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Abstract

A modified version of our previously analyzed prey-predator refuge model is presented in this article by introducing Allee
effect on the predator species and mutual interference among the predators. Possible number of coexistence equilibrium points
are investigated with the help of prey and predator nullcline. The local stability and Hopf-bifurcation conditions are established
around the coexistence equilibria. We have also discussed the nature of Hopf-bifurcation around the unique coexistence equilib-
rium point of the system as well. Finally, a comprehensive numerical simulation is carried out to justify our obtained analytical
findings.
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1. Introduction

Mathematical modelling is a systematic methodology that has been proved successfully in discovering
and understanding the dynamical behaviour exhibited by many species of plants and animals. Bio-
mathematical modeling is an effective tool to better comprehend the interaction between predator and
prey in ecology. Refuge is an ecological concept, in which an organism obtains protection from predation
by hiding in an area which is not accessible easily. Prey species takes some mechanisms to refuge from
predation such as hiding behavior, body cover, exertion of chemical or electric energy etc. Allee effect
is a biological phenomenon characterized by a correlation between population size or density and the
mean individual fitness of a species occur in a small population density. Some mechanisms of Allee
effect are finding mates, reproductive facilitation, environmental condition. Although there are several
factors for causes of the Allee effect but one of the most important factor is that the deficiency of finding
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mates among the individuals at low population density. Allee effect is a phenomenon which depends on
the density that causes the per capita rate of population growth to collapse with decreasing population
density. Allee effect first introduced by Allee in 1920 with his pioneering work [1, 2].

Allee effect causes the negative population growth rates at low population density. Basically, Allee
effect has a great influence on the movement of complex population dynamics of some interactive species.
In the study of ecology, understanding the impact of Allee effect plays an important role because Allee
effects can greatly increase the likelihood of local and global extinction. Accordingly, the most significant
consequences of the Allee effect [9, 10, 27, 33, 34, 36, 40, 44, 45] for saving the endangered species and
revealing the evolution process that has given improvement to extant biodiversity. Pal et al. [25] have
considered a delayed predator-prey model with strong Allee effect in prey population growth where
the growth function is governed by multiplicative Allee effect on the prey population. Particularly, they
have analyzed multiplicative strong Allee effect. Another modified Leslie-Gower predator-prey model is
investigated by Wang et al. [7] with additive Allee effect on prey population. One of their most interesting
finding is that the Allee effect can increase the risk of ecological extinction. Several investigations [5, 14, 39]
have been made to understand the role of both diffusion and Allee effect together on the population
dynamics and spatiotemporal pattern formations of both the species. Yong et al. [43] have studied a
predator-prey dynamical model with weak Allee effect and introducing time delay.

The combined impact of Allee effect and prey refuge [15, 16, 20, 22, 28, 32, 34] on the predator-prey
population dynamics enrich us to have better insight on species extinction. In the present decade, most
of the researchers have considered Allee effect [18, 24, 37, 38, 46] on the prey species only.

There have been a very few studies [8, 35, 36, 39] investigating the impact of Allee effect on predator
species. A hydra effect occurs when the mean density of a species increases in response to greater
mortality. The positive effects at the population density with increasing per capita mortality rate of the
predator known as hydra effect on the prey-predator dynamics. Costa and Anjos [8] investigated hydra
effect in a predator-prey model with multiplicative Allee effect on predator population and incorporating
intra-specific competition among the predator.

As a result both ecologists and mathematicians have considered Allee effect on the prey species rather
than the predator species in the prey-predator model [29, 31]. The existing literature on predator-prey
models with Allee effect on the prey species have been studied extensively than that of the literature on
predator-prey models with Allee effect on the predator species. We found this as an imbalance because,
in reality, it is expected that the predator populations to be more prone to Allee effects than that of their
prey, since populations are more prone to experience an Allee effect as they are smaller in number, and
predator populations are comparatively much smaller than their admissible prey populations. There is
an additional inspiration for this work and particularly, we want to remove the inconsistency in modeling
literature as far as Allee effect is concerned.

Our main objective is to investigate the effects of refuge, Allee and intra-specific competition among
the predators on the equilibria, stability and bifurcation, which may be effective for the conservation
of biodiversity. We have already investigated our previous study [20] with additive Allee on the prey
species and incorporating prey refuge depending on both prey and predator species but our present study
deals with a predator-prey dynamical model considering the followings: (i) Allee effect on the predator
population; (ii) Holling type II [12, 13, 42] response function; (iii) nonlinear prey refuge proportional to
the direct interaction on both the populations; and (iv) incorporating intra-specific competition among
the predators. We have organized the rest of our study as follows. In Section 2, we have introduced
our basic considerations and accordingly have formulated the model system. Existence and their local
stability conditions are discussed in Section 3, and Subsection 3.1, respectively. Hopf-bifurcation and its
nature are analyzed also in Section 4. Finally, Sections 5 and Section 6 have indicated some numerical
results and general discussions respectively.
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2. Model composition

Different mathematical tools have been used to analyze the dynamics with Allee effect, however most
of the researchers have considered the dynamical consequences of the Allee effect in bi-dimensional
differential equations system [6, 11, 23]. We start with the modified Lotka-Volterra type predator-prey
system with Holling type II functional response{

dx
dt = rx

(
1 − x

K

)
− mxy

1+ax ,
dy
dt = emxy

1+ax − dy.
(2.1)

The prey-dependent model (2.1) has been modified by Bazykin (cf. [4]) by introducing the intra-specific
competition (fy2) among the predator species due to limitations of resources (prey species), which can’t
be ignored for any realistic ecosystem and becomes the following system:{

dx
dt = rx

(
1 − x

K

)
− mxy

1+ax ,
dy
dt = emxy

1+ax − dy− fy2.
(2.2)

In this study, we have considered x, y as the prey and predator species respectively and δxy as the
amount of nonlinear prey refuge (cf. [17, 19–21]) admissible for t > 0 with 0 6 x(1 − δy) 6 x. The factor
y
y+h comes into predator growth function to decrease the predator growth rate because, if a predator eats
more, it will be less likely to die from starvation or from the consequences of weakness due to hunger;
and it is positive for any value of functional response, because a predator is highly unlikely to live forever.
Introduction of the above factor in the functional response requires justification. Now we give this here.
It is assumed that, the predator is assumed to reproduce sexually without any delays due to gestation or
egg hatching, this allows us to write down the combined predator functional response on prey as follows.

Total rate of predator reproduction at time t = (number of sexually mature females able to find a
suitable mate at time t)×(average reproduction rate per sexually mature female that is able to find a
suitable mate at time t). For detailed analysis interested readers are referred to, see pp. 5 by Terry [36].

