Analyzing predator-prey dynamics in the context of global warming using fractional integro differential equations
Authors
K. S. Nisar
- Department of Mathematics, College of Science and Humanities in Alkharj, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia.
- Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Jordan.
G. Hamsavarthini
- Department of Mathematics, Kongunadu Arts and Science College, Coimbatore-641 029, India.
C. Ravichandran
- Department of Mathematics, Kongunadu Arts and Science College, Coimbatore-641 029, India.
Sh. U. Kumaran
- Department of Mathematics and Statistics, Providence Women's College, Malaparamba, Kozhikode-673 009, India.
Abstract
In the field of ecology, the primary focus is on how climate change induced environmental shifts, including increasing temperatures, influence the relationships between species. This study presents a model that we have created to simulate the interactions between two species; one being a predator and the other its prey. In the context of the current situation, we propose using a fractional integro differential model, in line with Caputo's method. The existence of solutions is confirmed, and their stability is analyzed and the existence of unique solution is demonstrated with an example. Finally, the numerical results are plotted to show how memory effects affect ecological stability over time using iterative population estimates.
Share and Cite
ISRP Style
K. S. Nisar, G. Hamsavarthini, C. Ravichandran, Sh. U. Kumaran, Analyzing predator-prey dynamics in the context of global warming using fractional integro differential equations, Journal of Mathematics and Computer Science, 39 (2025), no. 2, 249--262
AMA Style
Nisar K. S., Hamsavarthini G., Ravichandran C., Kumaran Sh. U., Analyzing predator-prey dynamics in the context of global warming using fractional integro differential equations. J Math Comput SCI-JM. (2025); 39(2):249--262
Chicago/Turabian Style
Nisar, K. S., Hamsavarthini, G., Ravichandran, C., Kumaran, Sh. U.. "Analyzing predator-prey dynamics in the context of global warming using fractional integro differential equations." Journal of Mathematics and Computer Science, 39, no. 2 (2025): 249--262
Keywords
- Fractional calculus
- mathematical global warming model
- prey-predator
- fixed point
- stability results
- numerical methods
MSC
- 26A33
- 86A08
- 37C25
- 45M10
- 65R10
References
-
[1]
M. M. I. Y. Adan, M. Kamrujjaman, M. M. Molla, M. Mohebujjaman, C. Buenrostro, Interplay of harvesting and the growth rate for spatially diversified populations and the testing of a decoupled scheme, Math. Biosci. Eng., 20 (2023), 6374–6399
-
[2]
M. Alam, A. Zada, T. Abdeljawad, Stability analysis of an implicit fractional integro-differential equation via integral boundary conditions, Alex. Eng. J., 87 (2024), 501–514
-
[3]
A. Arikoglu, I. Ozkol, Solution of fractional integro-differential equations by using fractional differential transform method, Chaos Solitons Fractals, 40 (2009), 521–529
-
[4]
S. Arshad, I. Saleem, A. Akgül, J. Huang, Y. Tang, S. M. Eldin, A novel numerical method for solving the Caputo- Fabrizio fractional differential equation, AIMS Math., 8 (2023), 9535–9556
-
[5]
A. Atangana, K. M. Owolabi, New numerical approach for fractional differential equations, Math. Model. Nat. Phenom., 13 (2018), 21 pages
-
[6]
A. Binzer, C. Guill, U. Brose, B. C. Rall, The dynamics of food chains under climate change and nutrient enrichment, Phil. Trans. R. Soc. B, 367 (2012), 2935–2944
-
[7]
A. Chakraborty, P. Veeresha, Effects of global warming, time delay and chaos control on the dynamics of a chaotic atmospheric propagation model within the frame of Caputo fractional operator, Commun. Nonlinear Sci. Numer. Simul., 128 (2024), 23 pages
-
[8]
A. Din, F. M. Khan, Z. U. Khan, A. Yusuf, T. Munir, The mathematical study of climate change model under non-local fractional derivative, Partial. Differ. Equ. Appl. Math., 5 (2022), 7 pages
-
[9]
Earth Talk, The Effects of Global Warming on Wildlife, ThoughtCo., (2020),
-
[10]
S. C. Eze, M. O. Oyesanya, Fractional order on the impact of climate change with dominant Earth’s fluctuations, Math. Clim. Weather Forecast., 5 (2019), 11 pages
-
[11]
M. Farman, A. Shehzad, K. S. Nisar, E. Hincal, A. Akgul, A. M. Hassan, Generalized Ulam-Hyers-Rassias stability and novel sustainable techniques for dynamical analysis of global warming impact on ecosystem, Sci. Rep., 13 (2023), 24 pages
-
[12]
B. Ghanbari, S. Djilali, Mathematical analysis of a fractional-order predator-prey model with prey social behavior and infection developed in predator population, Chaos Solitons Fractals, 138 (2020), 13 pages
-
[13]
A. Granas, J. Dugundji, Fixed point theory, Springer-Verlag, New York (2003)
-
[14]
