Optimization of Nonlinear Optical Rectification Coefficient in Asymmetric Double Quantum Wells
-
3001
Downloads
-
4637
Views
Authors
Naser Zamani
- Department of Physics, College of Science, Shiraz University of Technology, Shiraz, Iran.
Alireza Keshavarz
- Department of Physics, College of Science, Shiraz University of Technology, Shiraz, Iran.
Mohammad Soliemanivareki
- Department of Applied Mathematics, Faculty of Basic Sciences, Islamic Azad University- Science Research Ayatollah Amoli branch, Amol, Iran.
Abstract
In this work, the particle swarm optimization is used as an optimization optical rectification
coefficient for square double quantum wells. By combining this algorithm together with numerical
solution of Schrödinger equation, and using the density-matrix method we found the wells
structure that the optical rectification coefficient is maximum.
Application of this algorithm to the structure of asymmetric double quantum wells shows
that the optical rectification coefficient is \(6.82\times 10^{-14}\)V/ m .
Share and Cite
ISRP Style
Naser Zamani, Alireza Keshavarz, Mohammad Soliemanivareki, Optimization of Nonlinear Optical Rectification Coefficient in Asymmetric Double Quantum Wells, Journal of Mathematics and Computer Science, 5 (2012), no. 2, 75-81
AMA Style
Zamani Naser, Keshavarz Alireza, Soliemanivareki Mohammad, Optimization of Nonlinear Optical Rectification Coefficient in Asymmetric Double Quantum Wells. J Math Comput SCI-JM. (2012); 5(2):75-81
Chicago/Turabian Style
Zamani, Naser, Keshavarz, Alireza, Soliemanivareki, Mohammad. "Optimization of Nonlinear Optical Rectification Coefficient in Asymmetric Double Quantum Wells." Journal of Mathematics and Computer Science, 5, no. 2 (2012): 75-81
Keywords
- Particle Swarm Optimization
- Optical Rectification Coefficient
- Asymmetric Double Quantum Wells.
MSC
References
-
[1]
T. Numai, Fundamentals of Semiconductor Lasers, Springer, New York (2004)
-
[2]
N. Kristaedter, Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers, Appl. Phys. Lett. , 69 (1996), 1226-1228.
-
[3]
J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, Quantum cascade laser, Science, 264 (1994), 553-556.
-
[4]
K. K. Choi, B. F. Levine, C. G. Bethea, J. Walker, R. J. Malik, Multiple quantum well 10 \(\mu m\) GaAs /AlxGa1-xAs infrared detector with improved responsivity, Appl. Phys. Lett, 50 (1987), 1814-1817.
-
[5]
D. Ahn, S. L. Chuang, Intersubband optical absorption in a quantum well with an applied electric field, Phys. Rev. B., 35 (1987), 4149-4151.
-
[6]
J. Kelin, Kuhn Gita, U. Lyengar, Sinclair Yee, Free carrier induced changes in the absorption and refractive index for intersubband optical transitions in AlxGa1-xAs/GaAs/AlxGa1-xAs quantum wells, J. Appl. Phys , 70 (1991), 5010-5018.
-
[7]
S. Unlu, I. Karabulut, H. Safak , Linear and nonlinear intersubband optical absorption coefficients and refractive index changes in a quantum box with finite confining potential, Physica E, 33 (2006), 319–324.
-
[8]
R. W. Boyd, Nonlinear Optics, 2nd ed., Academic Press (2003)
-
[9]
G. Rezaei, M. J. Karimi, A. Keshavarz, Excitonic effects on the nonlinear intersubband optical properties of a semi-parabolic one-dimensional quantum dot, Physica E, 43 (2010), 475–481.
-
[10]
J. Kennedy, The particle swarm: social adaptation of knowledge, IEEE Int. Conf. Evol, Comput (1997)