Keeping in mind that (1− δy) > 0 throughout the manuscript and incorporating predator Allee factor
y
y+h , the system (2.2) is extended to the following one:

dx
dt = rx

(
1 − x

K

)
− mx(1−δy)y

1+ax(1−δy) ,
dy
dt =

(
emxy2(1−δy)

(1+ax(1−δy))(y+h) − dy− fy
2
)

,
(2.3)

where r is the maximum per capita prey growth rate, K is the environmental carrying capacity, m is the
prey consumption rate by the predator, δ is the coefficient of prey refuge, a is the prey half saturation
constant, e is the predator’s food-to-offspring conversion efficiency coefficient, h denotes the Allee effect
intensity, d is the density independent per capita predator’s mortality rate and f is the coefficient of
intra-specific competition among the predators. The dynamical system (2.3) have analyzed in the region{
(x,y) ∈ R2

+ : x > 0,y > 0
}

with the initial conditions x(0) > 0 and y(0) > 0.

3. Existence of feasible equilibria

The system (2.3) have different equilibrium points E0, E1, and E∗.

(a) E0 = (0, 0) is always feasible.
(b) E1 = (K, 0) is feasible also.
(c) The interior equilibrium point E∗ = (x∗,y∗) is feasible if (i) (adhδ+ em− afh− ad)y∗ > adh; (ii)

aδ(fh+ d) > (emδ+ af); (iii) aδfh+ adδ < δem+ af; and (iv) p2 − 4q > 0, where the component of
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prey species x∗ =
fy∗2+(fh+d)y∗+dh

afδy∗3+(afhδ+adδ−emδ−af)y∗2+(adhδ−afh−ad+em)y∗−adh
and the predator com-

ponent y∗ is the root of the following equation
6∑
n=0

AnY
n = 0. (3.1)

Table 1: Biological description and dimension of the parameters used in the model (2.3) have been chosen from [19]
and [21]: V stands for volume of the species and T for time.

Sl. No. Parameters Value Description Dimension

1. x – Prey volume V
2. y – Predator volume V
3. r 2.9 Intrinsic prey growth rate 1/T
4. K 1000 Environmental intake capacity V
5. m 0.52 Predator’s consumption rate 1/T
6. δ 0.01 Prey refuge coefficient 1/V
7. a 0.04 Half saturation constant V
8. d 0.6 Natural death rate of predator 1/T
9. e 0.49 Conversion factor (Dimension less)
10. h 0.01 Allee effect intensity V
11. f – Intra-specific competition among predators 1/V

The coefficients An’s (n = 0 to 6) of the above equation (3.1) are given in Appendix A.1. Now we have
to find out the sufficient conditions to have at least one positive real root of the equation (3.1). Generally,
the above equation has at most six complex roots. Assuming that there exist two pair of complex roots α,β
and their conjugates α∗,β∗, respectively. Each pair form the following quadratic equations Y2 +m1Y +

n1 = (Y − α)(Y − α∗) = Y2 − 2Re(α)Y + |α|2 and Y2 +m2Y + n2 = (Y − β)(Y − β∗) = Y2 − 2Re(β)Y + |β|2,
respectively with negative discriminant, where m1 = −2Re(α), n1 = |α|2, m2 = −2Re(β), and n2 = |β|2.
Assuming that there exist y∗1 and y∗2 two real roots (i.e. two values of y∗) of the equation (3.1) such that
(y∗1 + y

∗
2) = −p and y∗1y

∗
2 = q, then the equation (3.1) can be factorize as follows:

6∑
n=0

AnY
n = A6(Y

2 +m1Y +n1)(Y
2 +m2Y +n2)(Y

2 + pY + q),

= A6
(
Y6 + (m1 +m2 + p)Y

5 + (n1 +n2 + q+m1m2 +m2p++pm1)Y
4

+ (m1m2p+m1q+m2n1 + pn2 +m1n2 +m2q+ pn1)Y
3

+ (m1m2q+m2pn1 + pm1n2 +n1n2 +n2q+ qn1)Y
2

+ (m1n2q+m2qn1 + pn1n2)Y +n1n2q
)
.

(3.2)

Comparing coefficients on both sides one can find that p = A5
A6

+ 2(Re(α) + Re(β)) and q = A0

A6|α|
2|β|2

.
Since q > 0, then both the real roots have the same sign and they must be positive and real if the value of
p < 0 and p2 − 4q > 0. The two real roots can be evaluated by solving the quadratic factor of the equation
(3.2) as

(Y2 + pY + q) = 0.

Therefore, there exist two (i.e., two values of y∗) positive real roots y∗1 =
−p+
√
p2−4q

2 and y∗2 =
−p−
√
p2−4q

2 ,
if the conditions A5 < 0 (i.e., if aδfh+ adδ < δem+ af) and p2 − 4q > 0 hold.
Since, analytically it is too laborious to calculate the coexisting steady state from the above hexic equation
(3.1), therefore, to obtain one or more coexisting steady states we have used the prey and predator isoclines
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( 1
x
dx
dt = 0 and 1

y
dy
dt = 0, (x,y) ∈ R2

+ : x > 0,y > 0) for a set of parameters.

3.1. Local stability analysis of equilibia
(a) At E0 the eigenvalues of J (Appendix A.2) are r and −d, therefore, the system is unstable saddle.
(b) Around E1 both the eigenvalues of J are −r and −d and the system (2.3) is locally asymptotically

stable without any condition.
(c) Evaluating the Jacobian matrix J at the coexistence equilibrium point E∗ = (x∗,y∗), the system (2.3)

is locally asymptotically stable, if it satisfies the condition δ1
δ2
< δ < δ3

δ4
, where δi’s (i = 1, 2, . . . , 4) are

shown in Appendix A.3.

4. Hopf-bifurcation analysis

Evaluating Tr(J∗) = 0 one can find the critical value fc = ∆1
∆2

for that Det(J∗) have non vanishing value
around the coexistence equilibrium point (x∗,y∗). The values of ∆1 and ∆2 are given in Appendix A.4. To
assure the occurrence of Hopf-bifurcation [18, 24, 41] we have to validate the transversality condition:

[
d

df
(Tr(J∗))]f=fc =

y∗
(
aδhkrx∗ − aδhrx∗2 + aδ krx∗y∗ − aδ rx∗2y∗ − δhkmy∗ − kmy∗

)
(1 − δ y∗) km (y∗ + h)

6= 0.

4.1. Nature of Hopf-bifurcation
It can be determined the nature of periodic solution of Hopf-bifurcation with the use of Lyapunov

number. Due to a small perturbation x = (x1 + xf) |f=fc and y = (y1 + yf) |f=fc , the equation (2.3)
transforms to the following one by Taylor series expansion:{

ẋ1 = v10x1 + v01y1 + v20x
2
1 + v11x1y1 + v02y

2
1 + · · · ,

ẏ1 = w10x1 +w01y1 +w20x
2
1 +w11x1y1 +w02y

2
1 + · · · .

