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Abstract

The concept of picture fuzzy sets was first introduced by Cuong and Kreinovich [B. C. Cuong, V. Kreinovich, Proceedings
of the Third World Congress on Information and Communication Technologies WIICT, (2013), 1-6] in 2013, which is direct
extensions of the fuzzy sets and the intuitionistic fuzzy sets. In this paper, we applied the concept of picture fuzzy sets in
UP-algebras to introduce the eight new concepts of picture fuzzy sets by means of a special type: special picture fuzzy UP-
subalgebras, special picture fuzzy near UP-filters, special picture fuzzy UP-filters, special picture fuzzy implicative UP-filters,
special picture fuzzy comparative UP-filters, special picture fuzzy shift UP-filters, special picture fuzzy UP-ideals, and special
picture fuzzy strong UP-ideals. Also, we discuss the relationship between the eight new concepts of picture fuzzy sets in UP-
algebras. This idea is extended to the lower and upper level subsets of picture fuzzy sets in UP-algebras. Moreover, we define a
picture fuzzy set in the same way as a characteristic function and study its characterizations from the related subset.
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1. Introduction

Among many algebraic structures, algebras of logic form important class of algebras. Examples of
these are BCK-algebras [15], BCI-algebras [16], BE-algebras [17], UP-algebras [10], fully UP-semigroups
[11], topological UP-algebras [20], UP-hyperalgebras [13], extension of KU /UP-algebras [19] and others.
They are strongly connected with logic. For example, BCl-algebras introduced by Iséki [16] in 1966
have connections with BCI-logic being the BCI-system in combinatory logic which has application in the
language of functional programming. BCK and BCl-algebras are two classes of logical algebras. They
were introduced by Imai and Iséki [15, 16] in 1966 and have been extensively investigated by many
researchers.
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Fuzzy set theory, introduced by Zadeh [30] in 1965, has been widely used to model uncertainty present
in real-world applications. After the introduction of the concept of fuzzy sets by Zadeh [30], Atanassov
[3, 4] defined a new concept called an intuitionistic fuzzy set which is a generalization of fuzzy set. The
concept of picture fuzzy sets was first considered by Cuong and Kreinovich [6] in 2013, which is direct
extensions of the fuzzy sets and the intuitionistic fuzzy sets. The picture fuzzy set is characterized by
three functions expressing the degree of membership, the degree of neutral membership, and the degree
of non-membership. The only constraint is that the sum of the three degrees must not exceed 1. Cuong
[5] published the concept of picture fuzzy sets in the Journal of Computer Science and Cybernetics in
2014. Some operations on picture fuzzy sets with some properties are considered. The Zadeh Extension
Principle, picture fuzzy relations, and picture fuzzy soft sets are studied. Several researches were con-
ducted on the generalizations of the concept of picture fuzzy sets in a variety of different fields and its
application to a decision-making problem. In 2015, Singh [25] presented a geometrical interpretation of
picture fuzzy sets. The author proposed correlation coefficients for picture fuzzy sets which considers
the degree of positive membership, degree of neutral membership, degree of negative membership and
the degree of refusal membership. In 2017, Wei [27] presented another form of eight similarity measures
between picture fuzzy sets based on the cosine function between picture fuzzy sets by considering the de-
gree of positive membership, degree of neutral membership, degree of negative membership and degree
of refusal membership in picture fuzzy sets. The author applied these weighted cosine function similarity
measures between picture fuzzy sets to strategic decision making. In 2018, Wei and Gao [29] presented
some novel Dice similarity measures of picture fuzzy sets and the generalized Dice similarity measures
of picture fuzzy sets and indicate that the Dice similarity measures and asymmetric measures (projection
measures) are the special cases of the generalized Dice similarity measures in some parameter values.
Wei [28] presented some novel process to measure the similarity between picture fuzzy sets. The author
applied these similarity measures between picture fuzzy sets to building material recognition and miner-
als field recognition. In 2020, Ganie et al. [8] introduced two correlation coefficients of picture fuzzy sets.
These correlation coefficients of picture fuzzy sets are better than existing ones and effective in expressing
the nature of correlation (positive or negative correlation). As mentioned above, we find the study of
picture fuzzy sets to be very important and interesting which leads us to the study of this paper.

