Stability of Davison functional equation with \(n\)- variables over non-Archimedean \((n, \beta)\) normed spaces
Authors
K. D. Sankar
- Department of Mathematics, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur-603 203, India.
S. Sampath
- Department of Mathematics, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur-603 203, India.
Abstract
In this paper, we discuss the Hyers-Ulam stability of the Davison functional equation
\[
\sum_{i=1}^{n-1}m(x_ix_n)+\sum_{i=1}^{n-1}m(x_i+x_n)=\sum_{i=1}^{n-1}m(x_ix_n+x_i)+m(x_n)
\]
with \(n\)-variables over non-Archimedean \((n, \beta)\) normed spaces (NAn\(\beta\)NS). Also, discuss some results for the same with suitable counter-example.
Share and Cite
ISRP Style
K. D. Sankar, S. Sampath, Stability of Davison functional equation with \(n\)- variables over non-Archimedean \((n, \beta)\) normed spaces, Journal of Mathematics and Computer Science, 35 (2024), no. 4, 492--502
AMA Style
Sankar K. D., Sampath S., Stability of Davison functional equation with \(n\)- variables over non-Archimedean \((n, \beta)\) normed spaces. J Math Comput SCI-JM. (2024); 35(4):492--502
Chicago/Turabian Style
Sankar, K. D., Sampath, S.. "Stability of Davison functional equation with \(n\)- variables over non-Archimedean \((n, \beta)\) normed spaces." Journal of Mathematics and Computer Science, 35, no. 4 (2024): 492--502
Keywords
- Hyers-Ulam stability
- Davison functional equation
- non-Archimedean \((n, \beta)\) normed spaces (NAn\(\beta\)NS)
MSC
References
-
[1]
M. R. Abdollahpour, R. Aghayari, M. Th. Rassias, Hyers-Ulam stability of associated Laguerre differential equations in a subclass of analytic functions, J. Math. Anal. Appl., 437 (2016), 605–612
-
[2]
M. R. Abdollahpour, M. Th. Rassias, Hyers-Ulam stability of hypergeometric differential equations, Aequationes Math., 93 (2019), 691–698
-
[3]
J. Acz´el, J. Dhombres, Functional equations in several variables, Cambridge University Press, Cambridge (1989)
-
[4]
N. Alessa, K. Tamilvanan, K. Loganathan, K. K. Selvi, Hyers-Ulam stability of functional equation deriving from quadratic mapping in non-Archimedean (n, )-normed spaces, J. Funct. Spaces, 2021 (2021), 10 pages
-
[5]
G. Bachman, Introduction to p-adic numbers and valuation theory, Academic Press, New York-London (1964)
-
[6]
D. G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc., 57 (1951), 223–237
-
[7]
S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg, 62 (1992), 59–64
-
[8]
S. Czerwik, Functional equations and inequalities in several variables, World Scientific Publishing Co.,, River Edge, NJ (2002)
-
[9]
T. M. K. Davison, Siebzehnte internationale Tagung ¨uber Funktionalgleichungen in Oberwolfach vom 17.6. bis 23.6.1979, Problem 191, Aequationes Math., 20 (1980), 286–315
-
[10]
A. Ebadian, S. Zolfaghari, Stability of a mixed additive and cubic functional equation in several variables in non- Archimedean spaces, Ann. Univ. Ferrara Sez. VII Sci. Mat., 58 (2012), 291–306
-
[11]
Z. Gajda, On stability of additive mappings, Int. J. Math. Math. Sci., 14 (1991), 431–434
-
[12]
R. Girgensohn, K. Lajk´, A functional equation of Davison and its generalization, Aequationes Math., 60 (2000), 219–224
-
[13]
D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27 (1941), 222–224
-
[14]
