The stability of bi-derivations and bihomomorphisms in Banach algebras
Authors
S. Khan
- Department of Mathematics, , , Korea, Hanyang University, Seoul 04763, Korea.
Ch. Park
- Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Korea.
M. Donganont
- School of Science, University of Phayao, Phayao 56000, Thailand.
Abstract
Using the fixed point method and the direct method, we prove the Hyers-Ulam stability of bi-derivations and bihomomorphisms in Banach algebras,
associated with the bi-additive functional inequality
\[
\| f(x+y, z+w) + f(x+y, z-w) + f(x-y, z+w) + f(x-y, z-w) -4f(x,z)\| \\ \quad \le \left \|s \left(2f\left(x+y, z-w\right) + 2f\left(x-y, z+w\right) - 4f(x,z )+ 4 f(y, w)\right)\right\| ,
\]
where \(s\) is a fixed nonzero complex number with \(|s |< 1\).
Share and Cite
ISRP Style
S. Khan, Ch. Park, M. Donganont, The stability of bi-derivations and bihomomorphisms in Banach algebras, Journal of Mathematics and Computer Science, 35 (2024), no. 4, 482--491
AMA Style
Khan S., Park Ch., Donganont M., The stability of bi-derivations and bihomomorphisms in Banach algebras. J Math Comput SCI-JM. (2024); 35(4):482--491
Chicago/Turabian Style
Khan, S., Park, Ch., Donganont, M.. "The stability of bi-derivations and bihomomorphisms in Banach algebras." Journal of Mathematics and Computer Science, 35, no. 4 (2024): 482--491
Keywords
- Hyers-Ulam stability
- biderivation on Banach algebra
- bihomomorphism in Banach algebra
- fixed point method
- bi-additive functional inequality
MSC
- 39B52
- 47H10
- 39B72
- 47B47
- 17B40
References
-
[1]
M. R. Abdollahpour, R. Aghayari, M. Th. Rassias, Hyers-Ulam stability of associated Laguerre differential equations in a subclass of analytic functions, J. Math. Anal. Appl., 437 (2016), 605–612
-
[2]
M. R. Abdollahpour, M. Th. Rassias, Hyers-Ulam stability of hypergeometric differential equations, Aequationes Math., 93 (2019), 691–698
-
[3]
J. Acz´el, J. Dhombres, Functional equations in several variables, Cambridge University Press, Cambridge (1989)
-
[4]
M. Amyari, C. Baak, M. S. Moslehian, Nearly ternary derivations, Taiwanese J. Math., 11 (2007), 1417–1424
-
[5]
T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64–66
-
[6]
J.-H. Bae, W.-G. Park, Approximate bi-homomorphisms and bi-derivations in C-ternary algebras, Bull. Korean Math. Soc., 47 (2010), 195–209
-
[7]
A. R. Baias, D. Poap, M. Th. Rassias, Set-valued solutions of an equation of Jensen type, Quaest. Math., 46 (2023), 1237–1244
-
[8]
D. G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc., 57 (1951), 223–237
-
[9]
L. C˘adariu, V. Radu, Fixed points and the stability of Jensen’s functional equation, JIPAM. J. Inequal. Pure Appl. Math., 4 (2003), 7 pages
-
[10]
L. C˘adariu, V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Karl-Franzens-Univ. Graz, Graz, 346 (2004), 43–52
-
[11]
L. C˘adariu, V. Radu, Fixed point methods for the generalized stability of functional equations in a single variable, Fixed Point Theory Appl., 2008 (2008), 15 pages
-
[12]
C.-K. Choi, Stability of an exponential-monomial functional equation, Bull. Aust. Math. Soc., 97 (2018), 471–479
-
[13]
St. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg, 62 (1992), 59–64
-
[14]
St. Czerwik, Functional equations and inequalities in several variables, World Scientific Publishing Co., River Edge, NJ (2002)
-
[15]
I. EL-Fassi, Generalized hyperstability of a Drygas functional equation on a restricted domain using Brzdek’s fixed point theorem, J. Fixed Point Theory Appl., 19 (2017), 2529–2540
-
[16]
I. EL-Fassi, J. Brzde¸k, On the hyperstability of a pexiderized -quadratic functional equation on semigroup, Bull. Aust. Math. Soc., 97 (2018), 459–470
-
[17]
E. Elqorachi, M. Th. Rassias, Generalized Hyers-Ulam stability of trigonometric functional equations, Mathematics, 6 (2018), 11 pages
-
[18]
W. Fechner, Stability of a functional inequality associated with the Jordan-von Neumann functional equation, Aequationes Math., 71 (2006), 149–161
-
[19]
Z. Gajda, On stability of additive mappings, Int. J. Math. Math. Sci., 14 (1991), 431–434
-
[20]
P. G˘avrut¸a, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431–436
-
[21]
M. E. Gordji, A. Fazeli, C. Park, 3-Lie multipliers on Banach 3-Lie algebras, Int. J. Geom. Methods Mod. Phys., 9 (2012), 15 pages
-
[22]
D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27 (1941), 222–224
-
[23]
D. H. Hyers, G. Isac, Th. M. Rassias, Stability of functional equations in several variables, Birkh¨auser Boston, Boston, MA (1998)
-
[24]
D. H. Hyers, Th. M. Rassias, Approximate homomorphisms, Aequationes Math., 44 (1992), 125–153
