Stability of a general discrete-time HIV dynamics model with three categories of infected CD4\(^{+}\) T-cells and multiple time delays
Volume 20, Issue 4, pp 264--282
http://dx.doi.org/10.22436/jmcs.020.04.01
Publication Date: February 19, 2020
Submission Date: July 12, 2019
Revision Date: October 14, 2019
Accteptance Date: December 09, 2019
-
1959
Downloads
-
3636
Views
Authors
A. M. Elaiw
- Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia.
M. A. Alshaikh
- Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia.
- Department of Mathematics, Faculty of Science, Taif University, P. O. Box 888, Taif 21974, Saudi Arabia.
Abstract
In this paper, we construct delayed HIV dynamics models with impairment of
B-cell functions. Two forms of the incidence rate have been considered,
bilinear and general. Three types of infected cells and five-time delays
have been incorporated into the models. The well-posedness of the models is
justified. The models admit two equilibria which are determined by the basic
reproduction number \(R_{0}\). The global stability of each equilibrium is
proven by utilizing the Lyapunov function and LaSalle's invariance principle.
The theoretical results are illustrated by numerical simulations.
Share and Cite
ISRP Style
A. M. Elaiw, M. A. Alshaikh, Stability of a general discrete-time HIV dynamics model with three categories of infected CD4\(^{+}\) T-cells and multiple time delays, Journal of Mathematics and Computer Science, 20 (2020), no. 4, 264--282
AMA Style
Elaiw A. M., Alshaikh M. A., Stability of a general discrete-time HIV dynamics model with three categories of infected CD4\(^{+}\) T-cells and multiple time delays. J Math Comput SCI-JM. (2020); 20(4):264--282
Chicago/Turabian Style
Elaiw, A. M., Alshaikh, M. A.. "Stability of a general discrete-time HIV dynamics model with three categories of infected CD4\(^{+}\) T-cells and multiple time delays." Journal of Mathematics and Computer Science, 20, no. 4 (2020): 264--282
Keywords
- HIV infection
- latent reservoirs
- time delay
- global stability
- Lyapunov function
- discrete time model
MSC
References
-
[1]
D. Adak, N. Bairagi, Bifurcation analysis of a multidelayed HIV model in presence of immune response and understanding of in-host viral dynamics, Math. Methods Appl. Sci., 42 (2019), 4256--4272
-
[2]
D. S. Callaway, A. S. Perelson, HIV-1 infection and low steady state viral loads, Bull. Math. Biol., 64 (2002), 29--64
-
[3]
R. V. Culshaw, S. Ruan, A delay-differential equation model of HIV infection of CD4$^{+}$ T-cells, Math. Biosci., 165 (2000), 27--39
-
[4]
P. De Leenheer, H. L. Smith, Virus dynamics: A global analysis, SIAM J. Appl. Math., 63 (2003), 1313--1327
-
[5]
N. M. Dixit, M. Markowitz, D. D. Ho, A. S. Perelson, Estimates of intracellular delay and average drug efficacy from viral load data of HIV-infected individuals under antiretroviral therapy, Antivir. Ther., 9 (2004), 237--246
-
[6]
A. M. Elaiw, M. A. Alshaikh, Stability analysis of a general discrete-time pathogen infection model with humoral immunity, J. Differ. Equ. Appl., 2019 (2019), 24 pages
-
[7]
A. M. Elaiw, M. A. Alshaikh, Stability of discrete-time HIV dynamics models with three categories of infected CD4$^{+}$ T-cells, Adv. Difference Equ., 2019 (2019), 24 pages
-
[8]
A. M. Elaiw, N. H. AlShamrani, Stability of a general delay-distributed virus dynamics model with multi-staged infected progression and immune response, Math. Methods Appl. Sci., 40 (2017), 699--719
-
[9]
A. M. Elaiw, N. H. AlShamrani, Stability of an adaptive immunity pathogen dynamics model with latency and multiple delays, Math. Methods Appl. Sci., 36 (2018), 125--142
-
[10]
A. M. Elaiw, N. H. AlShamrani, Stability of a general adaptive immunity virus dynamics model with multi-stages of infected cells and two routes of infection, Math. Methods Appl. Sci., 2019 (2019), 15 pages
-
[11]
A. M. Elaiw, E. K. Elnahary, A. A. Raezah, Effect of cellular reservoirs and delays on the global dynamics of HIV, Adv. Difference Equ., 2018 (2018), 36 pages
-
[12]
A. M. Elaiw, A. D. Hobiny, A. D. Al Agha, Global dynamics of reaction-diffusion oncolytic M1 virotherapy with immune response, Appl. Math. Comput., 367 (2020), 21 pages
-
[13]
A. M. Elaiw, A. A. Raezah, Stability of general virus dynamics models with both cellular and viral infections and delays, Math. Methods Appl. Sci., 40 (2017), 5863--5880
-
[14]
A. M. Elaiw, A. A. Raezah, S. A. Azoz, Stability of delayed HIV dynamics models with two latent reservoirs and immune impairment, Adv. Difference Equ., 2018 (2018), 25 pages