The coefficients vij = 1
i!j!
∂(i+j)F1
∂xi∂yj

|(E∗,fc) and wij = 1
i!j!
∂(i+j)F2
∂xi∂yj

|(E∗,fc), (i, j = 0, 1, 2, 3) (neglecting 4th and
higher order terms) are as follows:

v10 =
∂F1

∂x
|(E∗,fc), v01 =

∂F1

∂y
|(E∗,fc), v20 =

1
2
∂2F1

∂x2 |(E∗,fc), v02 =
1
2
∂2F1

∂y2 |(E∗,fc),

v11 =
∂2F1

∂x∂y
|(E∗,fc), v12 =

1
2
∂3F1

∂x∂y2 |(E∗,fc), v21 =
1
2
∂3F1

∂x2∂y
|(E∗,fc), v03 =

1
6
∂3F1

∂y3 |(E∗,fc),

v30 =
1
6
∂3F1

∂x3 |(E∗,fc);

w10 =
∂F2

∂x
|(E∗,fc), w01 =

∂F2

∂y
|(E∗,fc), w20 =

1
2
∂2F2

∂x2 |(E∗,fc), w02 =
1
2
∂2F2

∂y2 |(E∗,fc),

w11 =
∂2F2

∂x∂y
|(E∗,fc), w12 =

1
2
∂3F2

∂x∂y2 |(E∗,fc), w21 =
1
2
∂3F2

∂x2∂y
|(E∗,fc), w03 =

1
6
∂3F2

∂y3 |(E∗,fc),

w30 =
1
6
∂3F2

∂x3 |(E∗,fc) .

Detailed expressions of vi,j and wi,j(i, j = 0, 1, . . . , 3) are given in the Appendix A.5. The first Lyapunov
number ρ [26], is given by

ρ = −
3π

2v01∆
3
2
[{v10w10(v

2
11 + v11w02 + v02w11) + v10v01(w

2
11 + v20w11 + v11w02)

+w2
10(v11v02 + 2v02w02) − 2v10w10(w

2
02 − v20v02) − 2v10v01(v

2
20 −w20w02)

− v2
01(2v20w20 +w11w20) + (v01w10 − 2v2

10)(w11w02 − v11v20)}

− (v2
10 + v01w10){3(w10w03 − v01v30) + 2v10(v21 +w12) + (w10v12 − v01w21)}]

= −0.004497755867 < 0.

The nature of the periodic solution is sub-critical or super-critical [3] according to ρ > 0 or < 0, respectively.
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Considering the parameter values as in Table 1, the numerical value of the first Lyapunov number ρ =
−0.004497755867 (i.e., negative) at the critical value fc. Hence, the periodic solution of the system (2.3)
undergoes a super-critical Hopf-bifurcation.

5. Numerical simulations

In this section, we have represented some numerical results to support our analytical findings. The
dynamical system (2.3) has a trivial equilibrium E0 = (0, 0), a predator free equilibrium E1 = (K, 0) and
coexistence equilibrium point E∗ = (x∗,y∗). Since, both the eigenvalues of J at E0 are r and −d, therefore,
the system is unstable saddle. The eigenvalues of J at E1 are −r and −d then the system is locally
asymptotically stable around E1 unconditionally. The coexistence equilibrium point E∗ = (x∗,y∗) is
asymptotically stable if the conditions δ1

δ2
< δ < δ3

δ4
hold. The possible number of coexistence equilibrium

points can be found by the intersecting points of prey and predation isoclines (cf. Figure 1 (a)-(c)).
Considering a set of parameter values as in Table 1, two equilibrium points E0 = (0, 0) and E1 = (1000, 0)
are unstable saddle and stable (cf. Figure 2), respectively.
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Phase portrait of Prey−predator isocline for f=0.13
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Figure 1: Phase portrait (a) Existence of four interior equilibrium points E1
1∗ = (999.99532, 0.0010689), E2

1∗ =

(769.4373005, 41.7833342), E3
1∗ = (138.3562976, 33.8591376) and E4

1∗ = (9.5815510, 8.1291755) for f = 0.13, (b) Ex-
istence of three interior equilibrium points E1

2∗ = (999.99532, 0.0010690), E2
2∗ = (869.1026500, 26.3693937) and

E3
2∗ = (31.9710101, 13.1180810) for f = 0.2096434, and (c) Existence of two interior equilibrium points E1

3∗ =

(999.9953239, 0.0010692) and E2
3∗ = (901.1619311, 20.5631620) for f = 0.27, keeping the other parameter values

are the same as in Table 1.
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Figure 2: Phase diagram of local stability around the predator free equilibrium point (K, 0) = (1000, 0).

The number of feasible coexistence equilibrium points (cf., Figures 1 (a)-(c)), whose natures have been
discussed in the following three cases:

Case I: For the values of predator’s intra-specific competition f = 0.13 and the other parameter values are
taken as in Table 1, there exists four coexistence equilibrium points namely E1

1∗ = (999.9953252, 0.0010689),
E2

1∗ = (769.4373005, 41.7833342), E3
1∗ = (138.3562976, 33.8591376), and E4

1∗ = (9.5815510, 8.1291755) (cf.
Figure 3(a)), and the corresponding eigenvalues are (0.5420451,−2.8999731), (−1.6492285,−5.6080857),
(1.1713654,−4.5596263), and (−0.2215030± i1.5499561), respectively (cf. Table 2). Moreover, there are
two basins of attraction around E2

1∗ and E4
1∗ separated by a red dashed curve (separatrix) in Figure 3 (a)

in the system (2.3). All the trajectories right from the separatrix converge to E2
1∗ and all the trajectories

left from the separatrix converge to E4
1∗. Therefore, the system is asymptotically stable at the coexistence

equilibrium point E2
1∗ and is stable focus at E4

1∗ but it is unstable saddle at E1
1∗ and E3

1∗ (cf. Figure 3 (a)).

Case II: For increasing the value of f up to 0.2096436 gradually, the coexistence equilibrium points E3
1∗

and E4
1∗ have merged to a single equilibrium point (called double point) E3

2∗ = (31.9710101, 13.1180810),
i.e., the system reduces the number of coexistence equilibrium points from four to three. Therefore,
in this case the system has three equilibrium points namely E1

2∗ = (999.9953244, 0.0010690), E2
2∗ =

(869.1026500, 26.3693937) and E3
2∗ = (31.9710101, 13.1180810). Evaluating the eigenvalues (cf. Table 2)

of the Jacobian matrix (J), one can get that the system is locally asymptotically stable at E2
2∗ and is unsta-

ble saddle around E1
2∗ and E3

2∗ (cf. Figure 3 (b)).

