Exploring lock-down effects in a fractional order Covid-19 model with crossover behavior
Authors
M. A. El-Shorbagy
- Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
- Department of Basic Engineering Science, Faculty of Engineering, Menoufia University, Shebin El-Kom 32511, Egypt.
Abstract
This research article delves into the intricate dynamics of a COVID-19 model, uniquely characterized by the integration of lock-down measures through a piecewise operator that encompasses both classical and Caputo operators. The article not only examines the model's behavior but also rigorously establishes the existence and uniqueness of solutions for this complex piecewise system. To tackle the numerical approximation of solutions, the study employs Newton's polynomial interpolation scheme, shedding light on the model's behavior under different conditions. Through meticulous graphical representations, the article effectively communicates the results and numerical solutions across various classes of the model, each defined by distinct fractional orders. This comprehensive approach provides valuable insights into the pandemic's multifaceted dynamics, serving as a basis for understanding its progression and evaluating potential control strategies.
Share and Cite
ISRP Style
M. A. El-Shorbagy, Exploring lock-down effects in a fractional order Covid-19 model with crossover behavior, Journal of Mathematics and Computer Science, 36 (2025), no. 2, 163--174
AMA Style
El-Shorbagy M. A. , Exploring lock-down effects in a fractional order Covid-19 model with crossover behavior. J Math Comput SCI-JM. (2025); 36(2):163--174
Chicago/Turabian Style
El-Shorbagy, M. A. . "Exploring lock-down effects in a fractional order Covid-19 model with crossover behavior." Journal of Mathematics and Computer Science, 36, no. 2 (2025): 163--174
Keywords
- COVID-19
- fractional operator
- existence and uniqueness
- stability analysis
- numerical simulations
MSC
References
-
[1]
K. A. Abro, A. Atangana, Simulation and dynamical analysis of a chaotic chameleon system designed for an electronic circuit, J. Comput. Electron., 22 (2023), 1564–1575
-
[2]
Adnan, A. Ali, M. ur Rahmamn, Z. Shah, P. Kumam, Investigation of a time-fractional COVID-19 mathematical model with singular kernel, Adv. Contin. Discrete Models, 2022 (2022), 19 pages
-
[3]
I. Ahmed, I. A. Baba, A. Yusuf, P. Kumam, W. Kumam, Analysis of Caputo fractional-order model for COVID-19 with lock-down, Adv. Difference Equ., 2020 (2020), 14 pages
-
[4]
A. Atangana, S. ˙I. Araz, Modeling third waves of covid-19 spread with piecewise differential and integral operators: Turkey, spain and czechia, Results Phys., 29 (2021), 1–16
-
[5]
A. Atangana, S. ˙I. Araz, New concept in calculus: piecewise differential and integral operators, Chaos Solitons Fractals, 145 (2021), 11 pages
-
[6]
A. Atangana S. ˙I. Araz, Rhythmic behaviors of the human heart with piecewise derivative, Math. Biosci. Eng., 19 (2022), 3091–3109
-
[7]
I. A. Baba, A. Yusuf, K. S. Nisar, A.-H. Abdel-Aty, T. A. Nofal, Mathematical model to assess the imposition of lock-down during covid-19 pandemic, Results Phys., 20 (2021), 7 pages
-
[8]
F. Brauer, C. Castillo-Chavez, Z. Feng, Mathematical models in epidemiology, Springer, New York (2019)
-
[9]
M. Chinnamuniyandi, S. Chandran, X. Changjin, Fractional order uncertain bam neural networks with mixed time delays: An existence and quasi-uniform stability analysis, J. Intell. Fuzzy Syst., 46 (2024), 4291–4313
-
[10]
Q. Cui, C. Xu, W. Ou, Y. Pang, Z. Liu, P. Li, L. Yao, Bifurcation behavior and hybrid controller design of a 2d lotka– volterra commensal symbiosis system accompanying delay, Mathematics, 11 (2023), 23 pages
-
[11]
J. Djordjevic, C. J. Silva, D. F. M. Torres, A stochastic SICA epidemic model for HIV transmission, Appl. Math. Lett., 84 (2018), 168–175
-
[12]
M. H. Heydari, A. Atangana, A numerical method for nonlinear fractional reaction-advection-diffusion equation with piecewise fractional derivative, Math. Sci. (Springer), 17 (2023), 169–181
-
[13]
H. G. Hong, Y. Li, Estimation of time-varying reproduction numbers underlying epidemiological processes: A new statistical tool for the COVID-19 pandemic, PLoS ONE, 15 (2020), 1–15
-
[14]
M. V. Krishna, J. Prakash, Mathematical modelling on phase based transmissibility of coronavirus, Infect. Dis. Model., 5 (2020), 375–385
-
[15]
B. Li, Z. Eskandari, Z. Avazzadeh, Dynamical behaviors of an sir epidemic model with discrete time, Fractal Fract., 6 (2022), 17 pages
-
[16]
