Novel integral inequalities concerning modified Atangana-Baleanu fractional integral operators
Volume 39, Issue 3, pp 386--397
https://dx.doi.org/10.22436/jmcs.039.03.07
Publication Date: April 15, 2025
Submission Date: September 18, 2024
Revision Date: January 14, 2025
Accteptance Date: February 28, 2025
Authors
G. Rahman
- Department of Mathematics and Statistics, Hazara University, Mansehra 21300, Pakistan.
M. Samraiz
- Department of Mathematics, University of Sargodha, P.O. Box 40100, Sargodha, Pakistan.
I. Boukhris
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 960, Abha, Saudi Arabia.
S. Aljohani
- Department of Mathematics and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia.
N. Mlaiki
- Department of Mathematics and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia.
Abstract
Integral identities that have been developed in inequality theory study support a number of inequalities. A number of fractional integral and derivative operators are currently used to achieve these identities. In order to show several integral inequalities for convex functions, this article first derives an integral identity using modified Atangana-Baleanu integral operators. The fundamental aim of this work is to obtain new and general form integral inequalities by using fractional integral operators with strong kernel structure.
Share and Cite
ISRP Style
G. Rahman, M. Samraiz, I. Boukhris, S. Aljohani, N. Mlaiki, Novel integral inequalities concerning modified Atangana-Baleanu fractional integral operators, Journal of Mathematics and Computer Science, 39 (2025), no. 3, 386--397
AMA Style
Rahman G., Samraiz M., Boukhris I., Aljohani S., Mlaiki N., Novel integral inequalities concerning modified Atangana-Baleanu fractional integral operators. J Math Comput SCI-JM. (2025); 39(3):386--397
Chicago/Turabian Style
Rahman, G., Samraiz, M., Boukhris, I., Aljohani, S., Mlaiki, N.. "Novel integral inequalities concerning modified Atangana-Baleanu fractional integral operators." Journal of Mathematics and Computer Science, 39, no. 3 (2025): 386--397
Keywords
- Young inequality
- Hadamard inequality
- convex function
- power mean inequality
- fractional operators
MSC
References
-
[1]
T. Abdeljawad, A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel, J. Inequal. Appl., 2017 (2017), 11 pages
-
[2]
T. Abdeljawad, Fractional operators with generalized Mittag-Leffler kernels and their iterated differintegrals, Chaos, 29 (2019), 10 pages
-
[3]
T. Abdeljawad, D. Baleanu, Integration by parts and its applications of a new nonlocal fractional derivative with Mittag- Leffler nonsingular kernel, J. Nonlinear Sci. Appl., 10 (2017), 1098–1107
-
[4]
T. Abdeljawad, D. Baleanu, On fractional derivatives with generalized Mittag-Leffler kernels, Adv. Differ. Equ., 2018 (2018), 15 pages
-
[5]
P. Agarwal, M. Jleli, M. Tomar, Certain Hermite-Hadamard type inequalities via generalized k-fractional integrals, J. Inequal. Appl., 2017 (2017), 10 pages
-
[6]
D. Baleanu, S. Arshad, A. Jajarmi, W. Shokat, F. Akhavan Ghassabzade, M. Wali, Dynamical behaviours and stability analysis of a generalized fractional model with a real case study, J. Adv. Res., 48 (2023), 157–173
-
[7]
D. Baleanu, A. Fernandez, On some new properties of fractional derivatives with Mittag-Leffler kernel, Commun. Nonlinear Sci. Numer. Simul., 59 (2018), 444–462
-
[8]
D. Baleanu, A. Jajarmi, S. S. Sajjadi, D. Mozyrska, A new fractional model and optimal control of a tumor-immune surveillance with non-singular derivative operator, Chaos, 29 (2019), 15 pages
-
[9]
D. Baleanu, H. Khan, H. Jafari, R. A. Khan, M. Alipour, On existence results for solutions of a coupled system of hybrid boundary value problems with hybrid conditions, Adv. Differ. Equ., 2015 (2015), 14 pages
-
[10]
D. B˘aleanu, O. G. Mustafa, P. R. Agarwal, An existence result for a superlinear fractional differential equation, Appl. Math. Lett., 23 (2010), 1129–1132
-
[11]
D. B˘aleanu, O. G. Mustafa, R. P. Agarwal, On the solution set for a class of sequential fractional differential equations, J. Phys. A, 43 (2010), 7 pages
-
[12]
D. Baleanu, P. Shekari, L. Torkzadeh, H. Ranjbar, A. Jajarmi, K. Nouri, Stability analysis and system properties of Nipah virus transmission: a fractional calculus case study, Chaos Solitons Fractals, 166 (2023), 10 pages
-
[13]
J. V. L. Chew, A. Sunarto, J. Sulaiman, M. F. Asli, Fractional Newton Explicit Group Method for Time-Fractional Nonlinear Porous Medium Equations, Progr. Fract. Differ. Appl., 10 (2024), 391–398
