Fisher type fixed point results in controlled metric spaces
Volume 20, Issue 3, pp 234--240
http://dx.doi.org/10.22436/jmcs.020.03.06
Publication Date: February 05, 2020
Submission Date: September 14, 2019
Revision Date: November 11, 2019
Accteptance Date: November 27, 2019
-
1819
Downloads
-
3940
Views
Authors
Durdana Lateef
- Department of Mathematics, College of Science, Taibah University, Madina, 41411, Saudi Arabia.
Abstract
In the present paper, we define a rational contractive condition of Fisher
type in the context of controlled metric space and obtain some generalized
fixed point results in this space. These results will unify and amend many
well-known results of literature. Some consequences and an example has been
presented at the end to show the authenticity of the established results.
Share and Cite
ISRP Style
Durdana Lateef, Fisher type fixed point results in controlled metric spaces, Journal of Mathematics and Computer Science, 20 (2020), no. 3, 234--240
AMA Style
Lateef Durdana, Fisher type fixed point results in controlled metric spaces. J Math Comput SCI-JM. (2020); 20(3):234--240
Chicago/Turabian Style
Lateef, Durdana. "Fisher type fixed point results in controlled metric spaces." Journal of Mathematics and Computer Science, 20, no. 3 (2020): 234--240
Keywords
- Fixed point
- rational contraction
- controlled metric spaces
MSC
References
-
[1]
T. Abdeljawad, N. Mlaiki, H. Aydi, N. Souayah, Double Controlled Metric Type Spaces and Some Fixed Point Results, Mathematics, 6 (2018), 10 pages
-
[2]
J. Ahmad, A. E. Al-Mazrooei, Y. J. Cho, Y.-O. Yang, Fixed point results for generalized $\Theta $-contractions, J. Nonlinear Sci. Appl., 10 (2017), 2350--2358
-
[3]
J. Ahmad, A. S. Al-Rawashdeh, A. Azam, Fixed point results for $\{\alpha, \xi \}$-expansive locally contractive mappings, J. Inequal. Appl., 2014 (2014), 10 pages
-
[4]
J. Ahmad, A. Al-Rawashdeh, A. Azam, New fixed point theorems for generalized $F$-contractions in complete metric spaces, Fixed Point Theory Appl., 2015 (2015), 18 pages
-
[5]
L. A. Alnaser, D. Lateef, H. A. Fouad, J. Ahmad, Relation theoretic contraction results in $\mathcal{F}$-metric spaces, J. Nonlinear Sci. Appl., 12 (2019), 337--344
-
[6]
B. Alqahtani, E. Karapinar, A. Öztürk, On ($\alpha-\psi$)-$K$-contractions in the extended $b$-metric space, Filomat, 32 (2018), 5337--5345
-
[7]
Z. Aslam, J. Ahmad, N. Sultana, New common fixed point theorems for cyclic compatible contractions, J. Math. Anal., 8 (2017), 1--12
-
[8]
A. Azam, N. Mehmood, J. Ahmad, S. Radenović, Multivalued fixed point theorems in cone $b$-metric spaces, J. Inequal. Appl., 2013 (2013), 9 pages
-
[9]
S. Banach, Stefan Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133--181
-
[10]
S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 5--11
-
[11]
B. Fisher, Mappings satisfying a rational inequality, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.), 24 (1980), 247--251
-
[12]
H. P. Huang, S. Radenović, Some fixed point results of generalised Lipschitz mappings on cone b-metric spaces over Banach algebras, J. Comput. Anal. Appl., 20 (2016), 566--583
-
[13]
N. Hussain, J. Ahmad, A. Azam, On Suzuki--Wardowski type fixed point theorems, J. Nonlinear Sci. Appl., 8 (2015), 1095--1111
-
[14]
N. Hussain, A. E. Al-Mazrooei, J. Ahmad, Fixed point results for generalized ($\alpha $-$\eta $)--$\Theta $ contractions with applications, J. Nonlinear Sci. Appl., 10 (2017), 4197--4208
-
[15]
N. Hussain, C. Vetro, F. Vetro, Fixed point results for $\alpha$-implicit contractions with application to integral equations, Nonlinear Anal. Model. Control, 21 (2016), 362--378
-
[16]
T. Kamran, M. Samreen, Q. UL Ain, A generalization of $b$-metric space and some fixed point theorems, Mathematics, 5 (2017), 7 pages
-
[17]
R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60 (1968), 71--76
-
[18]
E. Karapınar, P. Kumari, D. Lateef, A New Approach to the Solution of the Fredholm Integral Equation via a Fixed Point on Extended $b$-Metric Spaces, Symmetry, 10 (2018), 13 pages
-
[19]
M. A. Kutbi, J. Ahmad, A. Azam, On fixed points of $\alpha$-$\psi$-contractive multi-valued mappings in cone metric spaces, Abst. Appl. Anal., 2013 (2013), 13 pages
-
[20]
D. Lateef, J. Ahmad, Dass and Gupta's fixed point theorem in $F$-metric spaces, J. Nonlinear Sci. Appl., 12 (2019), 405--411
-
[21]
N. Mlaiki, H. Aydi, N. Souayah, T. Abdeljawad, Controlled Metric Type Spaces and the Related Contraction Principle, Mathematics, 6 (2018), 7 pages
-
[22]
W. Onsod, T. Saleewong, J. Ahmad, A. E. Al-Mazrooei, P. Kumam, Fixed points of a $\Theta$--contraction on metric spaces with a graph, Commun. Nonlinear Anal., 2 (2016), 139--149
-
[23]
D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), 6 pages