New extensions of Hermite-Hadamard and Fejér type inequalities using fuzzy fractional integral operators through different fuzzy convexities
Authors
R. S. Ali
- Department of Mathematics and Statistics, the University of Lahore, Sargodha campus, Sargodha, Pakistan.
M. Vivas-Cortez
- FRACTAL (Fractional Research Analysis Convexity and Their Applications Laboratory), Faculty of Exact and Natural Sciences, School of Physical Sciences and Mathematics, Pontifical Catholic University of Ecuador, Ecuador.
A. Kashuri
- Department of Mathematical Engineering, Polytechnic University of Tirana, 1001 Tirana, Albania.
N. Talib
- Department of Mathematics and Statistics, the University of Lahore, Sargodha campus, Sargodha, Pakistan.
Abstract
It is a familiar fact to develop inequalities using the popular method by adopting fractional operators, and such study of methods is the main core of modern research in recent year. Fuzzy interval valued (FIV) mappings not only used to generalize of different convex mappings but also developed fractional operators. In this paper, we investigate fuzzy fractional inequalities for different fuzzy convexities by successfully implementing generalized fuzzy fractional operators (G-FFO). We discuss the extension of Hermite--Hadamard, trapezoid-type inequalities on the basis of fuzzy convexities and fuzzy fractional operators. Moreover, we establish the Fejér and midpoint type fuzzy inequalities for \((\eta_{1}, \eta_{2})\)-convex fuzzy function.
Share and Cite
ISRP Style
R. S. Ali, M. Vivas-Cortez, A. Kashuri, N. Talib, New extensions of Hermite-Hadamard and Fejér type inequalities using fuzzy fractional integral operators through different fuzzy convexities, Journal of Mathematics and Computer Science, 40 (2026), no. 4, 456--480
AMA Style
Ali R. S., Vivas-Cortez M., Kashuri A., Talib N., New extensions of Hermite-Hadamard and Fejér type inequalities using fuzzy fractional integral operators through different fuzzy convexities. J Math Comput SCI-JM. (2026); 40(4):456--480
Chicago/Turabian Style
Ali, R. S., Vivas-Cortez, M., Kashuri, A., Talib, N.. "New extensions of Hermite-Hadamard and Fejér type inequalities using fuzzy fractional integral operators through different fuzzy convexities." Journal of Mathematics and Computer Science, 40, no. 4 (2026): 456--480
Keywords
- Hermite-Hadamard type fuzzy inequality
- Fejér type fuzzy inequality
- generalized fuzzy fractional operators
- convex fuzzy interval valued function
- \((\eta_{1}, \eta_{2})\)-convex fuzzy interval valued function
MSC
- 26D07
- 26D10
- 26D15
- 26B25
- 26A33
References
-
[1]
T. Abdeljawad, Q. M. Al-Mdallal, Discrete Mittag-Leffler kernel type fractional difference initial value problems and Gronwall’s inequality, J. Comput. Appl. Math., 339 (2018), 218–230
-
[2]
R. S. Ali, S. Mubeen, M. M Ahmad, A class of fractional integral operators with multi-index Mittag-Leffler k-function and Bessel k-function of first kind, J. Math. Comput. Sci., 22 (2021), 266–281
-
[3]
R. S. Ali, S. Mubeen, I. Nayab, S. Araci, G. Rahman, K. S. Nisar, Some fractional operators with the generalized Bessel- Maitland function, Discrete Dyn. Nat. Soc., 2020 (2020), 15 pages
-
[4]
S. M. Aslani, M. R. Delavar, S. Vaezpour, Inequalities of Fejér type related to generalized convex functions, Int. J. Anal. Appl., 16 (2018), 38–49
-
[5]
S. I. Butt, M. Tariq, A. Aslam, H. Ahmad, T. A. Nofal, Hermite–Hadamard type inequalities via generalized harmonic exponential convexity and applications, J. Funct. Spaces, 2021 (2021), 12 pages
-
[6]
H. Chen, U. N. Katugampola, Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities for generalized fractional integrals, J. Math. Anal. Appl., 46 (2017), 1274–1291
-
[7]
T. M. Costa, H. Román-Flores, Some integral inequalities for fuzzy-interval-valued functions, Inf. Sci., 420 (2017), 110–125
-
[8]
S. S. Dragomir, R. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91–95
