Compactness and Boundedness of composition operator on weighted Lorentz spaces with variable exponents
Authors
G. ALNemer
- Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, Saudi Arabia.
G. A. Basendwah
- Department of Mathematics, King Abdulaziz University, Jeddah, Saudi Arabia.
N. M. Aloraini
- Department of Mathematics, College of Science, Qassim University, Buraydah, 51452, Saudi Arabia.
I.-L. Popa
- Department of Computing, Mathematics and Electronics, “1 Decembrie 1918” University of Alba Iulia, 510009 Alba Iulia, Romania.
- Faculty of Mathematics and Computer Science, Transilvania University of Brasov, Iuliu Maniu Street 50, 500091 Brasov, Romania.
Abstract
In this paper, we give an overview of the weighted Lorentz spaces with variable exponents and also characterize the boundedness and compactness of the composition operator on these spaces.
Share and Cite
ISRP Style
G. ALNemer, G. A. Basendwah, N. M. Aloraini, I.-L. Popa, Compactness and Boundedness of composition operator on weighted Lorentz spaces with variable exponents, Journal of Mathematics and Computer Science, 40 (2026), no. 4, 444--455
AMA Style
ALNemer G., Basendwah G. A., Aloraini N. M., Popa I.-L., Compactness and Boundedness of composition operator on weighted Lorentz spaces with variable exponents. J Math Comput SCI-JM. (2026); 40(4):444--455
Chicago/Turabian Style
ALNemer, G., Basendwah, G. A., Aloraini, N. M., Popa, I.-L.. "Compactness and Boundedness of composition operator on weighted Lorentz spaces with variable exponents." Journal of Mathematics and Computer Science, 40, no. 4 (2026): 444--455
Keywords
- Composition operator
- weighted Lorentz spaces
- mathematical operators
- boundedness and compactness of the composition operator
- distribution function
- non-increasing rearrangement
MSC
References
-
[1]
E. Agora, J. Antezana, M. J. Carro, J. Soria, Lorentz-Shimogaki and Boyd theorems for weighted Lorentz spaces, J. Lond. Math. Soc. (2), 89 (2014), 321–336
-
[2]
E. Agora, J. Antezana, M. J. Carro, Weak-type boundedness of the Hardy-Littlewood operator on weighted Lorentz spaces, J. Fourier Anal. Appl., 22 (2016), 1431–1439
-
[3]
E. Agora, M. J. Carro, J. Soria, Boundedness of the Hilbert transform on weighted Lorentz spaces, J. Math. Anal. Appl., 395 (2012), 218–229
-
[4]
E. Agora, M. J. Carro, J. Soria, Characterization of the weak-type boundedness of the Hilbert transform on weighted Lorentz spaces, J. Fourier Anal. Appl., 19 (2013), 712–730
-
[5]
M. A. Ariño, B. Muckenhoupt, Maximal functions on classical Lorentz spaces and Hardy’s inequality with weights for nonincreasing functions, Trans. Amer. Math. Soc., 320 (1990), 727–735
-
[6]
S. Baena-Miret, M. J. Carro, Boundedness of sparse and rough operators on weighted Lorentz spaces, J. Fourier Anal. Appl., 27 (2021), 22 pages
-
[7]
C. Bennett, R. Sharpley, Interpolation of operators, Academic Press, Boston, MA (1988)
-
[8]
F. E. Browder, W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl., 20 (1967), 197–228
-
[9]
M. J. Carro, H. Li, J. Soria, Q. Sun, Calderón-Zygmund operators and commutators on weighted Lorentz spaces, J. Geom. Anal., 31 (2021), 8979–8990
-
[10]
M. Carro, L. Pick, J. Soria, V. D. Stepanov, On embeddings between classical Lorentz spaces, Math. Inequal. Appl., 4 (2001), 397–428