In this paper, we applied the concept of picture fuzzy sets in UP-algebras to introduce the eight new
concepts of picture fuzzy sets by means of a special type: special picture fuzzy UP-subalgebras, special
picture fuzzy near UP-filters, special picture fuzzy UP-filters, special picture fuzzy implicative UP-filters,
special picture fuzzy comparative UP-filters, special picture fuzzy shift UP-filters, special picture fuzzy
UP-ideals, and special picture fuzzy strong UP-ideals. Also, we discuss the relationship between the eight
new concepts of picture fuzzy sets in UP-algebras. This idea is extended to the lower and upper level
subsets of picture fuzzy sets in UP-algebras. Moreover, we define a picture fuzzy set in the same way as
a characteristic function and study its characterizations from the related subset.

2. Basic results on UP-algebras

Before we begin our study, let’s review the definition of UP-algebras.

Definition 2.1 ([10]). An algebra X = (X, -,0) of type (2,0) is called a UP-algebra, where X is a nonempty
set, - is a binary operation on X, and 0 is a fixed element of X (i.e., a nullary operation) if it satisfies the
following axioms:

(Vx,y,z€ X)((y-z) - ((x-y) - (x-z)) =0),

(Vx € X)(0-x =x), (2.1)
(Vx € X)(x-0=0), and (2.2)
(V"x,y e X)(x-y=0,y-x=0=x=1y).
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From [10], we know that the concept of UP-algebras is a generalization of KU-algebras (see [18]).
The binary relation < on a UP-algebra X = (X, -,0) is defined as follows:

(vx,y e X)(x <y x-y=0)
and the following assertions are valid (see [10, 11]).

Vx € X)(x < x), (2.3)
vx,y,z € X

<y-x, in partlcular, y-z<x-(y-2z)), (2.4)

(

(

(

(

(

(

(VXUGX)( <y-y),
(Va,x,y,z€ X)(x- (y-z) <x-((a-y)-(a-z))),
(Va,x,y,z € X)(((a-x)-(a-y)) - z< (x-y)-z),
(Vx,y,z€ X)((x-y)-z<y-2z),

(Yx,y,z € X)(x y:>x z-y),

(Yx,y,ze X)((x-y)-z<x-(y-z)), and
(Va,x,y,z € X)((x- y) <y-(a-z)).

Example 2.2 ([22]). Let U be a nonempty set and let X € P(U), where P(U) means the power set of U. Let
Px(U) ={A € P(U) | X C A}. Define a binary operation A on Px(U) by putting A A B =Bn (A UX)
for all A, B € Px(U), where A€ means the complement of a subset A. Then (Px(U), A, X) is a UP-algebra.
Let PX(U) ={A € P(U) | A C X}. Define a binary operation A on PX(U) by putting AAB = BU (A NX)
for all A,B € PX(U). Then (PX(U), A, X) is a UP-algebra.

Example 2.3 ([7]). Let Z* be the set of all nonnegative integers. Define two binary operations o and * on
Z* by:

" _fnoifm<n,
(Ym,n €z )<mon—{ 0 otherwise )

and

N _fn ifm>norm=0,
(¥m,n €7 )(m*n—{ 0 otherwise >

Then (Z*,0,0) and (Z*,x,0) are UP-algebras.

For more examples of UP-algebras, see [1, 2, 11, 14, 21-24].
For a nonempty subset S of a UP-algebra X = (X, -,0) which satisfies the following condition:

("x,yeX)lyeS=x-ye8). (2.5)
Then the constant 0 of X is in S. Indeed, let x € S. By (2.3) and (2.5), we have 0 =x-x € S.
Definition 2.4 ([9, 10, 12, 26]). A nonempty subset S of a UP-algebra X = (X, -,0) is called

(1) a UP-subalgebra of X if it satisfies the following condition:

(Vx,y € S)(x-y €3);
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(2) a near UP-filter of X if it satisfies the condition (2.5);
(3) a UP-filter of X if it satisfies the following conditions:
the constant 0 of X is in S, (2.6)
("x,yeX)(x-yeS,xeS=yecSl);
(4) an implicative UP-filter of X if it satisfies the condition (2.6) and the following condition:

(", y,ze X)(x-(y-z) €S,x-yeS=x-z€58),

(5) a comparative UPfilter of X if it satisfies the condition (2.6) and the following condition:

