On Hilbert \(I\)-convergent sequence spaces
Volume 20, Issue 3, pp 225--233
http://dx.doi.org/10.22436/jmcs.020.03.05
Publication Date: December 11, 2019
Submission Date: April 16, 2019
Revision Date: October 11, 2019
Accteptance Date: October 31, 2019
-
2378
Downloads
-
4182
Views
Authors
Vakeel A. Khan
- Department of Mathematics, Aligarh Muslim University, Aligarh, 202002, India.
Kamal M. A. S. Alshlool
- Department of Mathematics, Aligarh Muslim University, Aligarh, 202002, India.
Masood Alam
- Department of Mathematics and IT Center for Preparatory Studies, Sultan Qaboos University, P. O. Box 162-PC, 123 Al Khoud Muscat, Sultanate of Oman.
Abstract
In this paper, we define some new sequence spaces \(c^{I}_{0}(H)\), \(c^{I}(H)\), \(\ell^{I}_{\infty}(H)\), and \(\ell_{\infty}(H)\) as a domain of triangle Hilbert matrix and study some topological and algebraic properties of these spaces. Further, we study some inclusion relations concerning these spaces.
Share and Cite
ISRP Style
Vakeel A. Khan, Kamal M. A. S. Alshlool, Masood Alam, On Hilbert \(I\)-convergent sequence spaces, Journal of Mathematics and Computer Science, 20 (2020), no. 3, 225--233
AMA Style
Khan Vakeel A., Alshlool Kamal M. A. S., Alam Masood, On Hilbert \(I\)-convergent sequence spaces. J Math Comput SCI-JM. (2020); 20(3):225--233
Chicago/Turabian Style
Khan, Vakeel A., Alshlool, Kamal M. A. S., Alam, Masood. "On Hilbert \(I\)-convergent sequence spaces." Journal of Mathematics and Computer Science, 20, no. 3 (2020): 225--233
Keywords
- Hilbert matrix
- Hilbert \(I\)-convergence
- Hilbert \(I\)-Cauchy
- Hilbert \(I\)-bounded
MSC
References
-
[1]
F. Başar, B. Altay, On the space of sequences of $p$-bounded variation and related matrix mappings, Ukrainian Math. J., 55 (2003), 136--147
-
[2]
J. Boos, F. Cass, Classical and modern methods in summability, Oxford University Press, Oxford (2000)
-
[3]
M. Candan, Domain of the double sequential band matrix in the spaces of convergent and null sequences, Adv. Difference Equ., 2014 (2014), 18 pages
-
[4]
R. G. Cooke, Infinite matrices and sequence spaces, Dover, New York (2014)
-
[5]
E. Diamantopoulos, A. G. Siskakis, Composition operators and the Hilbert matrix, Studia Math., 140 (2000), 191--198
-
[6]
H. Fast, Sur la convergence statistique, (French) Colloq. Math., 2 (1951), 241--244
-
[7]
R. Filipów, J. Tryba, Ideal convergence versus matrix summability, Stud. Math., 245 (2019), 101--127
-
[8]
G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, Cambridge University Press, Cambridge (1934)
-
[9]
D. Hilbert, Ein beitrag zur theorie des legendre'schen polynoms, (German) Acta Math., 18 (1894), 155--159
-
[10]
M. Jeyaram Bharathi, S. Velmurugan, N. Subramanian, R. Srikanth, On Triple sequence space of Bernstein operator of rough $I_{\lambda}$-statistical convergence of weighted $g(A)$, Bernstein operator of rough $I_{\lambda}$-statistical convergence of weighted $g(A)$}, J. Intel. Fuzzy Syst., 36 (2019), 13--27
-
[11]
M. Kemal Ozdemir, A. Esi, N. Subramanian, Rough convergence of Bernstein fuzzy $I$-convergent of $\chi_{f}^{3FI}$ and $\chi_{f}^{3FI}$ spaces defined by Orlicz function, J. Fuzzy Math., 27 (2019), 707--721
-
[12]
V. A. Khan, K. M. A. S. Alshlool, S. A. A. Abdullah, Spaces of ideal convergent sequences of bounded linear operators, Numer. Funct. Anal. Optim., 39 (2018), 1278--1290
-
[13]
V. A. Khan, K. M. A. S. Alshlool, S. A. A. Abdullah, R. K. A. Rababah, A. Ahmad, Some new classes of paranorm ideal convergent double sequences of $\sigma$-bounded variation over $n$-normed spaces, Cogent Math. Stat., 5 (2018), 13 pages
-
[14]
V. A. Khan, K. Ebadullah, $I$-convergent difference sequence spaces defined by a sequence of moduli, J. Math. Comput. Sci., 2 (2012), 265--273
-
[15]
V. A. Khan, N. Khan, On Zweier $I$-convergent double sequence spaces, Filomat, 30 (2016), 3361--3369
-
[16]
V. A. Khan, A. A. H. Makharesh, K. M. A. S. Alshlool, S. A. A. Abdullah, H. Fatima, On fuzzy valued lacunary ideal convergent sequence spaces defined by a compact operator, J. Intel. Fuzzy Syst., 35 (2018), 4849--4855
-
[17]
V. A. Khan, R. K. A. Rababah, K. M. A. S. Alshlool, S. A. A. Abdullah, A. Ahmad, On Ideal convergence Fibonacci difference sequence spaces, Adv. Difference Equ., 2018 (2018), 14 pages
-
[18]
P. Kostyrko, M. Macaj, Šalát, Statistical convergence and $I$-convergence, Real Analysis Exchange, New York (1999)
-
[19]
E. Malkowsky, Recent results in the theory of matrix transformations in sequence spaces, Mat. Vesnik, 49 (1997), 187--196
-
[20]
M. Mursaleen, F. Başar, B. Altay, On the Euler sequence spaces which include the spaces $\ell_{p}$ and $\ell_{\infty}$ II, Nonlinear Anal., 65 (2006), 707--717
-
[21]
M. Mursaleen, A. K. Noman, On some new sequence spaces of non-absolute type related to the spaces $\ell_{p}$ and $\ell_{\infty}$ I, Filomat, 25 (2011), 33--51
-
[22]
H. POLAT, Some new hilbert sequence spaces, Muş Alparslan Üniversitesi Fen Bilimleri Dergisi, 4 (2016), 367--372
-
[23]
T. Šalát, B. C. Tripathy, M. Ziman, On some properties of $I$-convergence, Tatra Mt. Math. Publ., 28 (2004), 279--286
-
[24]
T. Šalát, B. C. Tripathy, M. Ziman, On $I$-convergence field, Ital. J. Pure Appl. Math., 17 (2005), 45--54
-
[25]
H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2 (1951), 73--74
-
[26]
N. Subramanian, A. Esi, On Triple sequence of Bernstein operator of weighted rough $I_{\lambda}$-convergence, J. Class. Anal., 13 (2018), 45--62
-
[27]
N. Subramanian, A. Esi, V. A. Khan, The Rough Intuitionistic Fuzzy Zweier Lacunary Ideal Convergence of Triple Sequence spaces, J. Math. Stat., 14 (2018), 72--78
-
[28]
B. C. Tripathy, B. Hazarika, $I$-convergent sequence spaces associated with multiplier sequences, Math. Inequal. Appl., 11 (2008), 543--548
-
[29]
A. Wilansky, Summability through functional analysis, North-Holland Publishing Co., Amsterdam (1984)