Computational framework for analyzing fractional biochemical reaction model
Authors
D. Kumar S
- Department of Mathematics, University of Rajasthan, Jaipur-302004, India.
- Department of Mathematics, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea.
H. Nama
- Department of Mathematics, University of Rajasthan, Near East Boulevard, PC: 99138, Jaipur-302004, India.
D. Baleanu
- Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon.
- Institute of Space Sciences-Subsidiary of INFLPR, Magurele-Bucharest, Romania.
Abstract
The approximate numerical approach for the system of coupled nonlinear ordinary differential equations (ODEs) of a biochemical reaction model is very important for biochemists and scientist working in the field of biochemistry and related issues. Within this article, two computational algorithms for numerically solving a biochemical reaction model with time-fractional derivatives are examined and compared. The first technique depends on the collocation method along with the shifted Jacobi operational matrix for fractional derivative defined in the Caputo sense, and using this technique, we created a system of algebraic equations from the given fractional model. Another approach is centered on the basic theorem of fractional calculus and the characteristics of Newton's polynomial interpolation (NPI). We use these two methods to compute solution for the fractional biochemical reaction model. The model's computational outcomes are compared by using the recommended techniques in this work. Graphical and tabular forms are used to confirm the reliability and effectiveness of both techniques and an excellent match is discovered.
Share and Cite
ISRP Style
D. Kumar S, H. Nama, D. Baleanu, Computational framework for analyzing fractional biochemical reaction model, Journal of Mathematics and Computer Science, 36 (2025), no. 2, 218--228
AMA Style
Kumar S D., Nama H., Baleanu D., Computational framework for analyzing fractional biochemical reaction model. J Math Comput SCI-JM. (2025); 36(2):218--228
Chicago/Turabian Style
Kumar S, D., Nama, H., Baleanu, D.. "Computational framework for analyzing fractional biochemical reaction model." Journal of Mathematics and Computer Science, 36, no. 2 (2025): 218--228
Keywords
- Biochemical reaction model
- collocation technique
- Newton polynomial interpolation
- Jacobi operational matrix
MSC
References
-
[1]
A. Ahmadian, M. Suleiman, S. Salahshour, D. Baleanu, A Jacobi operational matrix for solving a fuzzy linear fractional differential equation, Adv. Difference Equ., 2013 (2013), 29 pages
-
[2]
A. Arafa, A different approach for conformable fractional biochemical reaction-diffusion models, Appl. Math. J. Chinese Univ. Ser. B, 35 (2020), 452–467
-
[3]
A. Atangana, S. ˙I. Araz, New numerical scheme with Newton polynomial—theory, methods, and applications, Elsevier/ Academic Press, London (2021)
-
[4]
M. Behroozifar, A. Sazmand, An approximate solution based on Jacobi polynomials for time-fractional convection-diffusion equation, Appl. Math. Comput., 296 (2017), 1–17
-
[5]
A. H. Bhrawy, M. M. Tharwat, M. A. Alghamdi, A new operational matrix of fractional integration for shifted Jacobi polynomials, Bull. Malays. Math. Sci. Soc. (2), 37 (2014), 983–995
-
[6]
A. Bueno-Orovio, D. Kay, K. Burrage, Fourier spectral methods for fractional-in-space reaction-diffusion equations, BIT, 54 (2014), 937–954
-
[7]
R. Caponetto, G. D. Dongola, L. Fortuna, I. Petr´aˇ, Fractional order systems: modeling and control applications, World Scientific Publishing Co., Singapore (2010)