Case III: Finally, more increasing the values of f up to 0.27 gradually, the system (2.3) has two coexistence
equilibria namely E1

3∗ = (999.9953239, 0.0010692) and E2
3∗ = (901.1619311, 20.5631620). For the opposite

sign of the eigenvalues (0.5420162,−2.8999731), the system is unstable saddle around E1
3∗ and for both

the negative eigenvalues (−2.3545704,−5.5846440), the system is locally asymptotically stable around E2
3∗

(cf. Figure 3 (c)).
From another point of view, for gradually decreasing values of intra-specific competition coeffi-

cient f up to the value 0.0605, the system (2.3) has only two coexistence equilibrium points namely
E1

4∗ = (999.9953258, 0.0010687) and E2
4∗ = (5.2091295, 7.1297732). The opposite sign of the eigenvalues

(0.5420594,−2.8999731) of J assures that the system is unstable saddle near E1
4∗. The complex conju-

gate eigenvalues (−0.021806± i1.451717) of J having negative real part ensures the stable focus of the
dynamical system (2.3) around the coexistence equilibrium point E2

4∗ (cf. Figures 4 (a)-(b)).
For more decreasing values of f up to the critical level at fc = 0.0515, the system continues the existence

of two coexistence equilibrium points E1
5∗ = (999.9953259, 0.0010687) and E2

5∗ = (4.7931739, 7.0342696).
Evaluating the eigenvalues it may conclude that the system is unstable saddle at E1

5∗. The system (2.3)
losses its stability and experiences Hopf-bifurcating periodic solution around the coexistence equilibrium



H. Molla, S. Sarwardi, M. Sajid, J. Math. Computer Sci., 25 (2022), 150–165 157

point E2
5∗ (cf. Figures 5 (a)-(b)) because of the purely imaginary eigenvalues (0.00000± i1.423730) of E2

5∗.
The system exhibits a limit cycle also around the interior equilibrium point E2

5∗ (cf. Figures 5 (c)-(d)). As
the numerical value of the first Lyapunov number ρ = −0.004497755867 < 0, therefore, the nature of the
Hopf-bifurcating periodic solution is super-critical.

On the other side, if the intra-specific competition f among the predator is decreased successively
from its critical level fc then the system oscillates with more and more period. But if the intra-specific
competition among the predators is increased gradually from its critical level, the system switches from
its oscillating mode to stable mode (cf. Figures 6 (a)-(b)). Therefore, in this situation the prey species
increases up to a very high level and at the same time predator species decreases up to a very low level
(cf. Table 3).

Similarly, if the value of the Allee parameter h is increased gradually from h = 0.01 then the system
continues its periodic mode with more and more periodic oscillation (cf. Figures 7 (a)-(f)).

Finally, if we vary the value of h and f simultaneously, our observation is the same as above. Schematic
illustration of the nature of all the possible equilibria and there corresponding figures are given in Table
2.
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Figure 3: Phase diagram of local stability: (a) Around the four interior equilibria E1
1∗, E2
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1∗ and E4

1∗, (b) Around
the three interior equilibria E1

2∗, E2
2∗ and E3

2∗, and (c) Around the two interior equilibria E1
3∗ and E2

3∗. The other
parameter values are same as given in Table 1. Blue, Magenta, and Red dashed coloured curves represent the prey
isoclines, the predator isoclines, and the separatrix, respectively. The predator free equilibrium point E1 is so closed
to each of the interior equilibria E1

1∗ (in Figure (a)), E1
2∗ (in Figure (b)), and E1

3∗ (in Figure (c)) that it is very difficult
to show them distinctly. So, we have tried to show the points E1

1∗, E1
2∗, E1

3∗ by the solid red circles and E1 by nearly
overlapping solid blue circle.
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(5.2091295, 7.1297732) for f = 0.0605.

(a)
0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

Prey (x)

P
re

d
a
to

r 
(y

)

Phase plot of Hopf−bifurcation

(b)
0 200 400 600 800 1000

0

5

10

15

20

25

30

35

Time (t)

P
o
p
u
la

ti
o
n
s
: 
x
(t

),
 y

(t
)

Time series solution of Hopf bifurcation

 

 

prey

predator

(c)
2 3 4 5 6 7 8 9 10

4

5

6

7

8

9

10

11

Prey (x)

P
re

d
a
to

r 
(y

)

Phase portrait of limit cycle

 

 

(d)
0 200 400 600 800 1000

2

3

4

5

6

7

8

9

10

11

Time (t)

P
o
p
u
la

ti
o
n
s
: 
x
(t

),
 y

(t
)

Time series solution of limit cycle

 

 

Prey

Predator

Figure 5: Figures (a) & (b) phase portrait of Hopf-bifurcation around the interior equilibrium point E2
5∗ =

(4.7931739, 7.0342696). Figures (c) and (d) phase portrait of limit cycle around E2
5∗ for the critical value fc = 0.0515,

the other parameter values are given in Table 1.
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Figure 7: (a) Phase diagram and (b)-(f) time series solutions for gradually increasing values of h from it’s critical
value h = 0.01 to h = 0.20, initiating from the point (50, 15), taking the other parameters are as in Table 1.

Table 2: Nature of all the possible equilibria and their corresponding figures: LAS=locally asymptotically stable,
SP=saddle point, SF=stable focus, HB=Hopf-bifurcation, DP=double point.

Equilibria f Solution Eigenvalues Nature Figures

E0 — (0, 0) (2.9000, -0.6000) SP —
E1 — (1000, 0) (-2.9000, -0.6000) LAS Figure 2
E1

1∗ 0.13 (999.9953252, 0.0010689) (0.5420451, -2.8999731) SP Figure 3(a)
E2

1∗ 0.13 (769.4373005, 41.7833342) (-1.6492285, -5.6080857) LAS Figure 3(a)
E3

1∗ 0.13 (138.3562976, 33.8591376) (1.1713654, -4.5596263) SP Figure 3(a)
E4

1∗ 0.13 (9.5815510, 8.1291755) (-0.2215030 ± i1.549956) SF Figure 3(a)
E1

2∗ 0.2096436 (999.9953244, 0.0010690) (0.5420286, -2.8999731) SP Figure 3(b)
E2

2∗ 0.2096436 (869.1026500, 26.3693937) (-2.3545704, -5.5846440) LAS Figure 3(b)
E3

2∗(DP) 0.2096436 (31.9710101, 13.1180810) (0.0002972, -1.6026535) SP Figure 3(b)
E1

3∗ 0.27 (999.9953239, 0.0010692) (0.5420162, -2.8999731) SP Figure 3(c)
E2

3∗ 0.27 (901.1619311, 20.5631620) (-2.3545704, -5.5846440) LAS Figure 3(c)
E1

4∗ 0.0605 (999.9953258, 0.0010687) (0.5420594, -2.8999731) SP —
E2

4∗ 0.0605 (5.2091295, 7.1297732) (-0.021806 ± i1.451717) SF Figures 4(a)-(b)
E1

5∗ fc = 0.0515 (999.9953259, 0.0010687) (0.5420613, -2.8999731) SP —
E2

5∗ fc = 0.0515 (4.7931739, 7.0342696) (0.00000 ± i1.423730) HB Figures 5(a)-(d)
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Table 3: Tabular representation of the different solutions which is graphically illustrated in Figure 6 for successive
increasing values of f.

