Subfamilies of bi-univalent functions governed by Bernoulli polynomials
Authors
S. R. Swamy
- Department of Information Science and Engineering, Acharya Institute of Technology, Bengaluru-560 107, Karnataka, India.
B. A. Frasin
- Faculty of Science, Department of Mathematics, Al al-Bayt University, Mafraq, Jordan.
K. Venugopa
- Department of Information Science and Engineering, Acharya Institute of Technology, Bengaluru-560 107, Karnataka, India.
T. M. Seoudy
- Department of Mathematics, Jamoum University College, Umm Al-Qura University, Makkah, Saudi Arabia.
Abstract
In the context of univalent function theory, special functions play an
important role and have been studied by a number of researchers earlier. This article presents and examines two subfamilies of bi-univalent functions that are governed by Bernoulli polynomials in the open unit disk. We obtain
limits on initial coefficients for functions in the specified subfamilies.
The Fekete-Szegő problem is also addressed for the elements of the
subfamilies that have been defined. We also present some new results and
discuss pertinent links to earlier findings.
Share and Cite
ISRP Style
S. R. Swamy, B. A. Frasin, K. Venugopa, T. M. Seoudy, Subfamilies of bi-univalent functions governed by Bernoulli polynomials, Journal of Mathematics and Computer Science, 40 (2026), no. 3, 341--352
AMA Style
Swamy S. R., Frasin B. A., Venugopa K., Seoudy T. M., Subfamilies of bi-univalent functions governed by Bernoulli polynomials. J Math Comput SCI-JM. (2026); 40(3):341--352
Chicago/Turabian Style
Swamy, S. R., Frasin, B. A., Venugopa, K., Seoudy, T. M.. "Subfamilies of bi-univalent functions governed by Bernoulli polynomials." Journal of Mathematics and Computer Science, 40, no. 3 (2026): 341--352
Keywords
- Regular functions
- subordination
- bi-univalent functions
- Bernoulli polynomials
MSC
References
-
[1]
A. Amourah, B. A. Frasin, T. M. Seoudy, An application of Miller-Ross-type Poisson distribution on certain subclasses of bi-univalent functions subordinate to Gegenbauer polynomials, Mathematics, 10 (2022), 10 pages
-
[2]
L. Bieberbach, Über dié koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln, Sitz.ber. Preuss. Akad. Wiss., 138 (1916), 940-955
-
[3]
D. A. Brannan, J. G. Clunie, Aspects of contemporary complex analysis, In: Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham, July 1–20, (1979), Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York (1980)
-
[4]
D. A. Brannan, T. S. Taha, on some classes of bi-univalent functions, Studia Univ. Babe¸s-Bolyai Math., 31 (1986), 70–77
-
[5]
M. Buyankara, M. Ça˘ glar, On Fekete-Szegö problem for a new subclass of bi-univalent functions defined by Bernoulli polynomials, Acta Univ. Apulensis Math. Inform.,, 71 (2022), 137–145
-
[6]
M. Buyankara, M. Ça˘ glar, L.-I. Cotîrl˘a,, New subclasses of bi-Univalent functions with respect to the symmetric points defined by Bernoulli Polynomials, Axioms, 11 (2022), 9 pages
-
[7]
M. Ça˘ glar, E. Deniz, H. M. Srivastava, Second Hankel determinant for certain subclasses of bi-univalent functions, Turkish J. Math., 41 (2017), 694–706
-
[8]
L. De Branges, A proof of the Bieberbach conjecture, Acta Math., 154 (1985), 137–152
-
[9]
P. L. Duren, , Univalent functions, Springer-Verlag, New York (1983)
-
[10]
M. Fekete, G. Szegö, Eine Bemerkung Uber Ungerade Schlichte Funktionen, J. London Math. Soc., 8 (1933), 85–89
-
[11]
B. A. Frasin, Coefficient bounds for certain classes of bi-univalent functions, Hacet. J. Math. Stat., 43 (2014), 383–389
-
[12]
B. A. Frasin, M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24 (2011), 1569–1573
-
[13]
B. A. Frasin, S. R. Swamy, I. Aldawish, A comprehensive family of bi-univalent functions defined by k-Fibonacci numbers, J. Func. Spaces, 2021 (2021), 7 pages
-
[14]
