Inclusive analysis of a nonlocal fractional hybrid differential problem via differential feedback control
Authors
A. M. A. El-Sayed
- Faculty of Sciences, Department of Mathematics, Alexandria University, Alexandria, Egypt.
Sh. M. Al-Issa
- Faculty of Arts and Sciences, Department of Mathematics, Lebanese International University, Saida, Lebanon.
- Faculty of Arts and Sciences, Department of Mathematics, The International University of Beirut, Beirut, Lebanon.
H. H. G. Hashem
- Faculty of Sciences, Department of Mathematics, Alexandria University, Alexandria, Egypt.
I. H. Kaddoura
- Faculty of Arts and Sciences, Department of Mathematics, Lebanese International University, Saida, Lebanon.
- Faculty of Arts and Sciences, Department of Mathematics, The International University of Beirut, Beirut, Lebanon.
A. A. El-Bakari
- Faculty of Arts and Sciences, Department of Mathematics, Lebanese International University, Saida, Lebanon.
Abstract
In this paper, we investigate the existence of continuous solutions for a fractional-order hybrid non-local differential problem that involves differential feedback control. The problem is formulated with a fractional-order derivative, which adds complexity to the system’s dynamics. Our approach relies on key mathematical tools, including the Schauder fixed point theorem and the contraction mapping theorem, to establish the existence of solutions. Furthermore, we analyze the continuous dependence of the solutions on various parameters, ensuring robustness in the behavior of the system under perturbations. We present a comprehensive discussion on the solvability of the problem within the space
$~L_1(I)$, providing detailed remarks on the conditions that guarantee the existence of solutions. To demonstrate the practical applicability of our results, we include an illustrative example that elucidates the theoretical results and supports the validity of our approach.
Share and Cite
ISRP Style
A. M. A. El-Sayed, Sh. M. Al-Issa, H. H. G. Hashem, I. H. Kaddoura, A. A. El-Bakari, Inclusive analysis of a nonlocal fractional hybrid differential problem via differential feedback control, Journal of Mathematics and Computer Science, 37 (2025), no. 4, 449--464
AMA Style
El-Sayed A. M. A., Al-Issa Sh. M., Hashem H. H. G., Kaddoura I. H., El-Bakari A. A., Inclusive analysis of a nonlocal fractional hybrid differential problem via differential feedback control. J Math Comput SCI-JM. (2025); 37(4):449--464
Chicago/Turabian Style
El-Sayed, A. M. A., Al-Issa, Sh. M., Hashem, H. H. G., Kaddoura, I. H., El-Bakari, A. A.. "Inclusive analysis of a nonlocal fractional hybrid differential problem via differential feedback control." Journal of Mathematics and Computer Science, 37, no. 4 (2025): 449--464
Keywords
- Hybrid differential equation
- continuous dependence
- control variable
- feedback control
MSC
References
-
[1]
B. Ahmad, S. K. Ntouyas, Initial-value problems for hybrid Hadamard fractional differential equations, Electron. J. Differ. Equ., 2014 (2014), 8 pages
-
[2]
S. M. Al-Issa, A. M. A. El-Sayed, H. H. G. Hashem, An Outlook on Hybrid Fractional Modeling of a Heat Controller with Multi-Valued Feedback Control, Fractal Fract., 7 (2023), 19 pages
-
[3]
D. Baleanu, S. Etemad, S. Pourrazi, S. Rezapour, On the new fractional hybrid boundary value problems with three-point integral hybrid conditions, Adv. Differ. Equ., 2019 (2019), 21 pages
-
[4]
D. Baleanu, S. Etemad, S. Rezapour, A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions, Bound. Value Probl., 2020 (2020), 16 pages
-
[5]
J. Bana´s, M. Lecko, W. G. El-Sayed, Existence theorems for some quadratic integral equations, J. Math. Anal. Appl., 222 (1998), 276–285
-
[6]
J. Bana´s, T. Zaja¸c, A new approach to the theory of functional integral equations of fractional order, J. Math. Anal. Appl., 375 (2011), 375–387
-
[7]
