The dynamics in an intraguild prey-predator model with Holling type III functional response
Authors
Abadi
- Mathematics Department, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, Surabaya, Indonesia.
D. Savitri
- Mathematics Department, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, Surabaya, Indonesia.
F. Adi-Kusumo
- Mathematics Department, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia.
Abstract
In prey-predator models, nonlinear interaction between prey and predator populations results in oscillatory behavior that shows the dynamic growth of the populations. In the growth process, very often both prey and predator share the same resource in their habitat. This is an intraguild predation model. This study focuses on an intraguild prey-predator model generalized by introducing Holling type III functional response. The existence of biologically meaningful equilibria has been investigated. The stability analysis of the equilibria has been determined. Finally, bifurcation and numerical analyses have been presented to illustrate the dynamic behavior of the system. Taking the {biotic resource enrichment as the bifurcation parameter}, a Hopf bifurcation takes place, where solutions with limit cycle behavior appear. Varying further the parameter, a fold bifurcation of the limit cycle takes place, where the unstable limit appeared due to Hopf bifurcation reverses its growing direction and changes its stability. Taking the predation rate as the {bifurcation parameter}, saddle-node bifurcations take place. The existence of stable interior equilibria and stable periodic solutions, of which all prey and predator populations and the resource co-exist, guarantee the boundedness of the size of the populations and the resource. This is good from the conservation of an ecosystem point of view.
Share and Cite
ISRP Style
Abadi, D. Savitri, F. Adi-Kusumo, The dynamics in an intraguild prey-predator model with Holling type III functional response, Journal of Mathematics and Computer Science, 36 (2025), no. 2, 175--184
AMA Style
Abadi, Savitri D., Adi-Kusumo F., The dynamics in an intraguild prey-predator model with Holling type III functional response. J Math Comput SCI-JM. (2025); 36(2):175--184
Chicago/Turabian Style
Abadi,, Savitri, D., Adi-Kusumo, F.. "The dynamics in an intraguild prey-predator model with Holling type III functional response." Journal of Mathematics and Computer Science, 36, no. 2 (2025): 175--184
Keywords
- Intraguild
- prey
- predator
- stability
- bifurcation
MSC
References
-
[1]
P. A. Adhikary, S. Mukherjee, B. Ghosh, Bifurcations and hydra effects in Bazykin’s predator–prey model, Theor. Popul. Biol., 140 (2021), 44–53
-
[2]
M. K. A. Al-Moqbali, N. S. Al-Salti, I. M. Elmojtaba, Prey–predator models with variable carrying capacity, Mathematics, 6 (2018), 1–12
-
[3]
N. Al-Salti, F. Al-Musalhi, V. Gandhi, M. Al-Moqbali, I. Elmojtaba, Dynamical analysis of a prey-predator model incorporating a prey refuge with variable carrying capacity, Ecol. Complex., 45 (2021), 11 pages
-
[4]
T. K. Ang, H. M. Safuan, Harvesting in a toxicated intraguild predator–prey fishery model with variable carrying capacity, Chaos Solitons Fractals, 126 (2019), 158–168
-
[5]
T. K. Ang, H. M. Safuan, Dynamical behaviors and optimal harvesting of an intraguild prey-predator fishery model with Michaelis-Menten type predator harvesting, Biosystems, 202 (2021), 1–10
-
[6]
R. B. Banks, Growth and diffusion phenomena: mathematical frameworks and applications, Springer-Verlag, Berlin (1994)
-
[7]
B. Basener, D. S. Ross, Booming and crashing populations and Easter Island, SIAM J. Appl. Math., 65 (2004/05), 684–701
-
[8]
F. Brauer, C. Castillo-Chavez, Mathematical models in population biology and epidemiology, Springer, New York (2012)
-
[9]
J. E. Cohen, Population growth and earth’s human carrying capacity, Science, 269 (1995), 341–346
-
[10]
J. H. P. Dawes, M. O. Souza, A derivation of Holling’s type I, II and III functional responses in predator-prey systems, J. Theoret. Biol., 327 (2013), 11–22
-
[11]
P. Del Monte-Luna, B. W. Brook, M. J. Zetina-Rejon, V. H. Cruz-Escalona, The carrying capacity of ecosystems, Glob. Ecol. Biogeogr., 13 (2004), 485–495
-
[12]
A. Dhooge, W. Govaerts, Y. A. Kuznetsov, MATCONT: a Matlab package for numerical bifurcation analysis of ODEs, ACM SIGSAM Bull., 38 (2004), 21–22
-
[13]
C. Ganguli, T. K. Kar, P. K. Mondal, Optimal harvesting of a prey–predator model with variable carrying capacity, Int. J. Biomath., 10 (2017), 24 pages
-
[14]
B. Ghosh, D. Pal, T. K. Kar, J. C. Valverde, Biological conservation through marine protected areas in the presence of alternative stable states, Math. Biosci., 286 (2017), 49–57
-
[15]
W. Govaerts, Y. A. Kuznetsov, H. G. Meijer, MATCONT. Numerical bifurcation analysis toolbox in MATLAB, , (2020),
-
[16]
R. D. Holt, G. A. Polis, A theoretical framework for intraguild predation, Am. Nat., 149 (1997), 745–764
-
[17]
R. M. May, Stability and complexity in model ecosystems, Princeton University Press, New Jersey (1974)
-
[18]
P. S. Meyer, J. H. Ausubel, Carrying capacity: a model with logistically varying limits, Technol. Forecast. Soc. Change, 61 (1999), 209–214
-
[19]
J. D. Murray, Mathematical biology. I, Springer-Verlag, New York (2002)
-
[20]
R. Pearl, The growth of populations, Q. Rev. Biol., 2 (1927), 532–548
-
[21]
G. A. Polis, C. A. Myers, R. D. Holt, The ecology and evolution of intraguild predation: potential competitors that eat each other, Annu. Rev. Ecol. Evol. Syst., 20 (1989), 297–330
-
[22]
M. A. J. D. Putra, A. Suryanto, N. Shofianah, Stability analysis and Hopf bifurcation of intraguild predation model with Holling type II functional response, Int. J. Ecol. Dev, 32 (2017), 110–118
-
[23]
H. M. Safuan, H. S. Shidu, Z. Jovanoski, I. N. Towers, A two-species predator-prey model in an environment enriched by a biotic resource, ANZIAM J., 54 (2012), C768–C787
-
[24]
H. M. Safuan, H. S. Shidu, Z. Jovanoski, I. N. Towers, Impacts of biotic resource enrichment on a predator–prey population, Bull. Math. Biol., 75 (2013), 1798–1812
-
[25]
H. M. Safuan, S. B. Musa, Food chain model with competition interaction in an environment of a biotic resource, AIP Conf. Proc., 1750 (2016), 1–9
-
[26]
J. Stillwell, Mathematics and its history, Springer, New York (2013)
-
[27]
P. F. Verhulst, Notice sur la loi que la population suit dans son accroissement, Corresp. Math. Phys., 10 (1838), 113–129
-
[28]
P. J. Wangersky, Lotka-Volterra population models, Annu. Rev. Ecol. Evol. Syst., 9 (1978), 189–218