Analytical properties of \(\Delta_h\)-hybrid Laguerre-Appell polynomials and their applications in computer modeling
Authors
Sh. A. Wani
- Symbiosis Institute of Technology, Pune Campus, Symbiosis International (Deemed) University (SIU), Pune, India.
W. A. Khan
- Department of Electrical Engineering, Prince Mohammad Bin Fahd University, P.O. Box 1664, Al Khobar 31952, Saudi Arabia.
T. Alqurashi
- Mathematics Department, Faculty of Science, Al-Baha University, 65779-7738, Albaha city, Kingdom of Saudi Arabia.
S. A. Sheikh
- Department of Mathematics, University of Kashmir, South campus, Anantnag, Jammu and Kashmir 192101, India.
Sh. Tamboli
- Symbiosis Institute of Technology, Pune Campus, Symbiosis International (Deemed) University (SIU), Pune, India.
D. Salcedo
- Computer Science and Electronics Development, Universidad de la Costa, Barranquilla, Colombia.
Abstract
This work thoroughly investigates a new class of polynomials, the \(\Delta_h\) Laguerre-Appell polynomials, which combine certain operational strategies with the principle of monomiality. By using an innovative approach, this study adds to previous research on the subject and presents discoveries. Since these polynomials are essential for simulating entropy in quantum systems, their significance is especially clear in quantum mechanics. In-depth derivations of explicit formulas and an analysis of important characteristics and links to well-known polynomial families are given. Through an examination of the special characteristics and uses of \(\Delta_h\) Laguerre-Appell polynomials, this work greatly expands their theoretical knowledge and increases their prospective applications in a variety of mathematical and scientific contexts.
Share and Cite
ISRP Style
Sh. A. Wani, W. A. Khan, T. Alqurashi, S. A. Sheikh, Sh. Tamboli, D. Salcedo, Analytical properties of \(\Delta_h\)-hybrid Laguerre-Appell polynomials and their applications in computer modeling, Journal of Mathematics and Computer Science, 39 (2025), no. 4, 541--555
AMA Style
Wani Sh. A., Khan W. A., Alqurashi T., Sheikh S. A., Tamboli Sh., Salcedo D., Analytical properties of \(\Delta_h\)-hybrid Laguerre-Appell polynomials and their applications in computer modeling. J Math Comput SCI-JM. (2025); 39(4):541--555
Chicago/Turabian Style
Wani, Sh. A., Khan, W. A., Alqurashi, T., Sheikh, S. A., Tamboli, Sh., Salcedo, D.. "Analytical properties of \(\Delta_h\)-hybrid Laguerre-Appell polynomials and their applications in computer modeling." Journal of Mathematics and Computer Science, 39, no. 4 (2025): 541--555
Keywords
- \(\Delta_h\) polynomials
- monomiality principle.
- Laguerre-Appell polynomials
- explicit forms
- determinant form
MSC
References
-
[1]
N. Alam, S. A. Wani, W. A. Khan, F. Gassem, A. Altaleb, Exploring Properties and Applications of Laguerre Special Polynomials Involving the Δh Form, Symmetry, 16 (2024), 16 pages
-
[2]
N. Alam, S. A. Wani, W. A. Khan, H. N. Zaidi, Investigating the Properties and Dynamic Applications of Δh Legendre– Appell Polynomials, Mathematics, 12 (2024), 14 pages
-
[3]
M. S. Alatawi, W. A. Khan, New type of degenerate Changhee–Genocchi polynomials, Axioms, 11 (2022), 11 pages
-
[4]
I. Alazman, B. S. T. Alkahtani, S. A. Wani, Certain properties Δh multi-variate Hermite polynomials, Symmetry, 15 (2023), 10 pages
-
[5]
L. C. Andrews, Special Functions for Engineers and Applied Mathematicians, Macmillan Co., New York (1985)
-
[6]
R. Alyusof, S. A. Wani, Certain Properties and Applications of Δh Hybrid Special Polynomials Associated with Appell Sequences, Fractal Fract., 7 (2023), 10 pages
-
[7]
L. Carlitz, Eulerian numbers and polynomials, Math. Mag., 32 (1959), 247–260
-
[8]
C. Cesarano, D. Assante, A note on generalized Bessel functions, Int. J. Math. Models Methods Appl. Sci., 7 (2013), 625–629
-
[9]
C. Cesarano, Y. Quintana, W. Ramírez, Degenerate versions of hypergeometric Bernoulli-Euler polynomials, Lobachevskii J. Math., 45 (2024), 3509–3521
-
[10]
C. Cesarano, Y. Quintana, W. Ramírez, A Survey on Orthogonal Polynomials from a Monomiality Principle Point of View, Encyclopedia, 4 (2024), 1355–1366
