New results on coupled Caputo-Hadamard fractional neutral differential equations supplemented by unbounded delays
Authors
G. Mani
- Department of Mathematics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamilnadu, India.
A. Lakshmi S. R
- Department of Mathematics, Easwari Engineering College, 18 Bharathi Salai, Ramapuram Chennai-600089, Tamil Nadu, India.
S. T. M. Thabet
- Department of Mathematics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602 105, Tamil Nadu, India.
- Department of Mathematics, Radfan University College, University of Lahej, Lahej, Yemen.
- Department of Mathematics, College of Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02814, Republic of Korea.
I. Kedim
- Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
M. Vivas-Cortez
- Faculty of Exact and Natural Sciences, School of Physical Sciences and Mathematics, Pontifical Catholic University of Ecuador, Av. 12 de octubre 1076 y Roca, Apartado Postal 17-01-2184, Sede Quito, Ecuador.
Abstract
This paper examines a new coupled system of nonlinear fractional differential equations involving sequential Caputo-Hadamard type fractional derivatives, Hadamard integrals, and unbounded delays. Qualitative theorems such as the existence and uniqueness of solutions are derived by applying Krasnoselskii's and Banach's fixed point techniques. Furthermore, we demonstrate the Hyers-Ulam (\(\text{H}\text{U}\)) and its generalized form of stability for the proposed system. The main results are illustrated through a practical example.
Share and Cite
ISRP Style
G. Mani, A. Lakshmi S. R, S. T. M. Thabet, I. Kedim, M. Vivas-Cortez, New results on coupled Caputo-Hadamard fractional neutral differential equations supplemented by unbounded delays, Journal of Mathematics and Computer Science, 39 (2025), no. 3, 361--375
AMA Style
Mani G., Lakshmi S. R A., Thabet S. T. M., Kedim I., Vivas-Cortez M., New results on coupled Caputo-Hadamard fractional neutral differential equations supplemented by unbounded delays. J Math Comput SCI-JM. (2025); 39(3):361--375
Chicago/Turabian Style
Mani, G., Lakshmi S. R, A., Thabet, S. T. M., Kedim, I., Vivas-Cortez, M.. "New results on coupled Caputo-Hadamard fractional neutral differential equations supplemented by unbounded delays." Journal of Mathematics and Computer Science, 39, no. 3 (2025): 361--375
Keywords
- Caputo-Hadamard fractional calculus
- initial value problem
- existence and uniqueness
- Hyers-Ulam stability
- fixed point theorem
MSC
References
-
[1]
T. Abdeljawad, S. T. M. Thabet, I. Kedim, M. Vivas-Cortez, On a new structure of multi-term Hilfer fractional impulsive neutral Levin-Nohel integrodifferential system with variable time delay, AIMS Math., 9 (2024), 7372–7395
-
[2]
K. Aissani, M. Benchohra, Impulsive fractional differential inclusions with infinite delay, Electron. J. Differ. Equ., 2013 (2013), 13 pages
-
[3]
M. Awadalla, M. Subramanian, M. Manigandan, K. Abuasbeh, Existence and H-U stability of solution for coupled system of fractional-order with integral conditions involving Caputo-Hadamard derivatives, Hadamard integrals, J. Funct. Spaces, 2022 (2022), 11 pages
-
[4]
M. Awadalla, Y. Y. Yameni, K. Abuassba, A new fractional model for the cancer treatment by radiotherapy using the hadamard fractional derivative, Online Math. J., 1 (2019), 10 pages
-
[5]
B. Baculíková, J. Džurina, Oscillation theorems for second-order nonlinear neutral differential equations, Comput. Math. Appl., 62 (2011), 4472–4478
-
[6]
C. T. H. Baker, G. A. Bocharov, C. A. H. Paul, F. A. Rihan, Modelling and analysis of time-lags in some basic patterns of cell proliferation, J. Math. Biol., 37 (1998), 341–371
-
[7]
M. Benchohra, J. Henderson, S. K. Ntouyas, A. Ouahab, Existence results for fractional order functional differential equations with infinite delay, J. Math. Anal. Appl., 338 (2008), 1340–1350