-
[8]
Y. C¸ enesiz, Y. Keskin, A. Kurnaz, The solution of the Bagley-Torvik equation with the generalized Taylor collocation method, J. Franklin Inst., 347 (2010), 452–466
-
[9]
K. S. Cole, Electric conductance of biological systems, Cold Spring Harbor Symp. Quant. Biol., 1 (1933), 107–116
-
[10]
S. K. Damarla, M. Kundu, Approximate solution of nonlinear fractional order biochemical reaction model by multistage new iterative method, J. Fract. Calc. Appl., 5 (2014), 107–120
-
[11]
E. H. Doha, A. H. Bhrawy, D. Baleanu, S. S. Ezz-Eldien, The operational matrix formulation of the Jacobi tau approximation for space fractional diffusion equation, Adv. Difference Equ., 2014 (2014), 14 pages
-
[12]
V. P. Dubey, R. Kumar, D. Kumar, Approximate analytical solution of fractional order biochemical reaction model and its stability analysis, Int. J. Biomath., 12 (2019), 21 pages
-
[13]
S. S. Ezz-Eldien, New quadrature approach based on operational matrix for solving a class of fractional variational problems, J. Comput. Phys., 317 (2016), 362–381
-
[14]
S. S. Ezz-Eldien, A. A. El-Kalaawy, Numerical simulation and convergence analysis of fractional optimization problems with right-sided Caputo fractional derivative, Comput. Nonlinear Dynam., 13 (2018), 8 pages
-
[15]
J.-H. He, Variational iteration method–a kind of non-linear analytical technique: some examples, Int. J. Non-linear Mech., 34 (1999), 699-708
-
[16]
H. Jafari, H. Tajadodi, S. R. M. Khatir, V. T. Nguyen, Fractional variational problem involving indefinite integrals and nonsingular kernels, Fractals, 31 (2023), 12 pages
-
[17]
S. Kazem, S. Abbasbandy, S. Kumar, Fractional-order Legendre functions for solving fractional-order differential equations, Appl. Math. Model., 37 (2013), 5498–5510
-
[18]
M. M. Khader, K. M. Saad, On the numerical evaluation for studying the fractional KdV, KdV-Burgers and Burgers equations, Eur. Phys. J. Plus, 133 (2018), 1–13
-
[19]
M. M. Khader, K. M. Saad, D. Baleanu, S. Kumar, A spectral collocation method for fractional chemical clock reactions, Comput. Appl. Math., 39 (2020), 12 pages
-
[20]
M. M. Khader, K. M. Saad, Z. Hammouch, D. Baleanu, A spectral collocation method for solving fractional KdV and KdV-Burgers equations with non-singular kernel derivatives, Appl. Numer. Math., 161 (2021), 137–146
-
[21]
A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science B.V., Amsterdam (2006)
-
[22]
E. Kreyszig, Introductory functional analysis with applications, John Wiley & Sons, New York (1989)
-
[23]
D. Kumar, H. Nama, D. Baleanu, Numerical and computational analysis of fractional order mathematical models for chemical kinetics and carbon dioxide absorbed into phenyl glycidyl ether, Results Phys., 53 (2023), 1–7
-
[24]
D. Kumar, H. Nama, D. Baleanu, Computational analysis of fractional Michaelis-Menten enzymatic reaction model, AIMS Math., 9 (2024), 625–641
-
[25]
S. Liao, On the homotopy analysis method for nonlinear problems, Appl. Math. Comput., 147 (2004), 499–513
-
[26]
K. Maleknejad, M. S. Dehkordi, Numerical solutions of two-dimensional nonlinear integral equations via Laguerre wavelet method with convergence analysis, Appl. Math. J. Chinese Univ. Ser. B, 36 (2021), 83–98
-
[27]
L. Michaelis, M. L. Menten, Die kinetik der invertinwirkung, Biochem. Z, 49 (1913), 333–369
-
[28]
C. A. Monje, Y. Q. Chen, B. M. Vinagre, D. Xue, V. Feliu-Batlle, Fractional-order systems and controls: fundamentals and applications, Springer, London (2010)
