An approach to solve nonlinear Caputo-Fabrizio fractional differential equations
Authors
R. AlAhmad
- Department of Mathematics, Yarmouk University, Irbid 21163, Jordan.
Abstract
This paper focuses on developing an approach for solving nonlinear Caputo-Fabrizio fractional differential equations (FDEs). In this approach, we use the exactness and integrating factors to solve nonlinear Caputo-Fabrizio FDE. The FDE is transformed to an ODE, and then the method of characteristics will generate an integrating factor for this ODE. Afterwards, using the exactness of differential equations concept, implicit analytical solutions of such equations are presented. We present an example to demonstrate how this approach facilitates the solution of equations that are generalized to results in previous studies.
Share and Cite
ISRP Style
R. AlAhmad, An approach to solve nonlinear Caputo-Fabrizio fractional differential equations, Journal of Mathematics and Computer Science, 40 (2026), no. 4, 542--547
AMA Style
AlAhmad R., An approach to solve nonlinear Caputo-Fabrizio fractional differential equations. J Math Comput SCI-JM. (2026); 40(4):542--547
Chicago/Turabian Style
AlAhmad, R.. "An approach to solve nonlinear Caputo-Fabrizio fractional differential equations." Journal of Mathematics and Computer Science, 40, no. 4 (2026): 542--547
Keywords
- Caputo-Fabrizo fractional differential equations
- exactness of ODEs
- integrating factors
- nonlinear differential equations
MSC
References
-
[1]
R. AlAhmad, Products of incomplete gamma functions integral representations, Math. Sci. Appl. E-Notes, 4 (2016), 47–51
-
[2]
R. AlAhmad, A. Abdelhadi, Introduction to Fractional Calculus, In: 2019 Advances in Science and Engineering Technology International Conferences (ASET), IEEE, (2019),
-
[3]
R. AlAhmad, Q. AlAhmad, A. Abdelhadi, Solution of fractional autonomous ordinary differential equations, J. Math. Comput. Sci., 27 (2022), 59–64
-
[4]
R. AlAhmad, M. Al-Jararha, H. AlMefleh, Exactness of second order ordinary differential equations and integrating factors, Jordan J. Math. Stat., 8 (2015), 155-167
-
[5]
R. AlAhmad, M. Al-Khaleel, H. Almefleh, On solutions of linear and nonlinear fractional differential equations with application to fractional order RC type circuits, J. Comput. Appl. Math.,, 438 (2024), 10 pages
-
[6]
S. Al-Ahmad, M. Mamat, R. AlAhmad, I. M. Sulaiman, P. L. Ghazali, M. A. Mohamed, On New Properties of Differential Transform via Difference Equations, Int. J. Eng. Technol., 7 (2018), 321–324
-
[7]
R. AlAhmad, R. Weikard, On inverse problems for left-definite discrete Sturm-Liouville equations, Oper. Matrices, 7 (2013), 35–70
-
[8]
S. Arora, T. Mathur, S. Agarwal, K. Tiwari, P. Gupta, Applications of fractional calculus in computer vision: A survey, Neurocomputing, 489 (2022), 407–428
-
[9]
R. G. Buschman, A substitution theorem for the Laplace transformation and its generalization to transformations with symmetric kernel, Pacific J. Math., 7 (1957), 1529–1533
-
[10]
R. G. Buschman, An integral transformation relation, Proc. Amer. Math. Soc., 9 (1958), 956–958
-
[11]
M. Caputo, M. Fabrizio, On the singular kernels for fractional derivatives, some applications to partial differential equations, Progr. Fract. Differ. Appl., 7 (2021), 79–82
-
[12]
J. Conway, A course in functional analysis, Springer-Verlag, New York (1985)
-
[13]
H. Elkhalil, T. Akkin, J. Pearce, J. Bischof, Potassium Titanyl Phosphate Laser Tissue Ablation: Development and Experimental Validation of a New Numerical Model, J. Biomech. Eng., 134 (2012), 13 pages
-
[14]
A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Tables of integral transforms. Vol. I, McGraw-Hill Book Co., New York-Toronto-London (1954)
-
[15]
I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series, and products, Elsevier/Academic Press, Amsterdam (2015)
-
[16]
C. Ionescu, A. Lopes, D. Copot, J. A. T. Machado, J. H. T. Bates, The role of fractional calculus in modelling biological phenomena: A review, Commun. Nonlinear Sci. Numer. Simul., 51 (2017), 141–159
-
[17]
J. J. Nieto, Solution of a fractional logistic ordinary differential equation, Appl. Math. Lett., 123 (2022), 5 pages
-
[18]
W. Rudin, Real and complex analysis, McGraw-Hill Book Co., New York (1987)
-
[19]
J. L. Schiff, The Laplace transform: theory and applications, Springer-Verlag, New York (1999)
-
[20]
M. Sinan, K. Shah, P. Kumam, I. Mahariq, K. J. Ansari, Z. Ahmad, Z. Shah, Fractional order mathematical modeling of typhoid fever disease, Results Phys., 32 (2022), 13 pages
-
[21]
W. A. Strauss, Partial differential equations, John Wiley & Sons, Ltd., Chichester (2008)
-
[22]
S.-L. Wu, M. Al-Khaleel, Convergence analysis of the Neumann-Neumann waveform relaxation method for time-fractional RC circuits, Simul. Model. Pract. Theory, 64 (2016), 43–56
-
[23]
S.-L. Wu, M. Al-Khaleel, Parameter optimization in waveform relaxation for fractional-order RC circuits, IEEE Trans. Circuits Syst. I. Regul. Pap., 64 (2017), 1781–1790
-
[24]
T. Yoshino, Introduction to operator theory, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, New York (1993)