D. H. Hyers, G. Issac, Th. M. Rassias, Stability of functional equations in several variables, Birkh¨auser Boston, Boston, MA (1998)
-
[15]
D. H. Hyers, Th. M. Rassias, Approximate homomorphisms, Aequationes. Math., 44 (1992), 125–153
-
[16]
W. Jian, Some further generalizations of the Hyers-Ulam-Rassias stability of functional equations, J. Math. Anal. Appl., 263 (2001), 406–423
-
[17]
S.-M. Jung, Hyers-Ulam-Rassias stability of functional equations in nonlinear analysis, Springer, New York (2011)
-
[18]
S.-M. Jung, D. Popa, M. Th. Rassias, On the stability of the linear functional equation in a single variable on complete metric groups, J. Global Optim., 59 (2014), 165–171
-
[19]
S.-M. Jung, M. Th. Rassias, A linear functional equation of third order associated to the Fibonacci numbers, Abstr. Appl. Anal., 2014 (2014), 7 pages
-
[20]
S.-M. Jung, M. Th. Rassias, C. Mortici, On a functional equation of trigonometric type, Appl. Math. Comput., 252 (2015), 294–303
-
[21]
S.-M. Jung, P. K. Sahoo, Hyers-Ulam-Rassias stability of a equation of Davison, J. Math. Anal. Appl., 238 (1999), 297–304
-
[22]
Pl. Kannappan, Functional equations and inequalities with applications, Springer, New York (2009)
-
[23]
H. M. Kim, E. Son, Approximate Cauchy-Jensen mappings in non-Archimedean Quasi normed spaces, Int. J. Pure Appl. Math., 116 (2017), 129–140
-
[24]
Y.-H. Lee, S.-M. Jung, M. Th. Rassias, Stability of the n-dimensional mixed-type additive and quadratic functional equation in non-Archimedean normed spaces, Abstr. Appl. Anal., 2012 (2012), 9 pages
-
[25]
Y.-H. Lee, S.-M. Jung, M. Th. Rassias, On an n-dimensional mixed type additive and quadratic functional equation, Appl. Math. Comput., 228 (2014), 13–16
-
[26]
Y.-H. Lee, S.-M. Jung, M. Th. Rassias, Uniqueness theorems on functional inequalities concerning cubic-quadratic-additive equation, J. Math. Inequal., 12 (2018), 43–61
-
[27]
Y. Liu, X. Yang, G. Liu, Stability of an AQCQ functional equation in non-Archimedean (n, )-normed spaces, Demonstr. Math., 52 (2019), 130–146
-
[28]
C. Mortici, M. Th. Rassias, S.-M. Jung, On the stability of a functional equation associated with the Fibonacci numbers, Abstr. Appl. Anal., 2014 (2014), 6 pages
-
[29]
A. Najati, P. K. Sahoo, On two pexiderized functional equations of Davison type, Kragujevac J. Math., 47 (2023), 539–544
-
[30]
C. Park, M. Th. Rassias, Additive functional equations and partial multipliers in C-algebras, Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Mat. RACSAM, 113 (2019), 2261–2275
-
[31]
Th. M. Rassias, Functional equations and inequalities, Kluwer Academic Publishers, Dordrekht (2000)
-
[32]
P. K. Sahoo, P. Kannappan, Introduction to functional equations, CRC Press, Boca Raton, FL (2011)
-
[33]
W. Smajdor, Note on a Jensen type functional equation, Publ. Math. Debrecen, 63 (2003), 703–714
-
[34]
T. Trif, On the stability of a functional equation deriving from an inequality of Popoviciu for convex functions, J. Math. Anal. Appl., 272 (2002), 604–616
-
[35]
S. M. Ulam, Problems in modern mathematics, Wiley, New York (1940)
-
[36]
A. C. M. Van Rooij, Non-Archimedean functional analysis, Marcel Dekker, New York (1978)
-
[37]
X. Yang, L. Chang, G. Liu, G. Shen, Stability of functional equations in (n, )-normed spaces, J. Inequal. Appl., 2015 (2015), 18 pages