On the boundedness of singular integral operators on grand variable Herz-Hardy spaces
Authors
B. Sultan
- Department of Mathematics, Quaid-I-Azam University, Islamabad 45320, Pakistan.
A. Hussain
- Department of Mathematics, Quaid-I-Azam University, Islamabad 45320, Pakistan.
N. M. Aloraini
- Department of Mathematics, College of Science, Qassim University, Buraydah 51452, Saudi Arabia.
I.-L. Popa
- Department of Computing, Mathematics and Electronics, “1 Decembrie 1918” University of Alba Iulia, 510009 Alba Iulia, Romania.
- Faculty of Mathematics and Computer Science, Transilvania University of Brasov, Iuliu Maniu Street 50, 500091 Brasov, Romania.
Abstract
This study investigates the boundedness of various commutators on grand variable Herz-Hardy spaces, including the Marcinkiewicz integral operator, the Calderón-Zygmund singular integral operator and the fractional integral operator. Firstly we define the Lebesgue spaces with variable exponent and some basic lemmas including Hölder's inequality for Lebesgue spaces. We use the definition of variable Herz spaces to give the definition of grand variable Herz spaces. Then we apply the atomic decomposition of grand variable Herz-Hardy spaces to obtain the boundedness of Marcinkiewicz integral operator, Calderón-Zygmund singular integral operator and fractional integral operator on grand variable Herz-Hardy spaces.
Share and Cite
ISRP Style
B. Sultan, A. Hussain, N. M. Aloraini, I.-L. Popa, On the boundedness of singular integral operators on grand variable Herz-Hardy spaces, Journal of Mathematics and Computer Science, 40 (2026), no. 4, 501--512
AMA Style
Sultan B., Hussain A., Aloraini N. M., Popa I.-L., On the boundedness of singular integral operators on grand variable Herz-Hardy spaces. J Math Comput SCI-JM. (2026); 40(4):501--512
Chicago/Turabian Style
Sultan, B., Hussain, A., Aloraini, N. M., Popa, I.-L.. "On the boundedness of singular integral operators on grand variable Herz-Hardy spaces." Journal of Mathematics and Computer Science, 40, no. 4 (2026): 501--512
Keywords
- Fractional integral operator
- Calderón-Zygmund singular integral operator
- mathematical operators
- grand variable Herz spaces
- grand Herz-Hardy spaces
MSC
References
-
[1]
Y. Z. Chen, K.-S. Lau, Some new classes of Hardy spaces, J. Funct. Anal., 84 (1989), 255–278
-
[2]
D. V. Cruz-Uribe, A. Fiorenza, Variable Lebesgue spaces, Birkhäuser/Springer, Heidelberg (2013)
-
[3]
C. Herz, Lipschitz spaces and Bernstein’s theorem on absolutely convergent Fourier transforms, J. Math. Mech., 18 (1968/69), 283–323
-
[4]
A. Hussain, G. Gao, Multilinear singular integrals and commutators on Herz space with variable exponent, ISRN Math. Anal., 2014 (2014), 10 pages
-
[5]
A. Hussain, I. Khan, A. Mohamed, Variable Her-Morrey estimates for rough fractional Hausdorff operator, J. Inequal. Appl., 2024 (2024), 14 pages
-
[6]
M. Izuki, Boundedness of commutators on Herz spaces with variable exponent, Rend. Circ. Mat. Palermo (2), 59 (2010), 199–213
-
[7]
O. Kováˇcik, J. Rákosník, On spaces Lp(x) and Wk,p(x), Czechoslovak Math. J., 41 (1991), 592–618
-
[8]
T. Li, D. Acosta-Soba, A. Columbu, G. Viglialoro, Dissipative gradient nonlinearities prevent δ-formations in local and nonlocal attraction-repulsion chemotaxis models, Stud. Appl. Math., 154 (2025), 19 pages
-
[9]
S. Lu, D. Yang, G. Hu, Herz Type Spaces and Their Applications, Science Press, Beijing (2008)
-
[10]
F. Shabbir, M. A. Zaighum, On the boundedness of sublinear operators on grand Herz-Hardy spaces with variable exponent, Mediterr. J. Math., 21 (2024), 20 pages
-
[11]
E. M. Stein, On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz, Trans. Amer. Math. Soc., 88 (1958), 430–466
-
[12]
B. Sultan, F. Azmi, M. Sultan, M. Mehmood, N. Mlaiki, Boundedness of Riesz potential operator on grand Herz-Morrey spaces, Axioms, 11 (2022), 14 pages
-
[13]
B. Sultan, A. Hussain, M. Sultan, Chracterization of generalized Campanato spaces with variable exponents via fractional integrals, J. Pseudo-Differ. Oper. Appl., 16 (2025), 16 pages
-
[14]
B. Sultan, M. Sultan, Boundedness of commutators of rough Hardy operators on grand variable Herz spaces, Forum Math., 36 (2024), 717–733
-
[15]
B. Sultan, M. Sultan, Boundedness of higher order commutators of Hardy operators on grand Herz-Morrey spaces, Bull. Sci. Math., 190 (2024), 19 pages
-
[16]
H. B. Wang, Z. W. Fu, Z. G. Liu, Higher-order commutators of Marcinkiewicz integrals on variable Lebesgue spaces, Acta Math. Sci. Ser. A (Chinese Ed.), 32 (2012), 1092–1101
-
[17]
H. Wang, Z. Liu, The Herz-type Hardy spaces with variable exponent and their applications, Taiwan. J. Math., 16 (2012), 1363–1389
-
[18]
Y. Zhou, Boundedness of sublinear operators in Herz-type Hardy spaces, Taiwanese J. Math., 13 (2009), 983–996