P. Li, R. Gao, C. Xu, J. Shen, S. Ahmad, Y. Li, Exploring the impact of delay on hopf bifurcation of a type of bam neural network models concerning three nonidentical delays, Neural Process. Lett., 55 (2023), 11595–11635
-
[17]
B. Li, T. Zhang, C. Zhang, Investigation of financial bubble mathematical model under fractal-fractional caputo derivative, FRACTALS (fractals), 31 (2023), 1–13
-
[18]
X. Liu, M. Arfan, M. ur Rahman, B. Fatima, Analysis of SIQR type mathematical model under Atangana-Baleanu fractional differential operator, Comput. Methods Biomech. Biomed. Eng., 26 (2023), 98–112
-
[19]
X. Liu, M. ur Rahmamn, S. Ahmad, D. Baleanu, Y. Nadeem Anjam, A new fractional infectious disease model under the non-singular mittag–leffler derivative, Waves in Random Complex Media, (2022), 1–27
-
[20]
T. Mahmood, F. S. Al-Duais, M. Sun, Dynamics of Middle East respiratory syndrome coronavirus (MERS-CoV) involving fractional derivative with Mittag-Leffler kernel, Phys. A, 606 (2022), 15 pages
-
[21]
T. Mahmood, M. ur Rahman, M. Arfan, S.-I. Kayani, M. Sun, Mathematical study of algae as a bio-fertilizer using fractal-fractional dynamic model, Math. Comput. Simulation, 203 (2023), 207–222
-
[22]
M. Mandal, S. Jana, S. K. Nandi, A. Khatua, S. Adak, T. K. Kar, A model based study on the dynamics of COVID-19: prediction and control, Chaos Solitons Fractals, 136 (2020), 12 pages
-
[23]
M. I. C. Morakaladi, A. Atangana, Mathematical model for conversion of groundwater flow from confined to unconfined aquifers with power law processes, Open Geosci., 15 (2023), 1–14
-
[24]
F. Nda¨ırou, I. Area, J. J. Nieto, C. J. Silva, D. F. M. Torres, Mathematical modeling of Zika disease in pregnant women and newborns with microcephaly in Brazil, Math. Methods Appl. Sci., 41 (2018), 8929–8941
-
[25]
I. Podlubny, An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Math. Sci. Eng., 198 (1999),
-
[26]
H. Qu, S. Saifullah, J. Khan, A. Khan, M. ur Rahman, G. Zheng, Dynamics of leptospirosis disease in context of piecewise classical-global and classical-fractional operators, Fractals, 30 (2022), 15 pages
-
[27]
S. Thayaparan, I. D. Robertson, A. Fairuz, L. Suut, M. T. Abdullah, Leptospirosis, an emerging zoonotic disease in malaysia, Malays. J. Pathol., 35 (2013), 123–132
-
[28]
M. ur Rahman, Generalized fractal–fractional order problems under non-singular mittag-leffler kernel, Results Phys., 35 (2022), 1–15
-
[29]
M. ur Rahman, M. Arfan, D. Baleanu, Piecewise fractional analysis of the migration effect in plant-pathogen-herbivore interactions, Bulletin Biomath., 1 (2023), 1–23
-
[30]
A. Rachah, D. F. M. Torres, Dynamics and optimal control of Ebola transmission, Math. Comput. Sci., 10 (2016), 331–342
-
[31]
C. Rothe, M. Schunk, P. Sothmann, G. Bretzel, G. Froeschl, C. Wallrauch, T. Zimmer, V. Thiel, C. Janke, W. Guggemos, M. Seilmaier, C. Drosten, P. Vollmar, K. Zwirglmaier, S. Zange, R. W¨ olfel, M. Hoelscher, Transmission of 2019-nCoV infection from an asymptomatic contact in Germany, N. Engl. J. Med., 382 (2020), 970–971
-
[32]
A. Sami, M. ur Rahman, Analysis of tritrophic interaction with volatile compounds in plants with fractal fractional caputo operator, SSRN, (2023), 18 pages
-
[33]
D. Wrapp, N. Wang, K. S. Corbett, J. A. Goldsmith, C.-L. Hsieh, O. Abiona, B. S. Graham, J. S. McLellan, Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation, Science, 367 (2020), 1260–1263
-
[34]
C. Xu, Q. Cui, Z. Liu, Y. Pan, X. Cui, W. Ou, M. ur Rahman, M. Farman, S. Ahmad, A. Zeb, Extended hybrid controller design of bifurcation in a delayed chemostat model, MATCH Commun. Math. Comput. Chem., 90 (2023), 609–648
-
[35]
C. Xu, Z. Liu, P. Li, J. Yan, L. Yao, Bifurcation mechanism for fractional-order three-triangle multi-delayed neural networks, Neural Process. Lett., 55 (2023), 6125–6151
-
[36]
C. Xu, W. Ou, Y. Pang, Q. Cui, M. U. Rahman, M. Farman, S. Ahmad, A. Zeb, Hopf bifurcation control of a fractionalorder delayed turbidostat model via a novel extended hybrid controller, MATCH Commun. Math. Comput. Chem., 91 (2024), 367–413
-
[37]
C. Xu, Y. Pang, Z. Liu, J. Shen, M. Liao, P. Li, Insights into COVID-19 stochastic modelling with effects of various transmission rates: simulations with real statistical data from UK, Australia, Spain, and India, Phys. Scr., 99 (2024),
-
[38]
L. Zhang, M. ur Rahman, Q. Haidong, M. Arfan, Adnan, Fractal-fractional anthroponotic cutaneous leishmania model study in sense of caputo derivative, Alex. Eng. J., 61 (2022), 4423–4433
-
[39]
T. Zhou, Q. Liu, Z. Yang, J. Liao, K. Yang, W. Bai, X. Lu, W. Zhang, Preliminary prediction of the basic reproduction number of the wuhan novel coronavirus 2019-ncov, J. Evid.-Based Med., 13 (2020), 3–7