Optimizing \(\mathcal{A}\)-stable hyperbolic fitting for time efficiency: exploring constant and variable stepsize approaches
Authors
D. Baleanu
- Department of Computer Science and Mathematics, Lebanese American University, P.O. Box 13-5053, Beirut, Lebanon.
S. Qureshi
- Department of Computer Science and Mathematics, Lebanese American University, P.O. Box 13-5053, Beirut, Lebanon.
- Department of Basic Sciences and Related Studies, Mehran University of Engineering \(\&\) Technology, Jamshoro-76062, Pakistan.
A. Soomro
- Department of Basic Sciences and Related Studies, Mehran University of Engineering \(\&\) Technology, Jamshoro-76062, Pakistan.
M. A. Rufai
- Dipartimento di Matematica, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy.
Abstract
This paper proposes an optimal time-efficient numerical method for solving the initial value problems (IVPs) of ordinary differential equations (ODEs) that is both \(\mathcal{A}\)-stable and hyperbolically fitted. The method is designed to handle both constant and variable step sizes, making it highly adaptable to different types of ODEs. {The methodology proposed herein leverages the optimization of an off-grid point, derived from the predominant term of the local truncation error, to enhance both accuracy and stability in the solution of stiff ODEs. This approach incorporates a variable step size control, predicated upon the error estimation furnished by the embedded pair, and aims to minimize computational expenses while concurrently safeguarding both precision and stability.} Furthermore, the stability domain of the proposed method is demonstrated to be optimal, signifying it encompasses the maximal conceivable set of step sizes wherein the method retains its stability. Other important measures including zero-stability, consistency, and convergence are also discussed {theoretically and confirmed experimentally}. Numerical experiments consisting of the Duffing system, sinusoidal stiff system, periodic orbit system, two-body system, Lorenz system, and the system for catenary equation demonstrate that the proposed method is highly competitive in terms of accuracy and efficiency, and outperforms several existing methods for solving stiff ODEs with both constant and variable step sizes.
Share and Cite
ISRP Style
D. Baleanu, S. Qureshi, A. Soomro, M. A. Rufai, Optimizing \(\mathcal{A}\)-stable hyperbolic fitting for time efficiency: exploring constant and variable stepsize approaches, Journal of Mathematics and Computer Science, 35 (2024), no. 4, 411--430
AMA Style
Baleanu D., Qureshi S., Soomro A., Rufai M. A., Optimizing \(\mathcal{A}\)-stable hyperbolic fitting for time efficiency: exploring constant and variable stepsize approaches. J Math Comput SCI-JM. (2024); 35(4):411--430
Chicago/Turabian Style
Baleanu, D., Qureshi, S., Soomro, A., Rufai, M. A.. "Optimizing \(\mathcal{A}\)-stable hyperbolic fitting for time efficiency: exploring constant and variable stepsize approaches." Journal of Mathematics and Computer Science, 35, no. 4 (2024): 411--430
Keywords
- Stiff ODEs
- stability
- linear and non-linear IVPs
- efficiency curves
- optimized off-grid
- local truncation error
MSC
References
-
[1]
R. I. Abdulganiy, O. A. Akinfenwa, H. Ramos, S. A. Okunuga, A second-derivative functionally fitted method of maximal order for oscillatory initial value problems, Comput. Appl. Math., 40 (2021), 18 pages
-
[2]