-
[14]
O. Defterli, D. Baleanu, A. Jajarmi, S. S. Sajjadi, N. Alshaikh, J. H. Asad, O. Defterli, D. Baleanu, A. Jajarmi, S. S. Sajjadi, N. Alshaikh, J. H. Asad, Rom. Rep. Phys., 74 (2022), 13 pages
-
[15]
G. Farid, K. A. Khan, N. Latif, A. U. Rehman, S. Mehmood, General fractional integral inequalities for convex and m-convex functions via an extended generalized Mittag-Leffler function, J. Inequal. Appl., 2018 (2018), 12 pages
-
[16]
W.-H. Huang, M. Samraiz, A. Mehmood, D. Baleanu, G. Rahman, S. Naheed, Modified Atangana-Baleanu fractional operators involving generalized Mittag-Leffler function, Alex. Eng. J., 75 (2023), 639–648
-
[17]
A. Iqbal, M. A. Khan, M. Suleman, Y.-M. Chu, The right Riemann-Liouville fractional Hermite-Hadamard type inequalities derived from Green’s function, AIP Adv., 10 (2020), 9 pages
-
[18]
A. Iqbal, M. A. Khan, S. Ullah, Y. M. Chu, A. Kashuri, Hermite-Hadamard type inequalities pertaining conformable fractional integrals and their applications, AIP Adv., 8 (2018), 18 pages
-
[19]
H. Kavurmaci, M. Avci, M. E. Özdemir, New inequalities of Hermite-Hadamard type for convex functions with applications, J. Inequal. Appl., 2011 (2011), 11 pages
-
[20]
D. Kumar, J. Singh, D. Baleanu, Sushila, Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-Leffler type kernel, Phys. A, 492 (2018), 155–167
-
[21]
K. Mehrez, P. Agarwal, New Hermite-Hadamard type integral inequalities for convex functions and their applications, J. Comput. Appl. Math., 350 (2019), 274–285
-
[22]
A. Nazir, G. Rahman, A. Ali, S. Naheed, K. S. Nisar, W. Albalawi, H. Y. Zahran, On generalized fractional integral with multivariate Mittag-Leffler function and its applications, Alex. Eng. J., 61 (2022), 9187–9201
-
[23]
K. M. Owolabi, Modelling and simulation of a dynamical system with the Atangana–Baleanu fractional derivative, Eur. Phys. J. Plus, 133 (2018), 13 pages
-
[24]
M. J. Park, O. M. Kwon, J. H. Ryu, Generalized integral inequality: application to time-delay systems, Appl. Math. Lett., 77 (2018), 6–12
-
[25]
G. Rahmnan, T. Abdeljawad, F. Jarad, K. S. Nisar, Bounds of Generalized Proportional Fractional Integrals in General Form via Convex Functions and their Applications, Mathematics, 8 (2020), 19 pages
-
[26]
G. Rahman, K. S. Nisar, A. Ghaffar, F. Qi, Some inequalities of the Grüss type for conformable k-fractional integral operators, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., 114 (2020), 9 pages
-
[27]
G. Rahman, K. S. Nisar, F. Qi, Some new inequalities of the Grüss type for conformable fractional integrals, AIMS Math., 3 (2018), 575–583
-
[28]
G. Rahman, Z. Ullah, A. Khan, E. Set, K. S. Nisar, Certain Chebyshev type inequalities involving fractional conformable integral operators, Mathematics, 7 (2019), 9 pages
-
[29]
M. Samraiz, A. Mehmood, S. Naheed, G. Rahman, A. Kashuri, K. Nonlaopon, On Novel Fractional Operators Involving the Multivariate Mittag–Leffler Function, Mathematics, 10 (2022), 19 pages
-
[30]
M. Samraiz, Z. Perveen, T. Abdeljawad, S. Iqbal, S. Naheed, On Certain Fractional Calculus Operators and Their Applications in Mathematical Physics, Phys. Scr., 95 (2020),
-
[31]
M. Samraiz, Z. Perveen, G. Rahman, K. S Nisar, D. Kumar, On (k, s)-Hilfer Prabhakar Fractional Derivative with Applications in Mathematical Physics, Front. Phys., 8 (2020), 1–9
-
[32]
M. Samraiz, M. Umer, T. Abdeljawad, S. Naheed, G. Rahman, K. Shah, On Riemann-type weighted fractional operators and solutions to Cauchy problems, Comput. Model. Eng. Sci., 136 (2023), 901–919
-
[33]
M. Z. Sarikaya, T. Tunc, H. Budak, On generalized some integral inequalities for local fractional integrals, Appl. Math. Comput., 276 (2016), 316–323
-
[34]
E. Set, A. O. Akdemir, M. E. Özdemir, A. Karaoˇ glan, M. A. Dokuyucu, New integral inequalities for Atangana- Baleanu fractional integral operators and various comparisons via simulations, Filomat, 37 (2023), 2251–2267
-
[35]
Y. Shuang, F. Qi, Integral inequalities of Hermite–Hadamard type for extended s-convex functions and applications, Mathematics, 6 (2018), 12 pages
-
[36]
S. Wu, M. A. Khan, S. Faisal, T. Saeed, E. R. Nwaeze, Derivation of Hermite-Hadamard-Jensen-Mercer conticrete inequalities for Atangana-Baleanu fractional integrals by means of majorization, Demonstr. Math., 57 (2024), 21 pages
-
[37]
J. Zhang, G.Wang, X. Zhi, C. Zhou, Generalized Euler-Lagrange equations for fuzzy fractional variational problems under gH-Atangana-Baleanu differentiability, J. Funct. Spaces, 2018 (2018), 15 pages