("x,y,zeX)(x-((y-z)-y eS,xeS=yeSs),;

(6) a shift UP-filter of X if it satisfies the condition (2.6) and the following condition:

(", y,zeX)(x-(y-z) €S, xeS=((z-y)-y)-z€S);

(7) a UP-ideal of X if it satisfies the condition (2.6) and the following condition:

(Wx,y,ze X)(x-(y-z) €S,yeS=x-2z€8); 2.7)

(8) a strong UP-ideal of X if it satisfies the condition (2.6) and the following condition:

(Yx,y,z€ X)((z-y)-(z-x) €S,ye S=x€8).

Guntasow et al. [9] proved that the only strong UP-ideal of a UP-algebra X is X.
The following theorem is easy to verify.

Theorem 2.5. Let % .% be a nonempty family of UP-subalgebras (resp., near UP-filters, UP-filters, implicative
UP-filters, comparative UP-filters, shift UP-filters, UP-ideals, strong UP-ideals) of a UP-algebra X = (X,-,0).
Then (% % is a UP-subalgebra (resp., near UP-filter, UP-filter, implicative UP-filter, comparative UP-filter, shift
UP-filter, UP-ideal, strong UP-ideal) of X.

3. PFSs in UP-algebras by means of a special type

In 2013, Cuong and Kreinovich [6] introduced the concept of picture fuzzy sets as the following
definition.
A picture fuzzy set (briefly, PFS) in a nonempty set X is a structure of the form:

P ={(x,rp(x),gp(x),bp(x)) | x € X},

where 1p : X — [0, 1] is a positive membership, gp : X — [0, 1] is a neutral membership, and bp : X — [0,1] is a
negative membership satisfy the following condition:

(Vx € X)(rp(x) +gp(x) +bp(x) <1).

For our convenience, we will denote a PFS as P = (X, rp, gp, bp) ={(x, rp(x), gp(x), bp(x)) | x € X}.

In what follows, let X denote a UP-algebra (X, -,0) unless otherwise specified.

Now, we introduce the eight new concepts of picture fuzzy sets in UP-algebras by means of a special
type: special picture fuzzy UP-subalgebras, special picture fuzzy near UP-filters, special picture fuzzy UP-
filters, special picture fuzzy implicative UP-filters, special picture fuzzy comparative UP-filters, special
picture fuzzy shift UP-filters, special picture fuzzy UP-ideals, and special picture fuzzy strong UP-ideals,
provide the necessary examples, investigate their properties, and prove their generalizations.
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Definition 3.1. A PFS P in X is called a special picture fuzzy UP-subalgebra of X if it satisfies the following
conditions:

(vx,y € X)(rp(x-y) < max{rp(x),rp(y)}), (3.1)
(vx,y € X)(gp(x-y) < max{gp(x), gr(y)}), 3.2)
(vx,y € X)(bp(x-y) > min{gp(x), gr(y)}). (3.3)

Example 3.2. Let X ={0, 1,2, 3,4} be a UP-algebra with a fixed element 0 and a binary operation - defined
by the following Cayley table:

B W~ of -
oo oo oo
__m OO R
NN O N NN
O W W W W
O W W o |

We define a PFS P in X as follows:

_(0 1 23 4 (01 23 4N (0 123 4
P=10406050405/)"9% 7 \0102030303/)’°" \020100102)/

Hence, P is a special picture fuzzy UP-subalgebra of X.

Definition 3.3. A PFS P in X is called a special picture fuzzy near UP-filter of X if it satisfies the following
conditions:

(vx,y € X)(rp(x-y) <1p(Yy)), (3.4)
(Vx,y € X)(gp(x-y) < gr(y)), (3.5)
(Vx,y € X)(bp(x-y) = bp(y)). (3.6)

Example 3.4. Let X ={0, 1, 2,3} be a UP-algebra with a fixed element 0 and a binary operation - defined by
the following Cayley table:

|01 .23
0/0 123
110 0 13
210 003
3]0 010

We define a PFS P in X as follows:

(01 23 (0 123\ (0123
P=101030405/)"9% 7 \02030405/)"°" \0604020)"

Hence, P is a special picture fuzzy near UP-filter of X.