M. Adel, M. M. Khader, H. Ahmad, T. A. Assiri, Approximate analytical solutions for the blood ethanol concentration system and predator-prey equations by using variational iteration method, AIMS Math., 8 (2023), 19083–19096
-
[3]
M. Adel, K. U. Tariq, H. Ahmad, S. M. R. Kazmi, Soliton solutions, stability, and modulation instability of the (2+ 1)-dimensional nonlinear hyperbolic Schr¨odinger model, Opt. Quantum Electron., 56 (2024),
-
[4]
S. Afzal, M. Qayyum, A. Akg¨ ul, A. M. Hassan, Heat transfer enhancement in engine oil based hybrid nanofluid through combustive engines: An entropy optimization approach, Case Stud. Therm. Eng., 52 (2023), 16 pages
-
[5]
H. Ahmad, M. N. Khan, I. Ahmad, M. Omri, M. F. Alotaibi, A meshless method for numerical solutions of linear and nonlinear time-fractional Black-Scholes models, AIMS Math., 8 (2023), 19677–19698
-
[6]
H. Ahmad, D. U. Ozsahin, U. Farooq, M. A. Fahmy, M. D. Albalwi, H. Abu-Zinadah, Comparative analysis of new approximate analytical method and Mohand variational transform method for the solution of wave-like equations with variable coefficients, Results Phys., 51 (2023), 10 pages
-
[7]
O. A. Akinfenwa, R. I. Abdulganiy, B. I. Akinnukawe, S. A. Okunuga, Seventh order hybrid block method for solution of first order stiff systems of initial value problems, J. Egyptian Math. Soc., 28 (2020), 11 pages
-
[8]
K. K. Ali, S. Tarla, M. R. Ali, A. Yusuf, R. Yilmazer, Physical wave propagation and dynamics of the Ivancevic option pricing model, Results Phys., 52 (2023), 10 pages
-
[9]
K. K. Ali, S. Tarla, A. Yusuf, Quantum-mechanical properties of long-lived optical pulses in the fourth-order KdV-type hierarchy nonlinear model, Opt. Quantum Electron., 55 (2023),
-
[10]
K. K. Ali, A. Yusuf, M. Alquran, S. Tarla, New physical structures and patterns to the optical solutions of the nonlinear Schr¨odinger equation with a higher dimension, Commun. Theor. Phys. (Beijing), 75 (2023),
-
[11]
M. Alquran, T. A. Sulaiman, A. Yusuf, A. S. Alshomrani, D. Baleanu, Nonautonomous lump-periodic and analytical solutions to the (3+ 1)-dimensional generalized Kadomtsev–Petviashvili equation, Nonlinear Dyn., 111 (2023), 11429–11436
-
[12]
J. C. Butcher, Numerical methods for ordinary differential equations, John Wiley & Sons, Ltd., Chichester (2016)
-
[13]
M. S. H. Chowdhury, I. Hashim, S. Momani, The multistage homotopy-perturbation method: A powerful scheme for handling the Lorenz system, Chaos Solitons Fractals, 40 (2009), 1929–1937
-
[14]
Z. Eskandari, P. A. Naik, M. Yavuz, Dynamical behaviors of a discrete-time preypredator model with harvesting effect on the predator, J. Appl. Anal. Comput., 14 (2024), 283–297
-
[15]
W. A. Faridi, Z. Myrzakulova, R. Myrzakulov, A. Akg¨ ul, M. S. Osman, The construction of exact solution and explicit propagating optical soliton waves of Kuralay equation by the new extended direct algebraic and Nucci’s reduction techniques, Int. J. Model. Simul., (2024), 1–20
-
[16]
F. A. Fawzi, N. Senu, F. Ismail, Z. A. Majid, New phase-fitted and amplification-fitted modified Runge-Kutta method for solving oscillatory problems, Glob. J. Pure Appl. Math., 12 (2016), 1229–1242
-
[17]
E. Hairer, S. P. Nørsett, G. Wanner, Solving ordinary differential equations. I, Springer-Verlag, Berlin (1993)
-
[18]
E. Harier, G. Wanner, Solving ordinary differential equations. II, Springer-Verlag, Berlin (2010)
-
[19]