Sl. No. f Equilibrium position Figure 6

1. 0.0515 (4.7932, 7.0342) Magenta
2. 0.1515 (11.6791, 8.6057) Blue
3. 0.2015 (863.0947, 27.4110) Green
4. 0.3015 (912.3417, 18.4398) Yellow
5. 0.7015 (963.9742, 7.9652) Red
6. 2.5015 (990.1518, 2.2314) Cyan

6. Conclusion

In this study, we have analyzed an ecological model with Allee effect and intra-specific competition
among the predators. For the increasing of intra-specific competition co-efficient f the system reduces
the number of co-existence equilibrium points. It is determined from the Figure 6 that if the parameter
f crosses its critical value fc = 0.0515 from left to right, the dynamical system changes from oscillatory
behavior (magenta colored trajectory ) to stable behavior (blue colored trajectory). It is also determined
that the prey volume becomes larger and at the same time the predator volume becomes smaller for
increasing f > 0.0515 successively (cf. Figure 6). Therefore, the change of values of the intra-specific
competition co-efficient f has a great impact on the dynamical system. On the other hand it is investigated
that for the increasing values of h the amplitude of the periodic oscillation becomes larger and larger (cf.
Figures 7(b)-(f)), i.e., both the species follows diverging oscillation and the system becomes unstable.
Therefore, it is concluded that the parameters f has more significant regulatory effect on the system than
that of the parameter h. From the biological point of view, the incorporation of all such limitations of this
model would certainly be of some help to the future researchers to predict their findings one step closer to
the real situation. This study will aim for better understanding of biodiversity and conservation of biotic
organisms, which are facing the threat of extinction and in relation with the welfare of human beings. It
is well-known that the facts delay and diffusion are very important in population dynamics [3, 25, 30]. To
this end, in our future work, we will extend our system incorporating these factors, which could generate
more rich dynamics of the system in terms of global bifurcations and spatiotemporal patterns.

Appendix

A.1. The value of the coefficient An’s (n = 0 to 6) used in Section 3 are as follows:

A6 = a2δ2f2K,

A5 = 2a2δ2f2hK+ 2a2dδ2fK− 2aδ2efKm− 2a2δ f2K,

A4 = a2δ2f2h2K+ 4a2dδ2fhK− 2aδ2efhKm+ a2d2δ2K− 4a2δ f2hK− 2adδ2eKm

+ δ2e2Km2 − 4a2dδ fK+ 4aδ efKm+ a2f2K,

A3 = 2a2dδ2fh2K+ 2a2d2δ2hK− 2a2δ f2h2K− 2adδ2ehKm− 8a2dδ fhK+ 4aδ efhKm

− 2a2d2δK+ 2a2f2hK+ 4adδ eKm− aδ efKr− 2 δ e2Km2 + 2a2dfK− 2aefKm,

A2 = a2d2δ2h2K− 4a2dδ fh2K− 4a2d2δhK+ a2f2h2K+ 4adδ ehKm− aδ efhKr

+ 4a2dfhK− adδ eKr− 2aefhKm+ δ e2Kmr+ a2d2K− 2adeKm+ aefKr+ e2Km2 + efr,

A1 = −2a2d2δh2K+ 2a2dfh2K− adδ ehKr+ 2a2d2hK− 2adehKm+ aefhKr+ adeKr
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− e2Kmr+ efhr+ der,

A0 = a2d2h2K+ adehKr+ dehr.

A.2. The Jacobian matrix for the system (2.3) at (x∗,y∗) is as follows:

J∗ =

 −rx
∗

K + ar2x∗(K−x∗)2

K2my∗ −rx
∗(K−x∗)
Ky∗ + x∗δr(K−x∗)

K(−δy∗+1) − r2x∗2(K−x∗)2aδ

K2my∗(−δy∗+1)

(fy∗+d)y∗

x∗ − a(fy∗+d)r(K−x∗)
Km d− δ (fy∗+d)y∗

−δy∗+1 + aδx∗(fy∗+d)r(K−x∗)
Km(−δy∗+1) −

(fy∗+d)y∗

y∗+h

 .

A.3. The values of δi’s (i = 1 to 4) in Section 3.1 are given below:

δ1 = afhK2rx∗ − 2afhKrx∗2 + afhrx∗3 + 2afK2rx∗y∗ − 4afKrx∗2y∗ + 2afrx∗3y∗

+ adK2rx∗ − 2adKrx∗2 + adrx∗3 − fhK2my∗ + fhKmx∗y∗ − fK2my∗2 − dhK2m

+ 2dhKmx∗ − dK2my∗ + dKmx∗y∗,

δ2 = 2afhK2rx∗y∗ − 5afhKrx∗2y∗ + 3afhrx∗3y∗ + 3afK2rx∗y∗2 − 7afKrx∗2y∗2

+ 4afrx∗3y∗2 + adhK2rx∗ − 3adhKrx∗2 + 2adhrx∗3 + 2adK2rx∗y∗ − 5adKrx∗2y∗

+ 3adrx∗3y∗ − 2hK2my∗2f+ 3 fhKmx∗y∗2 − 2 fK2my∗3 + 2 fKmx∗y∗3

− 2dhK2my∗ + 4dhKmx∗y∗ − 2dK2my∗2 + 3dKmx∗y∗2,

δ3 = −ahK2r2x∗ + 2ahKr2x∗2 − ahr2x∗3 − aK2r2x∗y∗ + 2aKr2x∗2y∗ − ar2x∗3y∗

+ fK2my∗3 − dhK2my∗ + hKmrx∗y∗ +Kmrx∗y∗2,

δ4 = y∗
(
afhK2rxy∗ − afhKrx2y∗ + afK2rxy∗2 − afKrx2y∗2 + adhK2rx− adhKrx2

+ adK2rxy∗ − adKrx2y∗ − ahK2r2x+ 2ahKr2x2 − ahr2x3 − aK2r2xy∗ − ar2x3y∗

+ 2aKr2x2y∗ − hK2my∗2f− 2dhK2my∗ − dK2my∗2 + hKmrxy∗ +Kmrxy∗2).
A.4. The values of ∆1 and ∆2 used in Section 4.

∆1 = adδhK2rx∗y∗ − adδhKrx∗2y∗ + adδK2rx∗y∗2 − adδKrx∗2y∗2 − aδhK2r2x∗y∗

+ 2aδhKr2x∗2y∗ − aδhr2x∗3y∗ − aδK2r2x∗y∗2 + 2aδKr2x∗2y∗2 − aδ r2x∗3y∗2

− 2dδhK2my∗2 − dδK2my∗3 + δhKmrx∗y∗2 + δKmrx∗y∗3 + ahK2r2x∗

− 2ahKr2x∗2 + ahr2x∗3 + aK2r2x∗y∗ − 2aKr2x∗2y∗ + ar2x∗3y∗ + dhK2my∗

− hKmrx∗y∗ −Kmrx∗y∗2,

∆2 = −Ky∗2
(
aδhKrx∗ − aδhrx∗2 + aδKrx∗y∗ − aδ rx∗2y∗ − δhKmy∗ −Kmy∗

)
.

