218--1229
-
[33]
S. H. Saker, D. O’Regan, R. P. Agarwal, A higher integrability theorem from a reverse weighted inequality, Bull. Lond. Math. Soc., 51 (2019), 967--977