Definition 3.5. A PFS P in X is called a special picture fuzzy UP-filter of X if it satisfies the following
conditions:

(vx € X)(rp(0) < Tp(x)), (3.7)
(vx € X)(gr(0) < gp(x)), (3.8)
(¥x € X)(bp(0) > bp(x)), (3.9)
(v, y € X)(rp(y) < max{rp(x-y),Tp(x)}), (3.10)
(vx,y € X)(gp(y) < max{gp(x-y),Tp(x)}), (3.11)
(¥x,y € X)(bp(y) = min{bp(x-y), bp(x)}). (3.12)



S. Yuphaphin, et al., ]. Math. Computer Sci., 25 (2022), 37-72 42

Example 3.6. Let X ={0, 1,2, 3,4} be a UP-algebra with a fixed element 0 and a binary operation - defined
by the following Cayley table:

oo ocoolo
_, OO O R -
N OO N NN
WONNWW
O i R

W N = O

We define a PFS P in X as follows:

(0 1 23 4 _ (012 3 4\ (0 1 2 3 4
P=10101020202/)"9% 100030305/ \0605050503)

Hence, P is a special picture fuzzy UP-filter of X.

Definition 3.7. A PFS P in X is called a special picture fuzzy implicative UP-filter of X if it satisfies the
following conditions: (3.7), (3.8), (3.9), and

(¥x,y,z € X)(rp(x-z) < max{rp(x- (y-z)),rp(x-y)}), (3.13)
(¥x,y,z € X)(gp(x-z) <max{gp(x-(y-z)),gp(x-y)}), (3.14)
(¥x,y,z € X)(bp(x-z) = min{bp(x- (y-z)), bp(x-y)}). (3.15)

Example 3.8. Let X ={0, 1,2, 3,4} be a UP-algebra with a fixed element 0 and a binary operation - defined
by the following Cayley table:

W R o -
oo ocoolo
—_ = = O R =
NN OO NN
wWo oo ww
I IR ITN

We define a PFS P in X as follows:

(0 1 23 4 (0 1 23 4N (0 1 23 4
P=10405050505/)"9" " \0304040404/)"°" \0201010101)"

Hence, P is a special picture fuzzy implicative UP-filter of X.

Definition 3.9. A PFS P in X is called a special picture fuzzy comparative UP-filter of X if it satisfies the
following conditions: (3.7), (3.8), (3.9), and

(vx,y,z € X)(rp(y) < max{rp(x- ((y-z)-y)), rp(x)}), (3.16)
(vx,y,z € X)(gp(y) < max{gp(x- ((y-z)-y)), gr(x)}), (3.17)
(vx,y,z € X)(bp(y) 2 min{bp(x - ((y - z) -y)), be(x)}). (3.18)

Example 3.10. Let X ={0, 1, 2, 3,4} be a UP-algebra with a fixed element 0 and a binary operation - defined
by the following Cayley table:

W R o -
oo ocoolo
oo o~
cCo o~ NN
N O NN WW
O B |
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We define a PFS P in X as follows:

r—01234 _01234b_01234
"7 \04 04040405 /9P = 0303030304)” " \0202020201)"

Hence, P is a special picture fuzzy comparative UP-filter of X.

Definition 3.11. A PFS P in X is called a special picture fuzzy shift UP-filter of X if it satisfies the following
conditions: (3.7), (3.8), (3.9), and

(Vx,y,ze X)(rp(((z-y) -y) - z) <max{rp(x- (y-z)),rp(x)}), (3.19)
(vx,y,z € X)(gr(((z-y) -y) - z) <max{gp(x- (y-2)),gr(x)}), (3.20)
(Vx,y,z € X)(bp(((z-y) -y) -z) = min{bp(x - (y-z)), bp(x)}). (3.21)

Example 3.12. Let X ={0, 1,2, 3,4} be a UP-algebra with a fixed element 0 and a binary operation - defined
by the following Cayley table:

oo oo oo
_ OO O R -
N OO R NN
WO RN W W
O R R

= W N = O

We define a PFS P in X as follows:

(0 1 23 4 (0 1 23 4) (0 1 2 34
P=10303030305/9 " \0202020204/)’°" " \010101010)/"

Hence, P is a special picture fuzzy shift UP-filter of X.

