Some new variants of fractional Hermite-Hadamard and Pachpatte-type integral inequalities involving Raina's and Mittag-Leffer functions with applications
Authors
M. Tariq
- Mathematics Research Center, Near East University, Near East Boulevard, PC: 99138, Nicosia/Mersin 10, Turkey.
- Department of Mathematics, Balochistan Residential College, Loralai, Balochistan, Pakistan.
S. K. Ntouyas
- Department of Mathematics, University of Ioannina, 451 10 Ioannina, Greece.
J. Tariboon
- Intelligent and Nonlinear Dynamic Innovations Research Center, Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand.
Abstract
Integral inequalities combined with convexity in the frame of fractional calculus is an interesting research topic.
Mathematical inequalities and convex functions have become vital to the growth of many pure and applied fields of science. In this article, we demonstrate a few generalized fractional integral inequalities involving Raina's function that represent the Mittag-Leffler function.
This article provides to an intriguing connection between convex functions, special functions, and fractional calculus.
First, we present and investigate the concept of a generalized convex involving Raina's function in a polynomial context and discuss its algebraic properties. We establish the new mathematical approach of Hermite-Hadamard inequality and Pachpatte-type inequality involving the newly introduced definition via Caputo-Fabrizio fractional integral operator. Furthermore, to improve our results, we establish a new fractional lemma and utilizing this, provides some new fractional perspectives of the Hermite-Hadamard-type inequality with the aid of generalized m-convex function involving Raina's function.
Applications of some of our presented results to special means are given as well.
The study's conclusions provide fresh and noteworthy improvements over previous research, offering special perspectives and contributions to the area.
Share and Cite
ISRP Style
M. Tariq, S. K. Ntouyas, J. Tariboon, Some new variants of fractional Hermite-Hadamard and Pachpatte-type integral inequalities involving Raina's and Mittag-Leffer functions with applications, Journal of Mathematics and Computer Science, 40 (2026), no. 3, 415--443
AMA Style
Tariq M., Ntouyas S. K., Tariboon J., Some new variants of fractional Hermite-Hadamard and Pachpatte-type integral inequalities involving Raina's and Mittag-Leffer functions with applications. J Math Comput SCI-JM. (2026); 40(3):415--443
Chicago/Turabian Style
Tariq, M., Ntouyas, S. K., Tariboon, J.. "Some new variants of fractional Hermite-Hadamard and Pachpatte-type integral inequalities involving Raina's and Mittag-Leffer functions with applications." Journal of Mathematics and Computer Science, 40, no. 3 (2026): 415--443
Keywords
- Convex function
- Raina function
- Generalized convex involving Raina's function
- improved power-mean integral inequality
- Hölder-İşcan inequality
- Caputo-Fabrizio operator
MSC
- 26A51
- 26A33
- 26D07
- 26D10
- 26D15
References
-
[1]
T. Abdeljawad, S. Rashid, Z. Hammouch, Y.-M. Chu, Some new local fractional inequalities associated with generalized (s,m)-convex functions and applications, Adv. Difference Equ., 2020 (2020), 27 pages
-
[2]
Agarwal, M. Chand, S. Jain, Certain integrals involving generalized Mittag-Leffler functions, Proc. Nat. Acad. Sci. India Sect. A, 85 (2015), 359–371
-
[3]
H. Ahmad, M. Tariq, S. K. Sahoo, J. Baili, C. Cesarano, New estimations of Hermite–Hadamard type integral inequalities for special functions, Fractal Fract., 5 (2021), 26 pages
-
[4]
R. P. Bapat, Applications of inequality in information theory to matrices, Linear Algebra Appl., 78 (1986), 107–117
-
[5]
S. Boyd, C. Crusius, A. Hansson, New advances in convex optimization and control applications, IFAC Proc. Vol., 30 (1997), 365–393
-
[6]
M. J. Cloud, B. C. Drachman, L. P. Lebedev, Inequalities with applications to engineering, Springer, Cham (2014)
