]>
2015
15
3
84
Direct and Fuzzy Transform Methods for the Stabilization Vibrations of a Damped Linear String
Direct and Fuzzy Transform Methods for the Stabilization Vibrations of a Damped Linear String
en
en
In this paper, the asymptotic behaviour of the vibrations of a damped linear string is studied. The exponential stability result of the overall system is obtain directly by means of an exponential energy decay estimate. A closed form approximate numerical result is constructed by fuzzy transform method to support and implement the stability result.
216
227
Rajib
Ghosh
Ganesh. C.
Gorain
Samarjit
Kar
Uniform stability
exponential energy decay estimate
Layapunov function
fuzzy transform method.
Article.6.pdf
[
[1]
G. Chen, A note on the boundary stabilization of the wave equation, SIAM J. Control Optim., 19 (1981), 106-113
##[2]
Y. C. Fung, Foundations of solid mechanics, Prentice- Hall , New Delhi (1968)
##[3]
G. C. Gorain, Stabilization of a Quasi-linear vibrations of an Inhomogeneous Beam, IEEE Trans.Automat.Contr., 52 (2007), 1690-1695
##[4]
G. C. Gorain, Exponential Energy Decay Estimate for the solutions of Internally Damped Wave equation in a Bounded domain, J.Math.Anai.Appl, 216 (1997), 510-520
##[5]
G. C. Gorain, Exponentially Energy Decay Estimate for the Solutions of n-Dimensional Kirchhoff type Wave Equation, Applied Mathematics and Computative, doi:10.1016/j. amc. 2005.11.03. , 177 (2006), 235-242
##[6]
G. C. Gorain, Exponential stabilization of longitudinal vibration of an inhomogeneous beam, J. Math. Sci. (N.Y.), (2014)
##[7]
R. Ghosh, S. Chowdhury, G. C. Gorain, S. Kar, Uniform stabilization of the telegraph equation with a support by fuzzy transform method, QScience connect 2014:19, (2014)
##[8]
V. Komornik, Rapid Boundary Stabilization of Wave Equations, SIAM Journal of control and Optimization, doi:10.1137/0329011. , 29 (1991), 197-208
##[9]
V. Komornik, Exact Controllability and Stabilization, the Multiplier Method, John Wiley- Masson , Paris (1994)
##[10]
J. Lagnese, Note on boundary stabilization of wave equation, SIAM J. Control Optim., 26 (1988), 1250-1256
##[11]
D. S. Mitrinovic, J. E. Pecaric, A. M. Fink, Inequalities involving functions and their integrals and derivatives, Dordrecht, The netherlands: Kluwer (1991)
##[12]
S. Mishra, G. C. Gorain, Stability of an inhomogeneous damped vibrating string, Application and applied mathematics, 9(1) (2014), 435-448
##[13]
P. K. Nandi, G. C. Gorain, S. Kar, Boundary stabilization of torsional vibration of a solar panel , Appl. Math, 7 (2012), 455-463
##[14]
P. K. Nandi, G. C. Gorain, S. Kar, Stability of vibrations for some Kirchoff equations with dissipating, Application of Mathematics, 59(2) (2014), 205-215
##[15]
I. Perfilieva, E. Chaldeeva, Fuzzy Transformation and its Applications, In Proc.Of the 4th czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty, 124 (2001), 1-116
##[16]
M. Saharuz, Bounded-Input-Bounded-Output Stability of Damped Non-Linear String, IEEE.Trans.Auto.Control, 41 (1996), 1179-1182
##[17]
M. Stepnicka, R. Valasek, Fuzzy Transforms For Functions With Two Variables, In:Proc.Of the 6th Czech-Japan Seminar On Data Analysis and Decision making Under Uncertainty , Valtice, Czech Republic, Sept., 20-23 (2003), 100-107
##[18]
M. Stepnicka, R. Valasek, Fuzzy Transforms and Their Application to Wave Equation, Journal of Electrical Engineering, 55(12/s) (2004), 7-10
##[19]
L. A. Zadeh, Fuzzy sets and systems, System Theory (Fox J., ed.), Microwave Research Institute Symposia Series XV”, Polytechnic Press, Brooklyn, NY, 29-37. Reprinted in Int. J. of General Systems, 17, 1990 (1965), 129-138
]