Definition 3.13. A PFS P in X is called a special picture fuzzy UP-ideal of X if it satisfies the following
conditions: (3.7), (3.8), (3.9), and

(¥x,y,z € X)(rp(x-z) < max{rp(x- (y-z)),rp(y)}), (3.22)
(Vx,y,z € X)(gp(x-z) <max{gp(x-(y-2)),gr(y)}), (3.23)
(vx,y,z € X)(bp(x-z) > min{bp(x- (y-2)),bp(y)}). (3.24)

Example 3.14. Let X ={0, 1, 2, 3,4} be a UP-algebra with a fixed element 0 and a binary operation - defined
by the following Cayley table:

W R o -
oo o oolo
_ = O O
NN O N NN
C O W W Wl w
O W W R

We define a PFS P in X as follows:

(0 1 23 4 (012 3 4N (0 1 2 3 4
P=10101030303/)'9% " \00030404/""" \0606030303)"

Hence, P is a special picture fuzzy UP-ideal of X.
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Definition 3.15. A PFS P in X is called a special picture fuzzy strong UP-ideal of X if it satisfies the following
conditions: (3.7), (3.8), (3.9), and

(vx,y,z € X)(rp(x) < max{rp((z-y) - (z-x)),Tp(y)}), (3.25)
(vx,y,z € X)(gp(x) < max{gp((z-y) - (z-x)), gr(y)}), (3.26)
(Vx,y,z € X)(bp(x) = min{bp((z-y) - (z-x)),bp(y)}). (3.27)

Example 3.16. Let X ={0, 1,2, 3,4} be a UP-algebra with a fixed element 0 and a binary operation - defined
by the following Cayley table:

-0 1 2 3 4

0|01 2 3 4

110 0 2 3 4

210 1 0 2 4

3/01 00 4

410 1 0 3 0

We define a PFS P in X as follows:

Tp (X) =03
(vx € X) | gp(x) =0.2
bP(X) =04

Hence, P is a special picture fuzzy strong UP-ideal of X.

Definition 3.17. A PFS P in X is said to be constant if P is a constant function from X to [0,1]3. That is,
Tp, gp, and bp are constant functions from X to [0, 1].

Theorem 3.18. Every special picture fuzzy UP-subalgebra of X satisfies the conditions (3.7), (3.8), and (3.9).

Proof. Assume that P is a special picture fuzzy UP-subalgebra of X. Let x € X. Then

Tp(0) =71p(x - x) < max{rp(x), rp(x)} = rp(x), by (2.3) and (3.1)
gr(0) = gp(x-x) < max{gp(x), gp(x)} = gr(x), by (2.3) and (3.2)
bp(0) =bp(x-x) = min{bp(x), bp(x)} = bp(x). by (2.3) and (3.3)
Hence, P satisfies the conditions (3.7), (3.8), and (3.9). O]

Theorem 3.19. A PFS P in X is constant if and only if it is a special picture fuzzy strong UP-ideal of X.

Proof. Assume that P is a PFS in X which is constant. Then for all x € X, rp(x) =1p(0), gp(x) = gp(0), and
bp(x) =bp(0) and so rp(0) < rp(x),gp(0) < gp(x), and bp(0) > bp(x). Next, let x,y,z € X. Then

Tp(x) < 1p(0) = max{rp(0),rp(0)} = max{rp((z-y) - (z-x)),Tp(y)},
gr(x) < gp(0) = max{gp(0), gp(0)} = max{gp((z-y) - (z-x)), gr(y)},
bp(x) = bp(0) = min{bp(0), bp(0)} = min{bp((z-y) - (z-x)), br(y)}

Hence, P is a special picture fuzzy strong UP-ideal of X.
Conversely, assume that P is a special picture fuzzy strong UP-ideal of X. Then for any x € X,

rp(x) < max{rp((x-0)- (x-x)),rp(0)} by (3.25)
0-(x-x)),rp(0)} by (2.2)
x-x),7p(0)} by (2.1)

0),rp(0)} by (2.3)

= max{rp

= max{rp

~— o~ o~ —

= max{rp
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=1p(0),
gp(x) < max{gp((x-0) - (x-x)), gr(0)} by (3.26)
=max{gp(0- (x-x)),gp(0)} by (2.2)
= max{gp(x-x),gp(0)} by (2.1)
= max{gp(0), gp(0)} by (2.3)
=gp(0),
bp(x) = min{bp((x-0) - (x-x)),bp(0)} by (3.27)
=min{bp(0- (x-x)),bp(0)} by (2.2)
= min{bp(x-x),bp(0)} by (2.1)
= min{bp(0), bp(0)} by (2.3)
=bp(0).