-
[7]
S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91–95
-
[8]
A. Fernandez, D. Baleanu, H. M. Srivastava, Series representations for fractional-calculus operators involving generalised Mittag-Leffler functions, Commun. Nonlinear Sci. Numer. Simul., 67 (2019), 517–527
-
[9]
R. Goyal, P. Agarwal, G. I. Oros, S. Jain, Extended beta and gamma matrix functions via 2-parameter Mittag-Leffler matrix function, Mathematics, 10 (2022), 8 pages
-
[10]
J. Green, P. H. Walter, Chapter 1 Mathematical analysis and convexity with applications to economics, Handbook of Mathematical Economics, 1 (1981), 15–52
-
[11]
M. Gürbüz, A. O. Akdemir, S. Rashid, E. Set, Hermite-Hadamard inequality for fractional integrals of Caputo-Fabrizio type and related inequalities, J. Inequal. Appl., 2020 (2020), 10 pages
-
[12]
J. Hadamard, Étude sur les propriétés des fonctions entières en particulier d’une fonction considéréé par Riemann, J. Math. Pures Appl., 58 (1893), 171–215
-
[13]
˙I.˙I¸scan, New refinements for integral and sum forms of Hölder inequality, J. Inequal. Appl., 2019 (2019), 11 pages
-
[14]
S. Jain, R. P. Agarwal, P. Agarwal, P. Singh, Certain unified integrals involving a multivariate Mittag–Leffler function, Axioms, 10 (2021), 6 pages
-
[15]
M. Kadakal, ˙I. ˙I¸scan, H. Kadakal, K. Bekar, On improvements of some integral inequalities, Honam Math. J., 43 (2021), 441–452
-
[16]
Z. Q. Luo, W. Yu, An introduction to convex optimization for communications and signal processing, IEEE J. Sel. Areas Commun., 24 (2006), 1426–1438
-
[17]
B. S. Mordukhovich, N. M. Nam, An easy path to convex analysis and applications, Synth. Lect. Math. Stat., 6 (2013), 1–218
-
[18]
C. P. Niculescu, L.-E. Persson, Convex functions and their applications, Springer, New York (2006)
-
[19]
E. R. Nwaeze, M. A. Khan, A. Ahmadian, M. N. Ahmad, A. K. Mahmood, Fractional inequalities of the Hermite- Hadamard type for m-polynomial convex and harmonically convex functions, AIMS Math., 6 (2021), 1889–1904
-
[20]
T. Pennanen, Convex duality in stochastic optimization and mathematical finance, Math. Oper. Res., 36 (2011), 340–362
-
[21]
R. K. Raina, On generalized Wright’s hypergeometric functions and fractional calculus operators, East Asian Math. J., 21 (2005), 191–203
-
[22]
R. T. Rockafellar, Convex analysis, Princeton University Press, Princeton (1970)
-
[23]
M. Z. Sarikaya, H. Yildirim, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Miskolc Math. Notes, 17 (2016), 1049–1059
-
[24]
H. M. Srivastava, Some families of Mittag-Leffler type functions and associated operators of fractional calculus (survey), TWMS J. Pure Appl. Math., 7 (2016), 123–145
-
[25]
H. M. Srivastava, A. Fernandez, D. Baleanu, Some new fractional-calculus connections between Mittag–Leffler functions, Mathematics, 7 (2019), 10 pages
-
[26]
M. Tariq, H. Ahmad, S. K. Sahoo, A. Kashuri, T. A. Nofal, C.-H. Hsu, Inequalities of Simpson-Mercer-type including Atangana-Baleanu fractional operators and their applications, AIMS Math., 7 (2022), 15159–15181
-
[27]
M. Tariq, S. K. Ntouyas, A. A. Shaikh, A comprehensive review of the Hermite-Hadamard inequality pertaining to fractional integral operators, Mathematics, 11 (2023), 106 pages
-
[28]
M. Tariq, S. K. Sahoo, J. Nasir, S. K. Awan, Some Ostrowski type integral inequalities using hypergeometric functions, J. Frac. Calc. Nonlinear Sys., 2 (2021), 24–41
-
[29]
S. Varošanec, On h–convexity, J. Math. Anal. Appl., 326 (2007), 303–311
-
[30]
M. J. Vivas-Cortez, A. Kashuri, J. E. Hernández Hernández, Trapezium-type inequalities for Raina’s fractional integrals operator using generalized convex functions, Symmetry, 12 (2020), 17 pages
-
[31]
M. J. Vivas-Cortez, R. Liko, A. Kashuri, J. E. Hernández Hernández, New quantum estimates of trapezium-type inequalities for generalized ϕ–convex functions, Mathematics, 7 (2019), 19 pages