Some quantum corrected dual Euler-Simpson type inequalities for \(q\)-differentiable convex functions
Authors
A. Moumen
- Department of Mathematics, Faculty of Sciences, University of Ha'il, Ha'il 55473, Saudi Arabia.
R. Debbar
- University of 8 May 1945 Guelma, P.O. Box 401, 24000 Guelma, Algeria.
B. Meftah
- Laboratory of Analysis and Control of Differential Equations , University of 8 May 1945 Guelma, P.O. Box 401, 24000 Guelma, Algeria.
M. Bouye
- Department of Mathematics, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.
Abstract
The calculus of integrals is used to solve the majority of physics and
engineering issues, which are frequently not immediately solved. This
compels us to use approximation techniques, the selection of which is based
on the class of functions that meet the necessary criteria as well as known
points. Within the context of quantum calculus, we present an assessment of
the error of the well-known corrected dual Euler-Simpson quadrature rule in
this paper. As an auxiliary result, we create a new quantum identity. Using
this identity, we prove several quantum-corrected dual Euler-Simpson type
integral inequalities for functions with convex \(q\)-derivatives. We allow q
to go towards \(1^{-}\) in order to obtain the classical inequalities. We
provide a few applications to wrap up this research.
Share and Cite
ISRP Style
A. Moumen, R. Debbar, B. Meftah, M. Bouye, Some quantum corrected dual Euler-Simpson type inequalities for \(q\)-differentiable convex functions, Journal of Mathematics and Computer Science, 40 (2026), no. 4, 548--565
AMA Style
Moumen A., Debbar R., Meftah B., Bouye M., Some quantum corrected dual Euler-Simpson type inequalities for \(q\)-differentiable convex functions. J Math Comput SCI-JM. (2026); 40(4):548--565
Chicago/Turabian Style
Moumen, A., Debbar, R., Meftah, B., Bouye, M.. "Some quantum corrected dual Euler-Simpson type inequalities for \(q\)-differentiable convex functions." Journal of Mathematics and Computer Science, 40, no. 4 (2026): 548--565
Keywords
- Corrected dual Euler-Simpson inequality
- convex functions
- \(q\)-derivative
- \(q\)-integration
MSC
References
-
[1]
A. Agli´c Aljinovi´c, D. Kovaˇcevi´c, M. Puljiz, A. Žgalji´c Keko, Sharp trapezoid inequality for quantum integral operator, Filomat, 36 (2022), 5653–5664
-
[2]
P. Agarwal, S. S. Dragomir, J. Park, S. Jain, q-integral inequalities associated with some fractional q-integral operators, J. Inequal. Appl., 2015 (2015), 13 pages
-
[3]
N. Alp, M. Z. Sarıkaya, M. Kunt, ˙I. ˙I ¸scan, q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions, J. King Saud Univ.-Sci., 30 (2018), 193–203
-
[4]
M. U. Awan, S. Talib, A. Kashuri, M. A. Noor, K. I. Noor, Y.-M. Chu, A new q-integral identity and estimation of its bounds involving generalized exponentially μ-preinvex functions, Adv. Difference Equ., 2020 (2020), 12 pages
-
[5]
H. Budak, P. Kösem, H. Kara, On new Milne-type inequalities for fractional integrals, J. Inequal. Appl., 2023 (2023), 15 pages
-
[6]
S. I. Butt, H. Budak, K. Nonlaopon, New quantum Mercer estimates of Simpson-Newton like inequalities via convexity, Symmetry, 14 (2022), 21 pages
-
[7]
S. I. Butt, H. Budak, K. Nonlaopon, New variants of quantum midpoint-type inequalities, Symmetry, 14 (2022), 16 pages
-
[8]
Y. Deng, M. U. Awan, S. Wu, Quantum integral inequalities of Simpson-type for strongly preinvex functions, Mathematics, 7 (2019), 14 pages
-
[9]
T. Du, C. Luo, B. Yu, Certain quantum estimates on the parameterized integral inequalities and their applications, J. Math. Inequal., 15 (2021), 201–228
-
[10]