D. S. Jones, M. J. Plank, B. D. Sleeman, Differential equations and mathematical biology, CRC Press, Boca Raton, FL (2010)
-
[15]
H.-L. Li, L. Zhang, C. Hu, Y.-L. Jiang, Z. Teng, Dynamical analysis of a fractional-order predator-prey model incorporating a prey refuge, J. Appl. Math. Comput., 54 (2017), 435–449
-
[16]
C. Maji, F. Al Basir, D. Mukherjee, K. S. Nisar, C. Ravichandran, COVID-19 propagation and the usefulness of awareness-based control measures: a mathematical model with delay, AIMS Math., 7 (2022), 12091–12105
-
[17]
I. Masti, K. Sayevand, On collocation-Galerkin method and fractional B-spline functions for a class of stochastic fractional integro-differential equations, Math. Comput. Simul., 216 (2024), 263–287
-
[18]
S. G. Mortoja, P. Panja, S. K. Mondal, Stability Analysis of Plankton-Fish Dynamics with Cannibalism Effect and Proportionate Harvesting on Fish, Mathematics, 11 (2023), 37 pages
-
[19]
T. C. Nguyen, Applications of fixed point theorems to the vacuum Einstein constraint equations with non-constant mean curvature, Ann. Henri Poincaré, 17 (2016), 2237–2263
-
[20]
K. S. Nisar, M. Farman, M. Abdel-Aty, C. Ravichandran, A review of fractional-order models for plant epidemiology, Prog. Fract. Differ. Appl., 10 (2024), 489–521
-
[21]
K. S. Nisar, M. Farman, M. Abdel-Aty, C. Ravichandran, A review of fractional order epidemic models for life sciences problems: Past, present and future, Alex. Eng. J., 95 (2024), 283–305
-
[22]
P. Panja, Can global warming change predator-prey dynamics: A modelling study, Int. J. Big Data Min. Glob. Warm., 5 (2023),
-
[23]
A. Pourdarvish, K. Sayevand, I. Masti, S. Kumar, Orthonormal Bernoulli polynomials for solving a class of two dimensional stochastic Volterra-Fredholm integral equations, Int. J. Appl. Comput. Math., 8 (2022), 24 pages
-
[24]
C. Ravichandran, K. Logeswari, A. Khan, T. Abdeljawad, J. F. Gómez-Aguilar, An epidemiological model for computer virus with Atangana-Baleanu fractional derivative, Results Phys., 51 (2023), 8 pages
-
[25]
C. Ravichandran, K. Logeswari, F. Jarad, New results on existence in the framework of Atangana-Baleanu derivative for fractional integro-differential equations, Chaos Solitons Fractals, 125 (2019), 194–200
-
[26]
G. P. Samanta, M. Das, A. Maiti, Stability analysis of a prey-predator fractional order model incorporating prey refuge, Ecol. Genet. Genom., 7 (2018), 33–46
-
[27]
K. Sayevand, V. Moradi, A robust computational framework for analyzing fractional dynamical systems, Discrete Contin. Dyn. Syst. Ser. S, 14 (2021), 3763–3783
-
[28]
Y. Sekerci, Climate change effects on fractional order prey-predator model, Chaos Solitons Fractals, 134 (2020), 16 pages
-
[29]
U. K. Shyni, R. Lavanya, A study on transmission dynamics of the emerging Candida auris infections in intensive care units: optimal control analysis and numerical computations, Physica A, 561 (2020), 11 pages
-
[30]
J. Singh, R. Agrawal, D. Baleanu, Dynamical analysis of fractional order biological population model with carrying capacity under Caputo-Katugampola memory, Alex. Eng. J., 91 (2024), 394–402
-
[31]
R. Singh, J. Mishra, V. K. Gupta, Dynamical analysis of a Tumor Growth model under the effect of fractal fractional Caputo-Fabrizio derivative, Int. J. Math. Comput. Eng., 1 (2023), 115–126
-
[32]
J. A. Tenreiro Machado, A. M. Lopes, Dynamical analysis of the global warming, Math. Probl. Eng., 2012 (2012), 12 pages
-
[33]
A. A. Thirthar, S. Jawad, S. J. Majeed, K. S. Nisar, Impact of wind flow and global warming in the dynamics of preypredator model, Results Control Optim., 15 (2024), 15 pages
-
[34]
A. A. Thirthar, N. Sk, B. Mondal, M. A. Alqudah, T. Abdeljawad, Utilizing memory effects to enhance resilience in disease-driven prey-predator systems under the influence of global warming, J. Appl. Math. Comput., 69 (2023), 4617– 4643
-
[35]
S. Unni Kumaran, L. Rajagopal, Optimal control analysis for a Candida auris nosocomial infection model with environmental transmission, Math. Methods Appl. Sci., 45 (2022), 6878–6897
-
[36]
M. K. Van Aalst, The impacts of climate change on the risk of natural disasters, Disasters, 30 (2006), 5–18
-
[37]
P. Vellinga, W. J. Van Verseveld, Climate Change and Extreme Weather Events, WWF, Gland, Switzerland, (2000), 50 pages
-
[38]
C. Xu, X. Cui, P. Li, J. Yan, L. Yao, Exploration on dynamics in a discrete predator-prey competitive model involving feedback controls, J. Biol. Dyn., 17 (2023), 20 pages
-
[39]
Z. Zarvan, K. Sayevand, R. M. Ganji, H. Jafari, A reliable numerical algorithm mixed with hypergeometric function for analysing fractional variational problems, Numer. Algorithms, 98 (2024), 2081--2112
-
[40]
M. Zimova, L. S. Mills, J. J. Nowak, High fitness costs of climate change induced camouflage mismatch, Ecol. Lett., 19 (2016), 299–307