\(\mathcal{P}\)-topological spaces in simple graphs
Authors
H. Alzubaidi
- Department of Mathematics, AL-Qunfudhah University College, Umm Al-Qura University, KSA.
D. Djurcic
- Faculty of Technical Sciences Cacak, University of Kragujevac, 32102 Cacak, Serbia.
L. D. R. Kocinac
- Faculty of Sciences and Mathematics, University of Nis, 18000 Nis, Serbia.
H. A. Othman
- Mathematics Department, Albaydha University, Albaydha, Yemen.
- Department of Information Technology, 21 September University of Medical and Applied Sciences, Sana’a, Yemen.
Abstract
This paper introduces and develops the concept of topological spaces
within graph theory, with a particular focus on pathing vertices and
\(\mathcal{P}\)-topological spaces. We define pathing vertices as
those that facilitate the formation of paths within a graph,
enabling the creation of \(\mathcal{P}\)-topological spaces. Our
research presents key contributions, including the proof of openness
properties in these topologies and the establishment of
relationships between homeomorphisms in \(\mathcal{P}\)-topological
spaces and graph isomorphisms, particularly in the context of
connectedness. Furthermore, we explore the application of
\(\mathcal{P}\)-topological spaces in the study of \(\mathcal{N}\)-star
graphs, demonstrating their utility in understanding graphic
topological structures. This work significantly advances the
integration of topological concepts in graph theory, offering new
insights and methodologies for future research.
Share and Cite
ISRP Style
H. Alzubaidi, D. Djurcic, L. D. R. Kocinac, H. A. Othman, \(\mathcal{P}\)-topological spaces in simple graphs, Journal of Mathematics and Computer Science, 40 (2026), no. 3, 330--340
AMA Style
Alzubaidi H., Djurcic D., Kocinac L. D. R., Othman H. A., \(\mathcal{P}\)-topological spaces in simple graphs. J Math Comput SCI-JM. (2026); 40(3):330--340
Chicago/Turabian Style
Alzubaidi, H., Djurcic, D., Kocinac, L. D. R., Othman, H. A.. "\(\mathcal{P}\)-topological spaces in simple graphs." Journal of Mathematics and Computer Science, 40, no. 3 (2026): 330--340
Keywords
- Simple graph
- \(\mathcal P\)-topology
- continuity
- connectedness
- density
MSC
References
-
[1]
K. A. Abdu, A. Kilicman, Bitopological spaces on undirected graphs, J. Math. Comput. Sci., 18 (2018), 232–241
-
[2]
R. Abu-Gdairi, A. A. El-Atik, M. K. El-Bably, Topological visualization and graph analysis of rough sets via neighborhoods: a medical application using human heart data, AIMS Math., 8 (2023), 26945–26967
-
[3]
J. A. Bondy, U. S. R. Murty, Graph Theory, Springer, New York (2008)
-
[4]
A. Cattaneo, S. Bonner, T. Martynec, C. Luschi, I. P. Barret, D. Justus, The role of graph topology in the performance of biomedical knowledge graph completion models, arXiv:2409.04103, (2024), 18 pages
-
[5]
F. H. Damag, A. Saif, A. Kiliçman, E. E. Ali, M. B. Mesmouli, On m-Negative Sets and Out Mondirected Topologies in the Human Nervous System, Mathematics, 12 (2024), 15 pages
-
[6]
F. H. Damag, A. Saif, A. Kiliçman, M. B. Mesmouli, F. Alhubairah, Upper a-Graphical Topological Spaces with the COVID-19 Form and Its Diffusion, Axioms, 14 (2025), 17 pages
-
[7]
J. Dugundji, Topology, Allyn and Bacon, Boston (1966)
-
[8]
A. E. Gamorez, S. R. Canoy, Jr., On a topological space generated by monophonic eccentric neighborhoods of a graph, Eur. J. Pure Appl. Math., 14 (2021), 695–705
-
[9]
A. E. Gamorez, C. G. S. Nianga, S. R. Canoy, Jr., Topologies induced by neighborhoods of a graph under some binary operations, Eur. J. Pure Appl. Math., 12 (2019), 749–755
-
[10]
A. F. Hassan, Z. Redha Ruzoqi Zainy, Some applications of independent compatible edges topology, Int. J. Nonliner Anal. Appl., 12 (2021), 1641–1652
-
[11]
S. M. Jafarian Amiri, A. Jafarzadeh, H. Khatibzadeh, An Alexandroff topology on graphs, Bull. Iranian Math. Soc., 39 (2013), 647–662
-
[12]
A. Kiliciman, K. A. Abdu, Topological spaces associated with simple graphs, J. Math. Anal., 9 (2018), 44–52
-
[13]
C. G. S. Nianga, S. R. Canoy Jr., On a finite topological space induced by hop neighborhoods of a graph, Adv. Appl. Discrete Math., 21 (2019), 79–89
-
[14]
H. A. Othman, M. M. Al-Shamiri, A. Saif, S. Acharjee, T. Lamoudan, R. Ismail, Pathless directed topology in connection to the circulation of blood in the heart of human body, AIMS Math., 7 (2022), 18158–18172
-
[15]
H. A. Othman, A. M. Alzubaidi, Construction topologies on the edges set of undirected graphs, Palest. J. Math., 12 (2023), 74–79
-
[16]
H. A. Othman, A. Ayache, A. Saif, On L2-directed topological spaces in directed graphs theory, Filomat, 37 (2023), 10005–10013
-
[17]
H. K. Sarı, A. Kopuzlu, On topological spaces generated by simple undirected graphs, AIMS Math., 5 (2020), 5541–5550
-
[18]
H. O. Zomam, H. A. Othman, M. Dammak, Alexandroff spaces and graphic topology, Adv. Math. Sci. J., 10 (2021), 2653–2662