-
[8]
C. Benzarouala, C. Tunç, Hyers-Ulam-Rassias stability of fractional delay differential equations with Caputo derivative, Math. Methods Appl. Sci., 47 (2024), 13499–13509
-
[9]
G. A. Bocharov, F. A. Rihan, Numerical modelling in biosciences using delay differential equations, J. Comput. Appl. Math., 125 (2000), 183–199
-
[10]
T. A. Burton, A fixed-point theorem of Krasnoselskii, Appl. Math. Lett., 11 (1998), 85–88
-
[11]
M. Cai, G. Em. Karniadakis, C. Li, Fractional SEIR model and data-driven predictions of COVID-19 dynamics of Omicron variant, Chaos, 32 (2022), 10 pages
-
[12]
R. Cai, F. Ge, Y. Chen, C. Kou, Regional gradient controllability of ultra-slow diffusions involving the Hadamard-Caputo time fractional derivative, Math. Control Relat. Fields, 10 (2019), 141–156
-
[13]
Y.-K. Chang, A. Anguraj, M. M. Arjunan, Existence results for impulsive neutral functional differential equations with infinite delay, Nonlinear Anal. Hybrid Syst., 2 (2008), 209–218
-
[14]
R. V. Culshaw, S. Ruan, G. Webb, A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay, J. Math. Biol., 46 (2003), 425–444
-
[15]
J. Dabas, A. Chauhan, Existence and uniqueness of mild solution for an impulsive neutral fractional integro-differential equation with infinite delay, Math. Comput. Model., 57 (2013), 754–763
-
[16]
S. Dhaniya, A. Kumar, A. Khan, T. Abdeljawad, M. A. Alqudah, Existence results of Langevin equations with Caputo- Hadamard fractional operator, J. Math., 2023 (2023), 12 pages
-
[17]
W. Djema, F. Mazenc, C. Bonnet, J. Clairambault, E. Fridman, Stability analysis of a nonlinear system with infinite distributed delays describing cell dynamics, In: 2018 Annual American Control Conference (ACC), IEEE, (2018), 1220–1223
-
[18]
A. S. El-Karamany, M. A. Ezzat, On fractional thermoelasticity, Math. Mech. Solids, 16 (2011), 334–346
-
[19]
E. Fridman, Introduction to time-delay systems, Birkhäuser/Springer, Cham (2014)
-
[20]
Y. Y. Gambo, F. Jarad, D. Baleanu, T. Abdeljawad, On Caputo modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 2014 (2014), 12 pages
-
[21]
R. Garra, E. Orsingher, F. Polito, A note on hadamard fractional differential equations with varying coefficients and their applications in probability, Mathematics, 6 (2018), 10 pages
-
[22]
J. Hadamard, Essai sur l’étude des fonctions données par leur développement de Taylor, J. Pure Appl. Math., 4 (1892), 101–186
-
[23]
J. K. Hale, S. M. Verduyn Lunel, Introduction to functional-differential equations, Springer-Verlag, New York (1993)
-
[24]
F. Jarad, T. Abdeljawad, D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 2012 (2012), 8 pages
-
[25]
R. Jessop, S. A. Campbell, Approximating the stability region of a neural network with a general distribution of delays, Neural Netw., 23 (2010), 1187–1201
-
[26]
K. Josi´c, J. M. López, W. Ott, L. J. Shiau, M. R. Bennett, Stochastic delay accelerates signaling in gene networks, PLoS Comput. Biol., 7 (2011), 13 pages
-
[27]
A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science B.V., Amsterdam (2006)
-
[28]
Y. N. Kyrychko, S. J. Hogan, On the use of delay equations in engineering applications, J. Vib. Control, 16 (2010), 943–960
-
[29]
S. Lakshmanan, F. A. Rihan, R. Rakkiyappan, J. H. Park, Stability analysis of the differential genetic regulatory networks model with time-varying delays and Markovian jumping parameters, Nonlinear Anal. Hybrid Syst., 14 (2015), 1–15
-
[30]
S. Li, S. Zhang, Existence of solutions for fractional evolution equations with infinite delay and almost sectorial operator, Math. Probl. Eng., 2020 (2020), 10 pages
-
[31]
O. Moaaz, G. Chatzarakis, A. Muhib, Neutral delay differential equations: An improved approach and its applications in the oscillation theory, Authorea Preprints, (2020)