M. S. Hashemi, M. Mirzazadeh, H. Ahmad, A reduction technique to solve the (2+ 1)-dimensional KdV equations with time local fractional derivatives, Opt. Quantum Electron., 55 (2023),
-
[20]
P. Henrici, Discrete variable methods in ordinary differential equations, John Wiley & Sons, New York-London (1962)
-
[21]
N. Kaid, A. Akgul, M. A. Alkhafaji, K. S. Mohsen, J. Asad, R. Jarrar, H. Shanak, Y. Menni, S. Abdullaev, CFD simulation and optimization of heat transfer enhancement in HEV static mixers with rotated angles for turbulent flows, Therm. Sci., 27 (2023), 3123–3131
-
[22]
Z. Kalogiratou, Th. Monovasilis, H. Ramos, T. E. Simos, A new approach on the construction of trigonometrically fitted two step hybrid methods, J. Comput. Appl. Math., 303 (2016), 146–155
-
[23]
S. Khaliq, S. Ahmad, A. Ullah, H. Ahmad, S. Saifullah, T. A. Nofal, New waves solutions of the (2+ 1)-dimensional generalized Hirota–Satsuma–Ito equation using a novel expansion method, Results Phys., 50 (2023), 5 pages
-
[24]
S. A. Khan, S. Yasmin, H. Waqas, E. A. Az-Zo’bi, A. Alhushaybari, A. Akg¨ ul, A. M. Hassan, M. Imran, Entropy optimized ferro-copper/blood based nanofluid flow between double stretchable disks: Application to brain dynamic, Alexandria Eng. J., 79 (2023), 296–307
-
[25]
M. C. Korti, A. Youcef, A. Akgul, A. A. Alwan, K. S. Mohsen, J. Asad, R. Jarrar, H. Shanak, Y. Menni, S. H. Abdullaev, Optimizing solar water heater performance through a numerical study of zig-zag shaped tubes, Therm. Sci., 27 (2023), 3143–3153
-
[26]
A. A. Kosti, Z. A. Anastassi, T. E. Simos, Construction of an optimized explicit Runge-Kutta-Nystr¨om method for the numerical solution of oscillatory initial value problems, Comput. Math. Appl., 61 (2011), 3381–3390
-
[27]
J. D. Lambert, Computational methods in ordinary differential system, John Wiley & Sons, London, New York (1973)
-
[28]
J. D. Lambert, Numerical methods for ordinary differential systems, John Wiley & Sons, Ltd., Chichester (1991)
-
[29]
S. Li, S. Ullah, S. A. AlQahtani, S. M. Tag, A. Akg¨ ul, Mathematical assessment of Monkeypox with asymptomatic infection: Prediction and optimal control analysis with real data application, Results Phys., 51 (2023), 14 pages
-
[30]
L. Mart´ınez-Jim´enez, J. M. Cruz-Duarte, J. J. Rosales-Garc´ıa, Fractional solution of the catenary curve, Math. Methods Appl. Sci., 44 (2021), 7969–7978
-
[31]
S. F. Megahid, A. E. Abouelregal, H. Ahmad, M. A. Fahmy, H. Abu-Zinadah, A generalized More-Gibson-Thomson heat transfer model for the study of thermomagnetic responses in a solid half-space, Results Phys., 51 (2023), 11 pages
-
[32]
P. A. Naik, M. Amer, R. Ahmed, S. Qureshi, Z. Huang, Stability and bifurcation analysis of a discrete predator-prey system of Ricker type with refuge effect, Math. Biosci. Eng., 21 (2024), 4554–4586
-
[33]
F. F. Ngwane, S. N. Jator, Block hybrid method using trigonometric basis for initial value problems with oscillating solutions, Numer. Algorithms, 63 (2013), 713–725
-
[34]
S. Ola Fatunla, Block methods for second order ODEs, Int. J. Comput. Math., 41 (1991), 55–63
-
[35]
K. Ozawa, A functionally fitted three-stage explicit singly diagonally implicit Runge-Kutta method, Japan J. Indust. Appl. Math., 22 (2005), 403–427
-
[36]
M. Qayyum, E. Ahmad, S. T. Saeed, H. Ahmad, S. Askar, Homotopy perturbation method-based soliton solutions of the time-fractional (2+ 1)-dimensional Wu–Zhang system describing long dispersive gravity water waves in the ocean, Front. Phys., 11 (2023), 12 pages
-
[37]