B. A. Frasin, S. R. Swamy, A. Amourah, J. Salah, R. H. Maheshwarappa, A family of bi-univalent functions defined by (p, q)-derivative operator subordinate to a generalized bivariate Fibonacci polynomials, Eur. J. Pure Appl. Math., 17 (2024), 3801–3814
-
[15]
A. W. Goodman, Univalent Functions, Vol. I, Mariner Publishing Co., Tampa, FL (1983)
-
[16]
M. Ibrahim, Subclasses of λ-pseudo starlike functions with respect to symmetric points associated with conic region, Adv. Anal. Appl. Math., 1 (2024), 12–18
-
[17]
Y. Korkmaz, I. Akta¸s, Fekete-Szego problem for two new subclasses of bi-univalent functions defined by Bernoulli polynomial, Int. J. Nonlinear Anal. Appl., 15 (2024), 1–10
-
[18]
M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18 (1967), 63–68
-
[19]
Numerical solution of Fredholm fractional integro-differential equation with right-sided Caputo’s derivative using Bernoulli polynomials operational matrix of fractional derivative, J. R. Loh, C. Phang, Mediterr. J. Math., 16 (2019), 25 pages
-
[20]
P. Natalini, A. Bernardim, A generalization of the Bernoulli polynomials, J. Appl. Math., 2003 (2003), 155–163
-
[21]
E. Netenyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in z < 1, Arch. Rational Mech. Anal., 32 (1969), 100–112
-
[22]
H. Orhan, P. K. Mamatha, S. R. Swamy, N. Magesh, J. Yamini, Certain classes of bi-univalent functions associated with the Horadam polynomials, Acta Univ. Sapientiae Math., 13 (2021), 258–272
-
[23]
P. K. Sahu, B. Mallick, Approximate solution of fractional order Lane-Emden type differential equation by orthonormal Bernoulli’s polynomials, Int. J. Appl. Comput. Math., 5 (2019), 9 pages
-
[24]
G. Saravanan, S. Baskaran, B. Vanithakumari, L. Alnaji, T. G. Shaba, I. Al-Shbeil, A. A. Lupas, Bernoulli polynomials for a new subclass of Te-univalent functions, Heliyon, 10 (2024), 1–11
-
[25]
H. M. Srivastava, Univalent functions, fractional calculus, and associated generalized hypergeo-metric functions, In: Srivastava HM, Owa S, editors. Univalent functions, fractional calculus,and their applications. Chichester (UK): Halsted Press (Ellis Horwood Limited); New York(NY): Chichester (UK): Brisbane, Australia: Toronto (ON): John Wiley and Sons, (1989), 329–354
-
[26]
H. M. Srivastava, ¸S. Altınkaya, S. Yalçın, Certain Subclasses of bi-univalent functions associated with the Horadam polynomials, Iran. J. Sci. Technol. Trans. A Sci., 43 (2019), 1873–1879
-
[27]
H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), 1188–1192
-
[28]
S. R. Swamy, D. Breaz, V. Kala, M. P. Kempegowda, L.-I. Cotîrl˘a, E. Rapeanu, Initial Coefficient bounds analysis for novel subclasses of bi-univalent functions linked with Lucas-Balancing polynomials, Mathematics, 12 (2024), 15 pages
-
[29]
S. R. Swamy, B. A. Frasin, D. Breaz, L.-I. Cotîrl˘a, Two families of bi-Univalent functions associating the (p,q)-derivative with generalized bivariate Fibonacci polynomials, Mathematics, 12 (2024), 17 pages
-
[30]
S. R. Swamy, S. Yalçin, Coefficient bounds for regular and bi-univalent functions linked with Gegenbauer polynomials, Probl. Anal. Issues Anal., 11(29) (2022), 133–144
-
[31]
D. L. Tan, Coefficient estimates for bi-univalent functions, Chinese Ann. Math. Ser. A, 5 (1984), 559–568
-
[32]
H. Tang, G.-T. Deng, S.-H. Li, Coefficient estimates for new subclasses of Ma-Minda bi-univalent functions, J. Inequal. Appl., 2013 (2013), 10 pages
-
[33]
M. Uzair Shah, B. Khan, S. Araci, F. M. O. Tawfiq, S. Arjika, Coefficients bounds for a subclass of q-bi-starlike functions associated with the generalized q-Lommel polynomials, Appl. Math. Sci. Eng., 32 (2024), 15 pages
-
[34]
M. Uzair Shah, B. Khan, M. Oliveira, S. Araci, Characterization of p-valent q-starlike functions through Hadamard product and Poisson distribution, Appl. Math. Sci. Eng., 33 (2025), 14 pages