-
[11]
F. A. Costabile, E. Longo, Δh-Appell sequences and related interpolation problem, Numer. Algorithms, 63 (2013), 165–186
-
[12]
G. Dattoli, Hermite-Bessel and Laguerre-Bessel functions: a by-product of the monomiality principle, In: Advanced special functions and applications (Melfi, 1999), Aracne, Rome, 1 (1999), 147–164
-
[13]
G. Dattoli, Generalized polynomials operational identities and their applications, J. Comput. Appl. Math., 118 (2000), 111–123
-
[14]
G. Dattoli, S. Lorenzutta, A. M. Mancho, A. Torre, Generalized polynomials and associated operational identities, J. Comput. Appl. Math., 108 (1999), 209–218
-
[15]
G. Dattoli, P. E. Ricci, A note on Laguerre polynomials, Int. J. Nonlinear Sci. Numer. Simul., 2 (2001), 365–370
-
[16]
G. Dattoli, P. E. Ricci, C. Cesarano, L. Vázquez, Special polynomials and fractional calculus, Math. Comput. Model., 37 (2003), 729–733
-
[17]
G. Dattoli, P. E. Ricci, C. Cesarano, The Lagrange polynomials, the associated generalizations and the umbral calculus, Integral Transforms Spec. Funct., 14 (2003), 181–186
-
[18]
G. Dattoli, A. Torre, Operational methods and two variable Laguerre polynomials, Atti Acad. Sci. Torino CL. Sci. Fis. Mat. Natur., 132 (1998), 3–9
-
[19]
G. Dattoli, A. Torre, Exponential operators, quasi-monomials and generalized polynomials, Radiat. Phys. Chem., 57 (2000), 21–26
-
[20]
G. Dattoli, A. Torre, The Laguerre and Legendre polynomials from an operational point of view, Appl. Math. Comput., 124 (2001), 117–127
-
[21]
W. A. Khan, A note on degenerate Hermite poly-Bernoulli polynomials, J. Classical Anal., 1 (2016), 65–76
-
[22]
W. A. Khan, M. S. Alatawi, Analytical properties of degenerate Genocchi polynomials the second kind and some of their applications, Symmetry, 14 (2022), 15 pages
-
[23]
Y. Quintana, W. Ramírez, A degenerate version of hypergeometric Bernoulli polynomials: announcement of results, Commun. Appl. Ind. Math., 15 (2024), 36–43
-
[24]
W. Ramírez, C. Cesarano, Some new classes of degenerated generalized Apostol-Bernoulli, Apostol-Euler and Apostol- Genocchi polynomials, Carpathian Math. Publ., 14 (2022), 354–363
-
[25]
W. Ramírez, C. Cesarano, Applying the monomiality principle to the new family of Apostol Hermite Bernoulli-type polynomials, Commun. Appl. Ind. Math., 15 (2024), 28–35
-
[26]
M. Riyasat, S. A. Wani, S. Khan, On some classes of differential equations and associated integral equations for the Laguerre-Appell polynomials, Adv. Pure Appl. Math., 9 (2018), 185–194
-
[27]
S. Roshan, H. Jafari, D. Baleanu, Solving FDEs with Caputo-Fabrizio derivative by operational matrix based on Genocchi polynomials, Math. Methods Appl. Sci., 41 (2018), 9134–9141
-
[28]
J. F. Steffensen, The poweriod, an extension of the mathematical notion of power, Acta. Math., 73 (1941), 333–366
-
[29]
S. A. Wani, S. Khan, Properties and applications of the Gould-Hopper-Frobenius-Euler polynomials, Tbilisi Math. J., 12 (2019), 93–104
-
[30]
S. A. Wani, Two-iterated degenerate Appell polynomials: properties and applications, Arab J. Basic Appl. Sci., 31 (2024), 83–92
-
[31]
S. A. Wani, K. Abuasbeh, G. I. Oros, S. Trabelsi, Studies on special polynomials involving degenerate Appell polynomials and fractional derivative, Symmetry, 15 (2023), 12 pages
-
[32]
S. A. Wani, I. Alazman, B. Alkahtani, Certain properties and applications of convoluted Δh multi-variate Hermite and Appell sequences, Symmetry, 15 (2023), 10 pages
-
[33]
S. A. Wani, A. Warke, J. G. Dar, Degenerate 2D bivariate Appell polynomials: properties and applications, Appl. Math. Sci. Eng., 31 (2023), 14 pages
-
[34]
A. Wrülich, Beam Life-Time in Storage Rings, CERN Accelerator School, (1994), 409–435
-
[35]
M. Zayed, S. A. Wani, A Study on Generalized Degenerate Form of 2D Appell Polynomials via Fractional Operators, Fractal Fract., 7 (2023), 14 pages
-
[36]
M. Zayed, S. A. Wani, Y. Quintana, Properties of Multivariate Hermite Polynomials in Correlation with Frobenius–Euler Polynomials, Mathematics, 11 (2023), 17 pages