M. Qayyum, E. Ahmad, S. T. Saeed, A. Akg¨ ul, S. M. El Din, New solutions of fractional 4d chaotic financial model with optimal control via he-laplace algorithm, Ain Shams Eng. J., 15 (2024), 10 pages
-
[38]
S. Qureshi, H. Ramos, A. Soomro, E. Hincal, Time-efficient reformulation of the Lobatto III family of order eight, J. Comput. Sci., 63 (2022),
-
[39]
H. Ramos, M. A. Rufai, An adaptive one-point second-derivative Lobatto-type hybrid method for solving efficiently differential systems, Int. J. Comput. Math., 99 (2002), 1687–1705
-
[40]
H. Ramos, S. Qureshi, A Soomro, Adaptive step-size approach for Simpson’s-type block methods with time efficiency and order stars, Comput. Appl. Math., 40 (2021), 20 pages
-
[41]
H. Ramos, M. A. Rufai, A two-step hybrid block method with fourth derivatives for solving third-order boundary value problems, J. Comput. Appl. Math., 404 (2022), 21 pages
-
[42]
H. Ramos, G. Singh, A note on variable step-size formulation of a Simpson’s-type second derivative block method for solving stiff systems, Appl. Math. Lett., 64 (2017), 101–107
-
[43]
H. Ramos, G. Singh, Solving second order two-point boundary value problems accurately by a third derivative hybrid block integrator, Appl. Math. Comput., 421 (2022), 19 pages
-
[44]
Q. Raza, X. Wang, M. Z. Akbar Qureshi, I. Siddique, M. Ahmad, B. Ali, H. Ahmad, F. Tchier, Significance role of dual porosity and interfacial nanolayer mechanisms on hybrid nanofluids flow: a symmetry flow model, Mod. Phys. Lett. B, 38 (2024),
-
[45]
A. E. Sedgwick, AN EFFECTIVE VARIABLE-ORDER VARIABLE-STEP ADAMS METHOD, ProQuest LLC, Ann Arbor, MI (1973)
-
[46]
G. Singh, A. Garg, V. Kanwar, H. Ramos, An efficient optimized adaptive step-size hybrid block method for integrating differential systems, Appl. Math. Comput., 362 (2019), 10 pages
-
[47]
E. Stiefel, D. G. Bettis, Stabilization of Cowell’s method, Numer. Math., 13 (1969), 154–175
-
[48]
T. A. Tarray, P. A. Naik, R. A. Najar, Matrix representation of an all-inclusive Fibonacci sequence, Asian J. Math. Stat., 11 (2018), 18–26
-
[49]
A. Tassaddiq, S. Qureshi, A. Soomro, E. Hincal, A. A. Shaikh, A new continuous hybrid block method with one optimal intrastep point through interpolation and collocation, Fixed Point Theory Algorithms Sci. Eng., 2022 (2022), 17 pages
-
[50]
I. Ullah, A. Ullah, S. Ahmad, H. Ahmad, T. A. Nofal, A survey of KdV-CDG equations via nonsingular fractional operators, AIMS Math., 8 (2023), 18964–18981
-
[51]
J. Vigo-Aguiar, H. Ramos, A strategy for selecting the frequency in trigonometrically-fitted methods based on the minimization of the local truncation errors and the total energy error, J. Math. Chem., 52 (2014), 1050–1058
-
[52]
G. M. Vijayalakshmi, P. Roselyn Besi, A. Akg¨ ul, Fractional commensurate model on COVID-19 with microbial coinfection: An optimal control analysis, Optim. Control Appl. Methods, 45 (2024), 1108–1121
-
[53]
H. A. Watts, Starting step size for an ODE solver, J. Comput. Appl. Math., 9 (1983), 177–191
-
[54]
L. Zada, I. Ullah, R. Nawaz, W. Jamshed, E. N. Saddam, S. A. Idris, H. Ahmad, A. Amjad, Computational treatment and thermic case study of entropy resulting from nanofluid flow of convergent/divergent channel by applying the lorentz force, Case Stud. Therm. Eng., 54 (2024), 12 pages
-
[55]
Zil-E-Huma, A. R. Butt, N. Raza, H. Ahmad, D. U. Ozsahin, F. Tchier, Different solitary wave solutions and bilinear form for modified mixed-KDV equation, Optik, 287 (2023),