A.5. The value of the differential coefficients vij and wij, where i, j = 0, 1, 2, 3.

v10 =
r (K− x∗)

K
−
rx∗

K
−

m (−δ y∗ + 1)y∗

1 + ax∗ (−δ y∗ + 1)
+
mx∗ (−δ y∗ + 1)2 y∗a

(1 + ax∗ (−δ y∗ + 1))2 ,

v01 = −

(
a (δ y∗ − 1)2 x∗ − 2 δ y∗ + 1

)
x∗m

(−1 + x∗ (δ y∗ − 1)a)2 ,

v12 =
δm

(
1 + x∗2 (δ y∗ − 1)a2 + 2ax∗y∗δ

)
(−1 + x∗ (δ y∗ − 1)a)4 ,

v21 =
am (δ y∗ − 1) (x∗ (δ y∗ − 1)a+ 3 δ y∗ − 1)

(−1 + x∗ (δ y∗ − 1)a)4 ,
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v20 = −
r

K
+

m (−δ y∗ + 1)2 y∗a

(1 + ax∗ (−δ y∗ + 1))2 −
mx∗ (−δ y∗ + 1)3 y∗a2

(1 + ax∗ (−δ y∗ + 1))3 ,

v02 = −2
mx∗δ (ax∗ + 1)

(−1 + x∗ (δ y∗ − 1)a)3 ,

v11 = −
m (x∗ (δ y∗ − 1)a+ 2 δ y∗ − 1)

(−1 + x∗ (δ y∗ − 1)a)3 ,

v03 =
mx∗2δ2a (ax∗ + 1)

(−1 + ax∗ (δ y∗ − 1))4 ,

v30 = 1/2
m (δ y∗ − 1)3 y∗a2

(−1 + x∗ (δ y∗ − 1)a)4 ,

w10 = −
emy∗2 (δ y∗ − 1)

(y∗ + h) (−1 + x∗ (δ y∗ − 1)a)2 ,

w01 = 2
emx∗y∗ (−δ y∗ + 1)

(1 + ax∗ (−δ y∗ + 1)) (y∗ + h)
+

emx∗y∗2δ

(−1 + x∗ (δ y∗ − 1)a) (y∗ + h)

+
emx∗2y∗2 (−δ y∗ + 1)aδ

(1 + ax∗ (−δ y∗ + 1))2 (y∗ + h)
−

emx∗y∗2 (−δ y∗ + 1)

(1 + ax∗ (−δ y∗ + 1)) (y∗ + h)2 − d− 2 fcy∗,

w12 =
−1

(ax∗y∗δ− ax∗ − 1)4 (y∗ + h)3

(
− ax∗δ2 (hδax∗ − ax∗ − 2)y∗4 +

(
4ahx∗ (ax∗ + 1) δ2

+
(

1 − a2x∗2
)
δ
)
y∗3 +

(
3h− 3a2hx∗2

)
δ y∗2 + h2δ (ax∗ + 3) (ax∗ + 1)y∗

− h2 (ax∗ + 1)2
)
em,

w21 =
a (δ y∗ − 1) ey∗m

(ax∗y∗δ− ax∗ − 1)4 (y∗ + h)2

(
δ (x∗ (hδ− 1)a− 3)y∗2

+ ((x∗ − 3 δhx∗)a− 4hδ+ 1)y∗ + 2ahx∗ + 2h
)

,

w20 =
emy∗2 (δ y∗ − 1)2 a

(y∗ + h) (−1 + x∗ (δ y∗ − 1)a)3 ,

w02 =
emx∗ (−δ y∗ + 1)

(1 + ax∗ (−δ y∗ + 1)) (y∗ + h)
− 2

emx∗y∗δ

(1 + ax∗ (−δ y∗ + 1)) (y∗ + h)

+ 2
emx∗2y∗ (−δ y∗ + 1)aδ

(1 + ax∗ (−δ y∗ + 1))2 (y∗ + h)
− 2

emx∗y∗ (−δ y∗ + 1)

(1 + ax∗ (−δ y∗ + 1)) (y∗ + h)2

−
emx∗2y∗2δ2a

(1 + ax∗ (−δ y∗ + 1))2 (y∗ + h)
+

emx∗y∗2δ

(1 + ax∗ (−δ y∗ + 1)) (y∗ + h)2

+
emx∗3y∗2 (−δ y∗ + 1)a2δ2

(1 + ax∗ (−δ y∗ + 1))3 (y∗ + h)
−

emx∗2y∗2 (−δ y∗ + 1)aδ
(1 + ax∗ (−δ y∗ + 1))2 (y∗ + h)2

+
emx∗y∗2 (−δ y∗ + 1)

(1 + ax∗ (−δ y∗ + 1)) (y∗ + h)3 − fc,

w11 = −

(
δ (−2 + x∗ (hδ− 1)a)y∗2 − 3 (ax∗ + 1) (hδ− 1/3)y∗ + 2ahx∗ + 2h

)
ey∗m

(ax∗y∗δ− ax∗ − 1)3 (y∗ + h)2 ,

w03 = −
emy∗2 (δ y∗ − 1)3 a2

(y∗ + h) (−1 + ax∗ (δ y∗ − 1))4 ,
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w30 =
−1

2 (y∗ + h)4 (ax∗y∗δ− ax∗ − 1)4

(
a3δ4h2x∗3y∗4 − 4a3δ3h2x∗3y∗3 + 6a3δ2h2x∗3y∗2

− 4a2δ3h2x∗2y∗3 − a2hx∗2y∗4δ3 − 4a3δh2x∗3y∗ + 12a2δ2h2x∗2y∗2 + 4a2x∗2y∗3δ2h

+ a2δ2x∗2y∗4 + a3h2x∗3 + a2δh3x∗2 − 8a2h2δ x∗2y∗ + 6ax∗h2δ2y∗2 + 4ax∗y∗3δ2h

+ ax∗δ2y∗4 + 3a2h2x∗2 + 2ax∗δh3 − 4h2ax∗y∗δ+ 3h2ax∗ + δh3 + h2
)
x∗em.
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[10] E. González-Olivares, J. Cabrera-Villegas, F. Córdova-Lepe, A. Rojas-Palma, Competition among Predators and Allee

Effect on Prey, Their Influence on a Gause-Type Predation Model, Math. Probl. Eng., 2019 (2019), 19 pages. 1
[11] J. K. Hale, Analytic theory of differential equations, Appl. Math. Sci., (1971), 9–22. 2
[12] C. S. Holling, The components of predation as revealed by a study of small-mammal predation of the European Pine Sawfly1,

Canad. Entomolog., 91 (1959), 293–320. 1
[13] C. S. Holling, The functional response of predator to prey density and its role in mimicry and population regulations,

Memoirs Entomolog. Soc. Canada, 97 (1965), 5–60. 1
[14] S. Isik, A study of stability and bifurcation analysis in discrete-time predator-prey system involving the Allee effect, Int. J.

Biomath., 12 (2019), 15 pages. 1
[15] T. K. Kar, Stability analysis of a prey-predator model incorporating a prey refuge, Commun. Nonlinear Sci. Numer.

Simul., 10 (2005), 681–691. 1
[16] T. Li, X. Huang, X. Xie, Stability of a stage-structured predator-prey model with Allee effect and harvesting, Commun.