-
[32]
K. Muthuvel, K. Kaliraj, K. S. Nisar, V. Vijayakumar, Relative controllability for ψ-Caputo fractional delay control system, Results Control Optim., 16 (2024), 16 pages
-
[33]
K. S. Nisar, A constructive numerical approach to solve the fractional modified camassa–holm equation, Alex. Eng. J., 106 (2024), 19–24
-
[34]
F. Norouzi, G. M. N’guérékata, Existence results to a ϕ-hilfer neutral fractional evolution equation with infinite delay, Nonauton. Dyn. Syst., 8 (2021), 101–124
-
[35]
A. S. Rafeeq, S. T. M. Thabet, M. O. Mohammed, I. Kedim, M. Vivas-Cortez, On Caputo-Hadamard fractional pantograph problem of two different orders with Dirichlet boundary conditions, Alex. Eng. J., 86 (2024), 386–398
-
[36]
R. Rakkiyappan, G. Velmurugan, F. A. Rihan, S. Lakshmanan, Stability analysis of memristor-based complex-valued recurrent neural networks with time delays, Complexity, 21 (2015), 14–39
-
[37]
F. A. Rihan, Delay differential equations and applications to biology, Springer, Singapore (2021)
-
[38]
U. Saeed, A method for solving Caputo-Hadamard fractional initial and boundary value problems, Math. Methods Appl. Sci., 46 (2023), 13907–13921
-
[39]
R. Sipahi, F. M. Atay, S.-I. Niculescu, Stability of traffic flow behavior with distributed delays modeling the memory effects of the drivers, SIAM J. Appl. Math., 68 (2007/08), 738–759
-
[40]
J. Tariboon, S. K. Ntouyas, C. Thaiprayoon, Nonlinear Langevin equation of Hadamard-Caputo type fractional derivatives with nonlocal fractional integral conditions, Adv. Math. Phys., 2014 (2014), 15 pages
-
[41]
M. Teshome Beyene, M. Daba Firdi, T. T. Dufera, Analysis of Caputo-Hadamard fractional neutral delay differential equations involving Hadamard integral and unbounded delays: existence and uniqueness, Res. Math., 11 (2024), 13 pages
-
[42]
S. T. M. Thabet, M. B. Dhakne, On boundary value problems of higher order abstract fractional integro-differential equations, Int. J. Nonlinear Anal. Appl., 7 (2016), 165–184
-
[43]
S. T. M. Thabet, M. B. Dhakne, Nonlinear fractional integro-differential equations with two boundary conditions, Adv. Stud. Contemp. Math., 26 (2016), 513–526
-
[44]
S. T. M. Thabet, M. Vivas-Cortez, I. Kedim, Analytical study of ABC-fractional pantograph implicit differential equation with respect to another function, AIMS Math., 8 (2023), 23635–23654
-
[45]
A. A. Thirthar, H. Abboubakar, A. L. Alaoui, K. S. Nisar, Dynamical behavior of a fractional-order epidemic model for investigating two fear effect functions, Results Control Optim., 16 (2024), 21 pages
-
[46]
C. Tunç, O. Bazighifan, Some new oscillation criteria for fourth-order neutral differential equations with distributed delay, Electron. J. Math. Anal. Appl., 7 (2019), 235–241
-
[47]
O. Tunç, C. Tunç, On Ulam stabilities of iterative Fredholm and Volterra integral equations with multiple time-varying delays, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 118 (2024), 20 pages
-
[48]
O. Tunç, C. Tunç, G. Petru¸sel, J.-C. Yao, On the Ulam stabilities of nonlinear integral equations and integro-differential equations, Math. Methods Appl. Sci., 47 (2024), 4014–4028
-
[49]
O. Tunç, C. Tunç, J.-C. Yao, Global existence and uniqueness of solutions of integral equations with multiple variable delays and integro differential equations: Progressive Contractions, Mathematics, 12 (2024), 16 pages
-
[50]
B. Yan, Boundary value problems on the half-line with impulses and infinite delay, J. Math. Anal. Appl., 259 (2001), 94–114
-
[51]
C.-Y. Yin, F. Liu, V. V. Anh, Numerical simulation of the nonlinear fractional dynamical systems with fractional damping for the extensible and inextensible pendulum, J. Algorithms Comput. Technol., 1 (2007), 427–447