-
[15]
Y. Geng, J. H. Xu, J. Y. Hou, Discretization and dynamic consistency of a delayed and diffusive viral infection model, Appl. Math. Comput., 316 (2018), 282--295
-
[16]
K. Hattaf, N. Yousfi, Global properties of a discrete viral infection model with general incidence rate, Math. Methods Appl. Sci., 39 (2016), 998--1004
-
[17]
G. Huang, Y. Takeuchi, W. Ma, Lyapunov functionals for delay differential equations model of viral infections, SIAM J. Appl. Math., 70 (2010), 2693--2708
-
[18]
C. Y. Ji, The threshold for a stochastic HIV-1 infection model with Beddington-DeAngelis incidence rate, Appl. Math. Model., 64 (2018), 168--184
-
[19]
A. Korpusik, A nonstandard finite difference scheme for a basic model of cellular immune response to viral infection, Commun. Nonlinear Sci. Numer. Simul., 43 (2017), 369--384
-
[20]
K. Manna, S. P. Chakrabarty, Global stability and a non-standard finite difference scheme for a diffusion driven HBV model with capsids, J. Difference Equ. Appl., 21 (2015), 918--933
-
[21]
C. C. McCluskey, Y. Yang, Global stability of a diffusive virus dynamics model with general incidence function and time delay, Nonlinear Anal. Real World Appl., 25 (2015), 64--78
-
[22]
R. E. Mickens, Nonstandard Finite Difference Models of Differential equations, World Scientific Publishing Co., River Edge (1994)
-
[23]
P. W. Nelson, J. D. Murray, A. S. Perelson, A model of HIV-1 pathogenesis that includes an intracellular delay, Math. Biosci., 163 (2000), 201--215
-
[24]
M. A. Nowak, C. R. M. Bangham, Population dynamics of immune responses to persistent viruses, Science, 272 (1996), 74--79
-
[25]
A. S. Perelson, P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo, SIAM. Rev., 41 (1999), 3--44
-
[26]
C. M. A. Pinto, A. R. M. Carvalho, A latency fractional order model for HIV dynamics, J. Comput. Appl. Math., 312 (2017), 240--256
-
[27]
W. D. Qin, L. S. Wang, X. H. Ding, A non-standard finite difference method for a hepatitis b virus infection model with spatial diffusion, J. Difference Equ. Appl., 20 (2014), 1641--1651
-
[28]
S. K. Sahani, Yashi, Effects of eclipse phase and delay on the dynamics of HIV infection, J. Biol. Systems, 26 (2018), 421--454
-
[29]
P. L. Shi, L. Z. Dong, Dynamical behaviors of a discrete HIV-1 virus model with bilinear infective rate, Math. Methods Appl. Sci., 37 (2014), 2271--2280
-
[30]
X. Y. Song, A. U. Neumann, Global stability and periodic solution of the viral dynamics, J. Math. Anal. Appl., 329 (2007), 281--297
-
[31]
J. P. Wang, Z. D. Teng, H. Miao, Global dynamics for discrete-time analog of viral infection model with nonlinear incidence and CTL immune response, Adv. Difference Equ., 2016 (2016), 19 pages
-
[32]
J. K. Wong, M. Hezareh, H. F. Gunthard, D. V. Havlir, C. C. Ignacio, C. A. Spina, D. D. Richman, Recovery of replication-competent HIV despite prolonged suppression of plasma viremia, Science, 278 (1997), 1291--1295
-
[33]
S. H. Xu, Global stability of the virus dynamics model with Crowley-Martin functional response, Electron. J. Qual. Theory Differ. Equ., 2012 (2012), 10 pages
-
[34]
J. Xu, Y. Geng, J. Hou, A non-standard finite difference scheme for a delayed and diffusive viral infection model with general nonlinear incidence rate, Comput. Math. Appl., 74 (2017), 1782--1798
-
[35]
J. H. Xu, J. Y. Hou, Y. Geng, S. X. Zhang, Dynamic consistent NSFD scheme for a viral infection model with cellular infection and general nonlinear incidence, Adv. Difference Equ., 2018 (2018), 17 pages
-
[36]
Y. Yang, X. S. Ma, Y. H. Li, Global stability of a discrete virus dynamics model with Holling type-II infection function, Math. Methods Appl. Sci., 39 (2016), 2078--2082
-
[37]
Y. Yang, J. L. Zhou, Global stability of a discrete virus dynamics model with diffusion and general infection function, Int. J. Comput. Math., 2018 (2018), 11 pages
-
[38]
Y. Yang, J. L. Zhou, X. S. Ma, T. H. Zhang, Nonstandard finite difference scheme for a diffusive within-host virus dynamics model both virus-to-cell and cell-to-cell transmissions, Comput. Math. Appl., 72 (2016), 1013--1020
-
[39]
Y. Zhao, D. T. Dimitrov, H. Liu, Y. Kuang, Mathematical insights in evaluating state dependent effectiveness of HIV prevention interventions, Bull. Math. Biol., 75 (2013), 649--675
-
[40]
J. L. Zhou, Y. Yang, Global dynamics of a discrete viral infection model with time delay, virus-to-cell and cell-to-cell transmissions, J. Difference Equ. Appl., 23 (2017), 1853--1868