Math. Biol. Neurosci., 2019 (2019), 11 pages. 1
[17] M. Manarul Haque, S. Sarwardi, Dynamics of a harvested prey–predator model with prey refuge dependent on both species,

Internat. J. Bifur. Chaos Appl. Sci. Engrg., 28 (2018), 16 pages. 2
[18] N. Min, M. X. Wang, Hopf bifurcation and steady-state bifurcation for a Leslie-Gower prey-predator model with strong

Allee effect in prey, Discrete Contin. Dyn. Syst., 39 (2019), 1071–1099. 1, 4
[19] H. Molla, M. S. Rahman, S. Sarwardi, Dynamics of a Predator-Prey Model with Holling Type II Functional Response

Incorporating a Prey Refuge Depending on Both the Species, Int. J. Nonlinear Sci. Numer. Simul., 20 (2019), 1–16. 2, 1
[20] H. Molla, M. S. Rahman, S. Sarwardi, Dynamical study of a prey-predator model incorporating nonlinear prey refuge and

additive Allee effect acting on prey species, Model. Earth Syst. Environ., 20 (2020), 1–17. 1
[21] H. Molla, M. S. Rahman, S. Sarwardi, Incorporating Prey Refuge in a Prey-Predator Model with Beddington-DeAngelis

Type Functional Response: A Comparative Study on Intra-Specific Competition, Discontin., Nonlinear. Complex., 9
(2020), 395–419. 2, 1

[22] D. Mukherjee, The effect of refuge and immigration in a predator–prey system in the presence of a competitor for the prey,
Nonlinear Anal. Real World Appl., 31 (2016), 277–287. 1

[23] J. D. Murray, Mathematical biology, Springer-Verlag, Berlin, (1989). 2
[24] P. J. Pal, P. K. Mandal, Bifurcation analysis of a modified Leslie-Gower predator-prey model with Beddington-DeAngelis

functional response and strong Allee effect, Math. Comput. Simulation, 97 (2014), 123–146. 1, 4
[25] P. J. Pal, T. Saha, M. Sen, M. Banerjee, A delayed predator–prey model with strong Allee effect in prey population growth,

Nonlinear Dynam., 68 (2012), 23–42. 1, 6

https://agris.fao.org/agris-search/search.do?recordID=US201300224261
https://psycnet.apa.org/record/1938-06484-000
https://www.sciencedirect.com/science/article/pii/S030326471830265X
https://www.sciencedirect.com/science/article/pii/S030326471830265X
https://www.worldscientific.com/doi/abs/10.1142/9789812798725_0002
https://www.sciencedirect.com/science/article/pii/S0169534706003818
https://www.sciencedirect.com/science/article/pii/S0169534706003818
https://scholar.google.com/scholar?as_q=&as_epq=Ordinary+differential+equations&as_oq=&as_eq=&as_occt=title&as_sauthors=Rota&as_publication=&as_ylo=&as_yhi=&hl=en&as_sdt=0%2C5
https://www.sciencedirect.com/science/article/pii/S0307904X14004879
https://www.sciencedirect.com/science/article/pii/S0307904X14004879
https://www.sciencedirect.com/science/article/pii/S0304380018300528
https://www.sciencedirect.com/science/article/pii/S0304380018300528
https://www.sciencedirect.com/science/article/pii/S0169534799016833
https://www.sciencedirect.com/science/article/pii/S0169534799016833
https://doi.org/10.1155/2019/3967408
https://doi.org/10.1155/2019/3967408
https://scholar.google.com/scholar?as_q=&as_epq=Analytic+theory+of+differential+equations&as_oq=&as_eq=&as_occt=title&as_sauthors=hale&as_publication=&as_ylo=&as_yhi=&hl=en&as_sdt=0%2C5
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.713.9140&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.713.9140&rep=rep1&type=pdf
https://www.cambridge.org/core/journals/memoirs-of-the-entomological-society-of-canada/article/functional-response-of-predators-to-prey-density-and-its-role-in-mimicry-and-population-regulation/3877F76ECB6B1A8E8BF3D8A01FD23AB9
https://www.cambridge.org/core/journals/memoirs-of-the-entomological-society-of-canada/article/functional-response-of-predators-to-prey-density-and-its-role-in-mimicry-and-population-regulation/3877F76ECB6B1A8E8BF3D8A01FD23AB9
https://doi.org/10.1142/S1793524519500116
https://doi.org/10.1142/S1793524519500116
https://www.sciencedirect.com/science/article/pii/S1007570404000541
https://www.sciencedirect.com/science/article/pii/S1007570404000541
http://scik.org/index.php/cmbn/article/view/3724
http://scik.org/index.php/cmbn/article/view/3724
https://doi.org/10.1142/S0218127418300409
https://doi.org/10.1142/S0218127418300409
https://www.aimsciences.org/article/id/9ebd4422-51e8-47ab-8f05-fde74acd4de9
https://www.aimsciences.org/article/id/9ebd4422-51e8-47ab-8f05-fde74acd4de9
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Dynamics+of+a+Predator-Prey+Model+with+Holling+Type+II+Functional+Response+Incorporating+a+Prey+Refuge+Depending+on+Both+the+Species&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Dynamics+of+a+Predator-Prey+Model+with+Holling+Type+II+Functional+Response+Incorporating+a+Prey+Refuge+Depending+on+Both+the+Species&btnG=
https://link.springer.com/article/10.1007/s40808-020-01049-5
https://link.springer.com/article/10.1007/s40808-020-01049-5
https://www.researchgate.net/publication/340396953_Incorporating_Prey_Refuge_in_a_Prey-Predator_Model_with_Beddington-DeAngelis_Type_Functional_Response_A_Comparative_Study_on_Intra-Specific_Competition
https://www.researchgate.net/publication/340396953_Incorporating_Prey_Refuge_in_a_Prey-Predator_Model_with_Beddington-DeAngelis_Type_Functional_Response_A_Comparative_Study_on_Intra-Specific_Competition
https://www.researchgate.net/publication/340396953_Incorporating_Prey_Refuge_in_a_Prey-Predator_Model_with_Beddington-DeAngelis_Type_Functional_Response_A_Comparative_Study_on_Intra-Specific_Competition
https://www.sciencedirect.com/science/article/pii/S1468121816000316
https://www.sciencedirect.com/science/article/pii/S1468121816000316
https://www.cabdirect.org/cabdirect/abstract/19911153348
https://www.sciencedirect.com/science/article/pii/S0378475413002073
https://www.sciencedirect.com/science/article/pii/S0378475413002073
https://link.springer.com/article/10.1007/s11071-011-0201-5
https://link.springer.com/article/10.1007/s11071-011-0201-5