-
[25]
G. Isac, Th. M. Rassias, Stability of -additive mappings: applications to nonlinear analysis, Int. J. Math. Math. Sci., 19 (1996), 219–228
-
[26]
Y. F. Jin, C. Park, M. Th. Rassias, Hom-derivations in C*-ternary algebras, Acta Math. Sin. (Engl. Ser.), 36 (2020), 1025–1038
-
[27]
S.-M. Jung, Hyers-Ulam-Rassias stability of functional equations in mathematical analysis, Hadronic Press, Palm Harbor, FL (2001)
-
[28]
S.-M. Jung, Hyers-Ulam-Rassias stability of functional equations in nonlinear analysis, Springer, New York (2011)
-
[29]
S.-M. Jung, K.-S. Lee, M. Th. Rassias, S.-M. Yang, Approximation properties of solutions of a mean valued-type functional inequality, II, Mathematics, 8 (2020), 8 pages
-
[30]
S.-M. Jung, D. Popa, M. Th. Rassias, On the stability of the linear functional equation in a single variable on complete metric groups, J. Global Optim., 59 (2014), 165–171
-
[31]
S.-M. Jung, M. Th. Rassias, A linear functional equation of third order associated with the Fibonacci numbers, Abstr. Appl. Anal., 2014 (2014), 7 pages
-
[32]
S.-M. Jung, M. Th. Rassias, C. Mortici, On a functional equation of trigonometric type, Appl. Math. Comput., 252 (2015), 294–303
-
[33]
Pl. Kannappan, Functional equations and inequalities with applications, Springer, New York (2009)
-
[34]
Y.-H. Lee, S.-M. Jung, M. Th. Rassias, On an n-dimensional mixed type additive and quadratic functional equation, Appl. Math. Comput., 228 (2014), 13–16
-
[35]
Y.-H. Lee, S.-M. Jung, M. Th. Rassias, Uniqueness theorems on functional inequalities concerning cubic-quadratic-additive equation, J. Math. Inequal., 12 (2018), 43–61
-
[36]
J. R. Lee, C. Park, Th. M. Rassias, S. Yun, Stability of bi-additive s-functional inequalities and quasi-multipliers, In: Approximation theory and analytic inequalities, Springer, Cham, (2021), 325–337
-
[37]
Gy. Maksa, A remark on symmetric biadditive functions having nonnegative diagonalization, Glasnik Mat. Ser. III, 15 (1980), 279–282
-
[38]
Gy. Maksa, On the trace of symmetric bi-derivations, C. R. Math. Rep. Acad. Sci. Canada, 9 (1987), 303–307
-
[39]
C. Mortici, M. Th. Rassias, S.-M. Jung, On the stability of a functional equation associated with the Fibonacci numbers, Abstr. Appl. Anal., 2014 (2014), 6 pages
-
[40]
M. A. O¨ ztu¨ rk, M. Sapancı, Orthogonal symmetric bi-derivation on semi-prime gamma rings, Hacet. Bull. Nat. Sci. Eng. Ser. B, 26 (1997), 31–46
-
[41]
C. Park, Additive -functional inequalities and equations, J. Math. Inequal., 9 (2015), 17–26
-
[42]
C. Park, Additive -functional inequalities in non-Archimedean normed spaces, J. Math. Inequal., 9 (2015), 397–407
-
[43]
C. Park, Fixed point method for set-valued functional equations, J. Fixed Point Theory Appl., 19 (2017), 2297–2308
-
[44]
C. Park, bi-derivations and bihomomorphisms in Banach algebras, Filomat, 33 (2019), 2317–2328
-
[45]
C. Park, S. Paokanta, R. Suparatulatorn, Ulam stability of bihomomorphisms and biderivations in Banach algebras, J. Fixed Point Theory Appl., 22 (2020), 18 pages
-
[46]
C. Park, M. Th. Rassias, Additive functional equations and partial multipliers in C-algebras, Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Mat. RACSAM, 113 (2019), 2261–2275
-
[47]
V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory, 4 (2003), 91–96
-
[48]
Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297–300
-
[49]
Th. M. Rassias, Problem 16; 2; Report of the 27th International Symposium on Functional Equations, Aequationes Math., 39 (1990), 292–293
-
[50]
Th. M. Rassias, Functional equations and inequalities, Kluwer Academic Publishers, Dordrecht (2000)
-
[51]
Th. M. Rassias, P. ˇSemrl, On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl., 173 (1993), 325–338
-
[52]
P. K. Sahoo, P. Kannappan, Introduction to functional equations, CRC Press, Boca Raton, FL (2011)
-
[53]
W. Smajdor, Note on a Jensen type functional equation, Publ. Math. Debrecen, 163 (2003), 703–714
-
[54]
T. Trif, On the stability of a functional equation deriving from an inequality of Popoviciu for convex functions, J. Math. Anal. Appl., 272 (2002), 604–616
-
[55]
S. M. Ulam, A collection of mathematical problems, Interscience Publishers, New York-London (1960)
-
[56]
J. Vukman, Symmetric bi-derivations on prime and semi-prime rings, Aequationes Math., 38 (1989), 245–254
-
[57]
J. Wang, Some further generalizations of the Hyers-Ulam-Rassias stability of functional equations, J. Math. Anal. Appl., 263 (2001), 406–423
-
[58]
H. Yazarli, Permuting triderivations of prime and semiprime rings, Miskolc Math. Notes, 18 (2017), 489–497