F. Chen, The permanence and global attractivity of Lotka-Volterra competition system with feedback controls, Nonlinear Anal. Real World Appl., 7 (2006), 133–143
-
[8]
M. Cicho´ n, Differential inclusions and abstract control problems, Bull. Austral. Math. Soc., 53 (1996), 109–122
-
[9]
R. F. Curtain, A. J. Pritchard, Functional analysis in modern applied mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York (1977)
-
[10]
K. Deimling, Nonlinear functional Analysis, Springer-Verlag, Berlin (1985)
-
[11]
B. C. Dhage, N. S. Jadhav, Basic results in the theory of hybrid differential equations with linear perturbations of second type, Tamkang J. Math., 44 (2013), 171–186
-
[12]
B. C. Dhage, V. Lakshmikantham, Basic results on hybrid differential equation, Nonlinear Anal. Hybrid Syst., 4 (2010), 414–424
-
[13]
A. M. A. El-Sayed, H. H. G. Hashem, S. M. Al-Issa, New Aspects on the Solvability of a Multidimensional Functional Integral Equation with Multivalued Feedback Control, Axioms, 12 (2023), 15 pages
-
[14]
A. M. A. El-Sayed, H. H. G. Hashem, Sh. M. Al-Issa, A comprehensive view of the solvability of non-local fractional orders pantograph equation with a fractal-fractional feedback control, AIMS Math., 9 (2024), 19276–19298
-
[15]
J. R. Graef, S. Heidarkhani, L. Kong, S. Moradi, Three solutions for impulsive fractional boundary value problems with p-Laplacian, Bull. Iranian Math. Soc., 48 (2022), 1413–1433
-
[16]
A. K. Gupta, R. K. Patel, Theoretical Analysis of Fractional-Order Hybrid Differential Equations via Measure of Noncompactness, Mathematics, (),
-
[17]
S. Heidarkhani, Infinitely many solutions for nonlinear perturbed fractional boundary value problems, An. Univ. Craiova Ser. Mat. Inform., 41 (2014), 88–103
-
[18]
S. Heidarkhani, Multiple solutions for a nonlinear perturbed fractional boundary value problem, Dynam. Systems Appl., 23 (2014), 317–331
-
[19]
S. Heidarkhani, A. Cabada, G. A. Afrouzi, S. Moradi, G. Caristi, A variational approach to perturbed impulsive fractional differential equations, J. Comput. Appl. Math., 341 (2018), 42–60
-
[20]
S. Heidarkhani, A. Salari, Nontrivial solutions for impulsive fractional differential systems through variational methods, Math. Methods Appl. Sci., 43 (2020), 6529–6541
-
[21]
S. Heidarkhani, A. Salari, G. Caristi, Infinitely many solutions for impulsive nonlinear fractional boundary value problems, Adv. Differ. Equ., 2016 (2016), 19 pages
-
[22]
M. A. E. Herzallah, D. Baleanu, On fractional order hybrid differential equations, Abstr. Appl. Anal., 2014 (2014), 7 pages
-
[23]
S. Melliani, K. Hilal, M. Hannabou, Existence results in the theory of hybrid fractional integro-differential equations, J. Univers. Math., 1 (2018), 166–179
-
[24]
P. Nasertayoob, Solvability and asymptotic stability of a class of nonlinear functional-integral equation with feedback control, Commun. Nonlinear Anal., 5 (2018), 19–27
-
[25]
P. Nasertayoob, S. M. Vaezpour, Positive periodic solution for a nonlinear neutral delay population equation with feedback control, J. Nonlinear Sci. Appl., 6 (2013), 152–161
-
[26]
A. Platzer, Differential dynamic logic for hybrid systems, J. Automat. Reason., 41 (2008), 143–189
-
[27]
W. Quaghebeur, E. Torfs, B. De Baets, I. Nopens, Hybrid differential equations: Integrating mechanistic and data-driven techniques for modelling of water systems, Water Res., 2013 (2022),
-
[28]
S. Sitho, S. K. Ntouyas, J. Tariboon, Existence results for hybrid fractional integro-differential equations, Bound. Value Probl., 2015 (2015), 13 pages
-
[29]
H. M. Srivastava, A. M. A. El-Sayed, H. H. G. Hashem, Sh. M. Al-Issa, Analytical investigation of nonlinear hybrid implicit functional differential inclusions of arbitrary fractional orders, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 116 (2022), 19 pages
-
[30]
C. Swartz, Measure, integration and function spaces, World Scientific Publishing Co., River Edge (1994)