H. Molla, S. Sarwardi, M. Sajid, J. Math. Computer Sci., 25 (2022), 150–165 165

[26] L. Perko, Differential equations and dynamical systems, Springer-Verlag, New York, (2001). 4.1
[27] C. Rebelo, C. Soresina, Persistence in seasonally varying predator-prey systems with Allee effect, arXiv, 2019 (2019), 26

pages. 1
[28] S. Saha, A. Maiti, G. P. Samanta, A Michaelis-Menten predator-prey model with strong Allee effect and disease in prey

incorporating prey refuge, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 28 (2018), 21 pages. 1
[29] S. Sarwardi, M. M. Haque, S. Hossain, Analysis of Bogdanov-Takens bifurcations in a spatiotemporal harvested-predator

and prey system with Beddington-DeAngelis type response function, Nonlinear Dynam., 100 (2020), 1755–1778. 1
[30] S. Sarwardi, M. Haque, P. K. Mandal, Ratio–dependent predator-prey model of interacting population with delay effect,

Nonlinear Dynam., 69 (2012), 817–836. 6
[31] S. Sarwardi, M. Haque, P. K. Mandal, Persistence and global stability of Bazykin predator-prey model with Beddington-

DeAngelis response function, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 189–209. 1
[32] S. Sarwardi, P. K. Mandal, S. Ray, Analysis of a competitive prey-predator system with a prey refuge, Biosystems, 110

(2012), 133–148. 1
[33] M. Sen, M. Banerjee, Y. Takeuchi, Influence of Allee effect in prey populations on the dynamics of two-prey-one-predator

model, Math. Biosci. Eng., 15 (2018), 883–904. 1
[34] P. A. Stephens, W. J. Sutherland, Consequences of the Allee effect for behaviour, ecology and conservation, Trends Ecol.

Evol., 14 (1999), 401–405. 1
[35] M. Teixeira Alves, F. M. Hilker, Hunting cooperation and Allee effects in predators, J. Theoret. Biol., 419 (2017), 13–22.

1
[36] A. J. Terry, Predator–prey models with component Allee effect for predator reproduction, J. Math. Biol., 71 (2015), 1325–

1352. 1, 2
[37] U. Ufuktepe, B. Kulahcioglu, O. Akman, Stability analysis of a prey refuge predator–prey model with Allee effects, J.

Biosci., 44 (2019), 1–9. 1
[38] M. Verma, A. K. Misra, Modeling the effect of prey refuge on a ratio-dependent predator–prey system with the Allee effect,

Bull. Math. Biol., 80 (2018), 626–656. 1
[39] X. Q. Wang, Y. L. Cai, H. H. Ma, Dynamics of a Diffusive Predator-Prey Model with Allee Effect on Predator, Discrete

Dyn. Nat. Soc., 2013 (2013), 10 pages. 1
[40] J. F. Wang, J. P. Shi, J. J. Wei, Predator prey system with strong Allee effect in prey, J. Math. Biol., 62 (2011), 291–331. 1
[41] Z. W. Xiao, Z. Li, Stability and Bifurcation in a Stage-structured Predator-prey Model with Allee Effect and Time Delay,

IAENG Int. J. Appl. Math., 49 (2019), 6–13. 4
[42] Z. W. Xiao, X. D. Xie, Y. Xue, Stability and bifurcation in a Holling type II predator–prey model with Allee effect and time

delay, Adv. Difference Equ., 2018 (2018), 21 pages. 1
[43] Y. Ye, H. Liu, Y.-M. Wei, M. Ma, K. Zhang, Dynamic Study of a Predator-Prey Model with Weak Allee Effect and Delay,

Adv. Math. Phys., 2019 (2019), 15 pages. 1
[44] T. T. Yu, Y. Tian, H. J. Guo, X. Y. Song, Dynamical analysis of an integrated pest management predator–prey model with

weak Allee effect, J. Biol. Dyn., 13 (2019), 218–244. 1
[45] L. M. Zhang, C. F. Zhang, Z. R. He, Codimension-one and codimension-two bifurcations of a discrete predator–prey system

with strong Allee effect, Math. Comput. Simulation, 162 (2019), 155–178. 1
[46] J. Zu, Global qualitative analysis of a predator prey system with Allee effect on the prey species, Math. Comput. Simulation,

94 (2013), 33–54. 1

https://cds.cern.ch/record/1634950
https://arxiv.org/abs/1909.02300
https://arxiv.org/abs/1909.02300
https://www.worldscientific.com/doi/abs/10.1142/S0218127418500736
https://www.worldscientific.com/doi/abs/10.1142/S0218127418500736
https://link.springer.com/content/pdf/10.1007/s11071-020-05549-y.pdf
https://link.springer.com/content/pdf/10.1007/s11071-020-05549-y.pdf
https://link.springer.com/article/10.1007/s11071-011-0307-9
https://link.springer.com/article/10.1007/s11071-011-0307-9
https://www.sciencedirect.com/science/article/pii/S1007570413002517
https://www.sciencedirect.com/science/article/pii/S1007570413002517
https://www.sciencedirect.com/science/article/pii/S0303264712001529
https://www.sciencedirect.com/science/article/pii/S0303264712001529
https://www.aimsciences.org/article/doi/10.3934/mbe.2018040
https://www.aimsciences.org/article/doi/10.3934/mbe.2018040
https://www.sciencedirect.com/science/article/pii/S0169534799016845
https://www.sciencedirect.com/science/article/pii/S0169534799016845
https://www.sciencedirect.com/science/article/pii/S0022519317300577
https://link.springer.com/article/10.1007/s00285-015-0856-5
https://link.springer.com/article/10.1007/s00285-015-0856-5
https://link.springer.com/article/10.1007/s12038-019-9911-5
https://link.springer.com/article/10.1007/s12038-019-9911-5
https://link.springer.com/article/10.1007/s11538-018-0394-6
https://link.springer.com/article/10.1007/s11538-018-0394-6
https://www.hindawi.com/journals/ddns/2013/984960/abs/
https://www.hindawi.com/journals/ddns/2013/984960/abs/
https://link.springer.com/article/10.1007/s00285-010-0332-1
http://www.iaeng.org/IJAM/issues_v49/issue_1/IJAM_49_1_02.pdf
http://www.iaeng.org/IJAM/issues_v49/issue_1/IJAM_49_1_02.pdf
https://advancesindifferenceequations.springeropen.com/articles/10.1186/s13662-018-1742-4
https://advancesindifferenceequations.springeropen.com/articles/10.1186/s13662-018-1742-4
https://www.hindawi.com/journals/amp/2019/7296461/abs/
https://www.hindawi.com/journals/amp/2019/7296461/abs/
https://www.tandfonline.com/doi/abs/10.1080/17513758.2019.1589000
https://www.tandfonline.com/doi/abs/10.1080/17513758.2019.1589000
https://www.sciencedirect.com/science/article/pii/S0378475419300254
https://www.sciencedirect.com/science/article/pii/S0378475419300254
https://www.sciencedirect.com/science/article/pii/S0378475413001523
https://www.sciencedirect.com/science/article/pii/S0378475413001523

	Introduction
	Model composition
	Existence of feasible equilibria
	Local stability analysis of equilibia

	Hopf-bifurcation analysis
	Nature of Hopf-bifurcation

	Numerical simulations
	Conclusion