-
[9]
S. S. Dragomir, C. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, RGMIA Monographs, Victoria University, (2018)
-
[10]
A. Faraj, T. Salim, S. Sadek, J. Ismail, Generalized Mittag-Leffler function associated with Weyl fractional calculus operators, J. Math., 2013 (2013), 5 pages
-
[11]
A. Fernandez, P. Mohammed, Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels, Math. Methods Appl. Sci., 44 (2021), 8414–8431
-
[12]
R. Gorenflo, F. Mainardi, Fractional calculus: integral and differential equations of fractional order, Springer, Vienna, (1997), 223–276
-
[13]
M. A. Hanson, B. Mond, Convex transformable programming problems and invexity, J. Inform. Optim. Sci., 8 (1987), 201–207
-
[14]
O. Kaleva, Fuzzy differential equations, Fuzzy sets and Systems, 24 (1987), 301–317
-
[15]
H. Kavurmaci, M. Avci, M. E. Özdemir, New inequalities of Hermite-Hadamard type for convex functions with applications, J. Inequal. Appl., 2011 (2011), 11 pages
-
[16]
M. B. Khan, P. O. Mohammed, M. A. Noor, Y. S. Hamed, New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus and related inequalities, Symmetry, 13 (2021), 21 pages
-
[17]
V. S. Kiryakova, Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus, J. Comput. Appl. Math., 118 (2000), 241–259
-
[18]
T. Li, S. Frassu, G. Viglialoro, Combining effects ensuring boundedness in an attraction–repulsion chemotaxis model with production and consumption, Z. Angew. Math. Phys., 74 (2023), 21 pages
-
[19]
S. Mohammadi Aslani, M. Rostamian Delavar, S. M. Vaezpour, Hermite-Hadamard type integral inequalities for generalized convex functions, J. Inequal. Spec. Funct., 9 (2018), 17–33
-
[20]
R. E. Moore, Interval analysis, Prentice-Hall, Englewood Cliffs (1966)
-
[21]
R. E. Moore, R. B. Kearfott, M. J. Cloud, Introduction to interval analysis, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2009)
-
[22]
S. Mubeen, R. S. Ali, Fractional operators with generalized Mittag-Leffler k-function, Adv. Differ. Equ., 2019 (2019), 14 pages
-
[23]
S. Nanda, K. Kar, Convex fuzzy mappings, Fuzzy Sets and Systems, 48 (1992), 129–132
-
[24]
I. Nayab, S. Mubeen, R. S. Ali, F. Zahoor, M. Awadalla, A. M. A. Abd Elmotaleb, Novel fractional inequalities measured by Prabhakar fuzzy fractional operators pertaining to fuzzy convexities and preinvexities, AIMS Math., 9 (2024), 17696–17715
-
[25]
K. S. Nisar, A. Tassaddiq, G. Rahman, A. Khan, Some inequalities via fractional conformable integral operators, J. Inequal. Appl., 2019 (2019), 8 pages
-
[26]
J. E. Peˇcari´c, F. Proschan, Y. L. Tong, Convex functions, partial orderings, and statistical applications, Academic Press, Boston (1992)
-
[27]
T. R. Prabhakar, A singular integral equation with a generalized Mittag Leffler function in the kernel, Yokohama Math. J., 19 (1971), 7–15
-
[28]
X. Qiang, G. Farid, M. Yussouf, K. A. Khan, A. U. Rahman, New generalized fractional versions of Hadamard and Fejér inequalities for harmonically convex functions, J. Inequal. Appl., 2020 (2020), 13 pages
-
[29]
M. Rostamian Delavar, S. M. Aslani, M. De La Sen, Hermite-Hadamard-Fejér inequality related to generalized convex functions via fractional integrals, J. Math., 2018 (2018), 10 pages
-
[30]
T. O. Salim, A.W. Faraj, A generalization of Mittag-Leffler function and integral operator associated with fractional calculus, J. Fract. Calc. Appl., 13 (2012), 1–13
-
[31]
M. Z. Sarikaya, E. Set, H. Yaldiz, N. Ba¸sak, Hermite-Hadamard inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407
-
[32]
E. Set, A. O. Akdemir, ˙I. Mumcu, Hadamard’s inequality and its extensions for conformable fractional integrals of any order α > 0, Creat. Math. Inform., 27 (2018), 197–206
-
[33]
L. Tongxing, D. Acosta-Soba, A. Columbu, G. Vigltaloro, Dissipative gradient nonlinearities prevent δ-formations in local and nonlocal attraction-repulsion chemotaxis models, Stud, Appl. Math., 54 (2025), 19 pages