On conformable delta fractional calculus on time scales
-
4317
Downloads
-
7081
Views
Authors
Dafang Zhao
- School of Mathematics and Statistics, Hubei Normal University, Huangshi, Hubei 435002, P. R. China.
Tongxing Li
- School of Informatics, Linyi University, Linyi, Shandong 276005, P. R. China.
Abstract
In this paper, we introduce and investigate the concepts of conformable delta fractional derivative
and conformable delta fractional integral on time scales. Basic properties of the theory are proved.
Share and Cite
ISRP Style
Dafang Zhao, Tongxing Li, On conformable delta fractional calculus on time scales, Journal of Mathematics and Computer Science, 16 (2016), no. 3, 324--335
AMA Style
Zhao Dafang, Li Tongxing, On conformable delta fractional calculus on time scales. J Math Comput SCI-JM. (2016); 16(3):324--335
Chicago/Turabian Style
Zhao, Dafang, Li, Tongxing. "On conformable delta fractional calculus on time scales." Journal of Mathematics and Computer Science, 16, no. 3 (2016): 324--335
Keywords
- Conformable delta fractional derivative
- conformable delta fractional integral
- time scale.
MSC
References
-
[1]
T. Abdeljawad, On conformable fractional calculus , J. Comput. Appl. Math., 279 (2015), 57-66.
-
[2]
T. Abdeljawad, M. Al Horani, R. Khalil, Conformable fractional semigroups of operators, J. Semigroup Theory Appl., 2015 (2015 ), 9 pages.
-
[3]
I. Abu Hammad, R. Khalil, Fractional Fourier series with applications, Amer. J. Comput. Appl. Math., 4 (2014), 187-191.
-
[4]
M. Abu Hammad, R. Khalil, Abel's formula and Wronskian for conformable fractional differential equations , Int. J. Differ. Equ. Appl., 13 (2014), 177-183.
-
[5]
M. Abu Hammad, R. Khalil , Conformable fractional heat differential equations , Int. J. Pure. Appl. Math., 94 (2014), 215-221.
-
[6]
M. Abu Hammad, R. Khalil , Legendre fractional differential equation and Legendre fractional polynomials, Int. J. Appl. Math. Res., 3 (2014), 214-219.
-
[7]
R. P. Agarwal, M. Bohner, T. Li, Oscillatory behavior of second-order half-linear damped dynamic equations, Appl. Math. Comput., 254 (2015), 408-418.
-
[8]
M. Al Horani, M. Abu Hammad, R. Khalil, Variation of parameters for local fractional nonhomogeneous linear-differential equations, J. Math. Computer Sci., 16 (2016), 147-153.
-
[9]
H. Batarfi, J. Losada, J. J. Nieto, W. Shammakh, Three-point boundary value problems for conformable fractional differential equations, J. Funct. Spaces, 2015 (2015 ), 6 pages.
-
[10]
B. Bayour, D. F. M. Torres , Existence of solution to a local fractional nonlinear differential equation, J. Comput. Appl. Math., 312 (2017 ), 127-133
-
[11]
N. Benkhettou, A. M. C. Brito da Cruz, D. F. M. Torres, A fractional calculus on arbitrary time scales: Fractional differentiation and fractional integration, Signal Process., 107 (2015), 230-237.
-
[12]
N. Benkhettou, A. M. C. Brito da Cruz, D. F. M. Torres, Nonsymmetric and symmetric fractional calculi on arbitrary nonempty closed sets , Math. Methods Appl. Sci., 39 (2016), 261-279.
-
[13]
N. Benkhettou, S. Hassani, D. F. M. Torres, A conformable fractional calculus on arbitrary time scales, J. King Saud Univ. Sci., 28 (2016), 93-98.
-
[14]
M. Bohner, T. Li, Oscillation of second-order p-Laplace dynamic equations with a nonpositive neutral coeficient , Appl. Math. Lett., 37 (2014), 72-76.
-
[15]
M. J. Bohner, R. R. Mahmoud, S. H. Saker, Discrete, continuous, delta, nabla, and diamond-alpha Opial inequalities, Math. Inequal. Appl., 18 (2015), 923-940.
-
[16]
M. Bohner, A. Peterson , Dynamic Equations on Time Scales: An Introduction with Application, Birkhäuser, Boston (2001)
-
[17]
M. Bohner, A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston (2003)
-
[18]
M. Bohner, S. H. Saker, Sneak-out principle on time scales , J. Math. Inequal., 10 (2016), 393-403.
-
[19]
A. Carpinteri, F. Mainardi, Fractals and Fractional Calculus in Continuum Mechanics, Springer-Verlag, Vienna (1997)
-
[20]
R. Herrmann , Fractional Calculus: An Introduction for Physicists, World Scientific, Singapore (2011)
-
[21]
S. Hilger, Ein MaBkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph.D. Thesis, Universtät Würzburg (1988)
-
[22]
R. Khalil, M. Al Horani, D. Anderson , Undetermined coeficients for local fractional differential equations, J. Math. Computer Sci., 16, 140-146. (2016)
-
[23]
R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70.
-
[24]
T. Li, J. Diblk, A. Domoshnitsky, Yu. V. Rogovchenko, F. Sadyrbaev, Q.-R. Wang, Qualitative analysis of differential, difference equations, and dynamic equations on time scales , Abstr. Appl. Anal., 2015 (2015 ), 3 pages.
-
[25]
T. Li, S. H. Saker , A note on oscillation criteria for second-order neutral dynamic equations on isolated time scales , Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 4185-4188.
-
[26]
K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations , John Wiley & Sons, Inc., New York (1993)
-
[27]
K. B. Oldham, J. Spanier , The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order, Dover Publications, New York-London (2006)
-
[28]
M. D. Ortigueira, Fractional Calculus for Scientists and Engineers, Springer, Dordrecht (2011)
-
[29]
A. Peterson, B. Thompson , Henstock-Kurzweil delta and nabla integrals , J. Math. Anal. Appl., 323 (2006), 162-178.
-
[30]
I. Podlubny, Fractional Differential Equations, Academic Press, San Diego (1999)
-
[31]
J. Sabatier, O. P. Agrawal, J. A. T. Machado , Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, Dordrecht (2007)
-
[32]
S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, CRC Press, Switzerland (1993)