-
[11]
M. J. Carro, J. A. Raposo, J. Soria, Recent developments in the theory of Lorentz spaces and weighted inequalities, Mem. Amer. Math. Soc., 187 (2007), 128 pages
-
[12]
R. E. Castillo, C. Suarez, E. Trousselot, Composition operator on Λp ˆx(ω) spaces, Quaest. Math., 40 (2017), 833–848
-
[13]
L. Ephremidze, V. Kokilashvili, S. Samko, Fractional, maximal and singular operators in variable exponent Lorentz spaces, Fract. Calc. Appl. Anal., 11 (2008), 407–420
-
[14]
J. García-Cuerva, J. L. Rubio de Francia, Weighted norm inequaities and related topics, North-Holland Publishing Co., Amsterdam (1985)
-
[15]
V. S. Guliyev, A. Serbetci, I. Ekincioglu, On boundedness of the generalized B-potential integral operators in the Lorentz spaces, Integral Transforms Spec. Funct., 18 (2007), 885–895
-
[16]
A. Hussain, G. Gao, Multilinear singular integrals and commutators on Herz space with variable exponent, ISRN Math. Anal., 2014 (2014), 10 pages
-
[17]
A. Hussain, I. Khan, A. Mohamed, Variable Her-Morrey estimates for rough fractional Hausdorff operator, J. Inequal. Appl., 2024 (2024), 14 pages
-
[18]
H. Kempka, J. Vybíral, Lorentz spaces with variable exponents, Math. Nachr., 287 (2014), 938–954
-
[19]
T. Li, D. Acosta-Soba, A. Columbu, G. Viglialoro, Dissipative gradient nonlinearities prevent δ-formations in local and nonlocal attraction-repulsion chemotaxis models, Stud. Appl. Math., 154 (2025), 19 pages
-
[20]
G. Lorentz, Some new Functions Spaces, Ann. Math., 51 (1950), 37–55
-
[21]
G. Lorentz, On the theory of spaces Λ, Pacific J. Math., 1 (1951), 411–429
-
[22]
B. Sultan, A. Hussain, M. Sultan, Chracterization of generalized Campanato spaces with variable exponents via fractional integrals, J. Pseudo-Differ. Oper. Appl., 16 (2025), 16 pages
-
[23]
B. Sultan, M. Sultan, Boundedness of commutators of rough Hardy operators on grand variable Herz spaces, Forum Math., 36 (2024), 717–733
-
[24]
B. Sultan, M. Sultan, Boundedness of higher order commutators of Hardy operators on grand Herz-Morrey spaces, Bull. Sci. Math., 190 (2024), 19 pages
-
[25]
B. Sultan, M. Sultan, Sobolev-type theorem for commutators of Hardy operators in grand Herz spaces, Ukrainian Math. J., 76 (2024), 1196–1213
-
[26]
M. Sultan, B. Sultan, A note on the boundedness of Marcinkiewicz integral operator on continual Herz-Morrey spaces, Filomat, 39 (2025), 2017–2027
-
[27]
M. Sultan, B. Sultan, A. Aloqaily, N. Mlaiki, Boundedness of some operators on grand Herz spaces with variable exponent, AIMS Math., 8 (2023), 12964–12985
-
[28]
M. Sultan, B. Sultan, A. Hussain, Grand Herz-Morrey spaces with variable exponent, Math. Notes., 114 (2023), 957–977
-
[29]
B. Sultan, M. Sultan, A. Hussain, Boundedness of the Bochner-Riesz operators on the weighted Herz-Morrey type Hardy spaces, Complex Anal. Oper. Theory, 19 (2025), 26 pages
-
[30]
B. Sultan, M. Sultan, I. Khan, On Sobolev theorem for higher commutators of fractional integrals in grand variable Herz spaces, Commun. Nonlinear Sci. Numer. Simul., 126 (2023), 11 pages
-
[31]
B. Sultan, M. Sultan, A. Khan, T. Abdeljawad, Boundedness of commutators of variable Marcinkiewicz fractional integral operator in grand variable Herz spaces, J. Inequal. Appl., 2024 (2024), 16 pages