S. Erden, S. Iftikhar, M. R. Delavar, P. Kumam, P. Thounthong, W. Kumam, On generalizations of some inequalities for convex functions via quantum integrals, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 114 (2020), 15 pages
-
[11]
I. Franji´c, J. Peˇcari´c, On corrected dual Euler-Simpson formulae, Soochow J. Math., 32 (2006), 575–587
-
[12]
F. H. Jackson, On a q-Definite Integrals, Quart. J. Pure Appl. Math., 41 (1910), 193–203
-
[13]
S. Jain, P. Agarwal, B. Ahmad, S. K. Q. Al-Omari, Certain recent fractional integral inequalities associated with the hypergeometric operators, J. King Saud Univ.-Sci., 28 (2016), 82–86
-
[14]
S. Jain, K. Mehrez, D. Baleanu, P. Agarwal, Certain Hermite–Hadamard inequalities for logarithmically convex functions with applications, Mathematics, 7 (2019), 12 pages
-
[15]
V. Kac, P. Cheung, Quantum calculus, Springer-Verlag, New York (2002)
-
[16]
A. Ditta, A. Nosheen, K. M. Awan, R. Matendo Mabela, Ostrowski type inequalities for s-convex functions via q-integrals, J. Funct. Spaces, 2022 (2022), 8 pages
-
[17]
A. Lakhdari, B. Bin-Mohsin, F. Jarad, H. Xu, B. Meftah, A parametrized approach to generalized fractional integral inequalities: Hermite–Hadamard and Maclaurin variants, J. King Saud Uni.-Sci., 36 (2024), 9 pages
-
[18]
W. Liu, H. Zhuang, Some quantum estimates of Hermite-Hadamard inequalities for convex functions, J. Appl. Anal. Comput., 7 (2017), 501–522
-
[19]
B. Meftah, A. Lakhdari, Dual Simpson type inequalities for multiplicatively convex functions, Filomat, 37 (2023), 7673–7683
-
[20]
B. Meftah, A. Souahi, M. Merad, Quantum Simpson like type inequalities for q-differentiable convex functions, J. Anal., 32 (2024), 1331–1365
-
[21]
M. A. Noor, M. U. Awan, K. I. Noor, Some new q-estimates for certain integral inequalities, Facta Univ. Ser. Math. Inform., 31 (2016), 801–813
-
[22]
M. A. Noor, G. Cristescu, M. U. Awan, Bounds having Riemann type quantum integrals via strongly convex functions, Studia Sci. Math. Hungar., 54 (2017), 221–240
-
[23]
M. A. Noor, K. I. Noor, M. U. Awan, quantum estimates for Hermite-Hadamard inequalities, Appl. Math. Comput., 251 (2015), 675–679
-
[24]
Y. Peng, T. Du, Fractional Maclaurin-type inequalities for multiplicatively convex functions and multiplicatively Pfunctions, Filomat, 37 (2023), 9497–9509
-
[25]
Saleh, A. Lakhdari, T. Abdeljawad, B. Meftah, On fractional biparameterized Newton-type inequalities, J. Inequal. Appl., 2023 (2023), 18 pages
-
[26]
W. Saleh, B. Meftah, A. Lakhdari, Quantum dual Simpson type inequalities for q-differentiable convex functions, Int. J. Nonlinear Anal. Appl., 14 (2023), 63–76
-
[27]
J. Soontharanon, M. A. Ali, H. Budak, K. Nonlaopon, Z. Abdullah, Simpson’s and Newton’s type Inequalities for (α,m)-convex functions via quantum calculus, Symmetry, 14 (2022), 13 pages
-
[28]
W. Sudsutad, S. K. Ntouyas, J. Tariboon, Quantum integral inequalities for convex functions, J. Math. Inequal., 9 (2015), 781–793
-
[29]
J. Tariboon, S. K. Ntouyas, Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Difference Equ., 2013 (2013), 19 pages
-
[30]
J. Tariboon, S. K. Ntouyas, Quantum integral inequalities on finite intervals, J. Inequal. Appl., 2014 (2014), 13 pages
-
[31]
M. Tunç, E. Göv, S. Balgeçti, Simpson type quantum integral inequalities for convex functions, Miskolc Math. Notes, 19 (2018), 649–664
-
[32]
P.-P. Wang, T. Zhu, T.-S. Du, Some inequalities using s-preinvexity via quantum calculus, Interdiscip. Math., 24 (2021), 613–636
-
[33]
Y. Zhang, T.-S. Du, H.Wang, Y.-J. Shen, Different types of quantum integral inequalities via (α,m)-convexity, J. Inequal. Appl., 2018 (2018), 24 pages
-
[34]
W. S. Zhu, B. Meftah, H. Xu, F. Jarad, A. Lakhdari, On parameterized inequalities for fractional multiplicative integrals, Demonstr. Math., 57 (2024), 17 pages