-
[29]
I. Podlubny, Fractional differential equations, Academic Press, San Diego, CA (1999)
-
[30]
T. J. Rivlin, An introduction to the approximation of functions, Dover Publications, New York (1981)
-
[31]
K. M. Saad, A different approach for the fractional chemical model, Rev. Mexicana F´ıs., 68 (2022), 13 pages
-
[32]
K. M. Saad, E. H. F. Al-Sharif, Analytical study for time and time-space fractional Burgers’ equation, Adv. Difference Equ.,, 2017 (2017), 15 pages
-
[33]
K. M. Saad, E. H. F. AL-Shareef, A. K. Alomari, D. Baleanu, J. F. G´omez-Aguilar, On exact solutions for time-fractional Korteweg–de Vries and Korteweg–de Vries–Burger’s equations using homotopy analysis transform method, Chinese J. Phys., 63 (2020), 149–162
-
[34]
K. M. Saad, E. H. Al-Shareef, M. S. Mohamed, X.-J. Yang, Optimal q-homotopy analysis method for time-space fractional gas dynamics equation, Eur. Phys. J. Plus, 132 (2017), 1–11
-
[35]
S. Schnell, C. Mendoza, Closed form solution for time-dependent enzyme kinetics, J. Theor. Biol., 187 (1977), 207–212
-
[36]
A. K. Sen, An application of the Adomian decomposition method to the transient behavior of a model biochemical reaction, J. Math. Anal. Appl., 131 (1988), 232–245
-
[37]
M. Sheybak, H. Tajadodi, Numerical solutions of fractional chemical kinetics system, Nonlinear Dyn. Syst. Theory, 19 (2019), 200–208
-
[38]
X.-C. Shi, L.-L. Huang, Y. Zeng, Fast Adomian decomposition method for the Cauchy problem of the time-fractional reaction diffusion equation, Adv. Mech. Eng., 8 (2016), 5 pages
-
[39]
H. Singh, A new numerical algorithm for fractional model of Bloch equation in nuclear magnetic resonance, Alex. Eng. J., 55 (2016), 2863–2869
-
[40]
H. Singh, Approximate solution of fractional vibration equation using Jacobi polynomials, Appl. Math. Comput., 317 (2018), 85–100
-
[41]
C. S. Singh, H. Singh, V. K. Singh, O. P. Singh, Fractional order operational matrix methods for fractional singular integro-differential equation, Appl. Math. Model., 40 (2016), 10705–10718
-
[42]
H. Singh, H. M. Srivastava, Numerical investigation of the fractional-order Li´enard and Duffing equations arising in oscillating circuit theory, Front. Phys., 8 (2020), 1–8
-
[43]
H. M. Srivastava, K. M. Saad, New approximate solution of the time-fractional Nagumo equation involving fractional integrals without singular kernel, Appl. Math. Inf. Sci., 14 (2020), 1–8
-
[44]
H. M. Srivastava, K. M. Saad, M. M. Khader, An efficient spectral collocation method for the dynamic simulation of the fractional epidemiological model of the Ebola virus, Chaos Solitons Fractals, 140 (2020), 7 pages
-
[45]
H. Tajadodi, Efficient technique for solving variable order fractional optimal control problems, Alex. Eng. J., 59 (2020), 5179–5185
-
[46]
H. Tajadodi, H. Jafari, M. N. Ncube, Genocchi polynomials as a tool for solving a class of fractional optimal control problems, Int. J. Optim. Control. Theor. Appl. IJOCTA, 12 (2022), 160–168
-
[47]
Y. Takeuchi, Y. Yoshimoto, R. Suda, Second order accuracy finite difference methods for space-fractional partial differential equations, J. Comput. Appl. Math., 320 (2017), 101–119
-
[48]
O. Tasbozan, A popular reaction-diffusion model fractional Fitzhugh-Nagumo equation: analytical and numerical treatment, Appl. Math. J. Chinese Univ. Ser. B, 36 (2021), 218–228
-
[49]
M. Yaseen, M. Abbas, An efficient cubic trigonometric B-spline collocation scheme for the time-fractional telegraph equation, Appl. Math. J. Chinese Univ. Ser. B, 35 (2020), 359–378