By (3.7), (3.8), and (3.9), we have rp(x) = 1p(0), gp(x) = gp(0), and bp(x) = bp(0) for all x € X. Hence, P
is constant. 0

Theorem 3.20. Every special picture fuzzy near UP-filter of X is a special picture fuzzy UP-subalgebra.

Proof. Assume that P is a special picture fuzzy near UP-filter of X. Let x,y € X. Then

Tp(y) < max{rp(x),rp(y)} by (3.4),
(y) <max{gp(x),gr(y)} by (3.5),
(y) > min{bp(x), bp(y)} by (3.6).

rp(x-y) <

gr(x-y) < gp

bp(x-y) > bp

Hence, P is a special picture fuzzy UP-subalgebra of X. O
The following example shows that the converse of Theorem 3.20 is not true.

Example 3.21. From Example 3.2, we have P is a special picture fuzzy UP-subalgebra of X. Since bp(3-4) =

0.1 < 0.2 =bp(4), we have P is not a special picture fuzzy near UP-filter of X.

Theorem 3.22. Every special picture fuzzy near UP-filter of X satisfies the conditions (3.7), (3.8), and (3.9).

Proof. 1t is straightforward by Theorems 3.20 and 3.18. O

Theorem 3.23. Every special picture fuzzy UP-filter of X is a special picture fuzzy near UP-filter.

Proof. Assume that P is a special picture fuzzy UP-filter of X. Let x,y € X. Then

Tp(x-y) <max{rp(y- (x-y)),Tp(y)} by (3.10)
= max{rp(0), Tp(y)} by (2.4)
=71p(y) by (3.7),
gp(x-y) <max{gp(y- (x-y)),gr(y)} by (3.11)
= max{gp(0), gr(y)} by (2.4)
= gr(y) by (3.8),
bp(x-y) = min{bp(y - (x-y)),bp(y)} by (3.12)
= min{bp(0), bp(y)} by (2.4)
= bp(y) by (3.9).

Hence, P is a special picture fuzzy near UP-filter of X. O

The following example show that the converse of Theorem 3.23 is not true.
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Example 3.24. From Example 3.4, we have P is a special picture fuzzy near UP-filter of X. Since 1p(2) =
0.4 > 0.3 =max{rp(1-2),rp(1)}, we have P is not a special picture fuzzy UP-filter of X.

Theorem 3.25. Every special picture fuzzy UP-ideal of X is a special picture fuzzy UP-filter.

Proof. Assume that P is a special picture fuzzy UP-ideal of X. Then P satisfies the conditions (3.7), (3.8),
and (3.9). Next, let x,y € X. Then

Tp(y) =71p(0-y) by (2.1)
< max{rp(0- (x-y)), rp(x)} by (3.22)
= max{rp(x -y),p(x)} by (2.1),
gr(y) = gp(0-y) by (2.1)
< max{gp(0- (x-y)),gp(x)} by (3.23)
=max{gp(x-y), gr(x)} by (2.1),
bp(y) =bp(0-y) by (2.1)
> min{bp (0 (x-y)), bp(x)} by (3.24)
(x-y),bp(x )}by (2.1).

Hence, P is a special picture fuzzy UP-filter of X. O

= min{bp

The following example show that the converse of Theorem 3.25 is not true.
Example 3.26. From Example 3.6, we have P is a special picture fuzzy UP-filter of X. Since rp(2-3) =0.2 >
0.1 =max{rp(2-(1-3)),rp(1)}, we have P is not a special picture fuzzy UP-ideal of X.
Theorem 3.27. Every special picture fuzzy implicative UP-filter of X is a special picture fuzzy UP-filter.

Proof. Assume that P is a special picture fuzzy implicative UP-filter of X. Then P satisfies the conditions
(3.7), (3.8), and (3.9). Next, let x,y € X. Then

rp(y) =7p(0-y) by (2.1)
< max{rp(0- (x-y)),rp(0-x)} by (3.13)
= max{rp(x-y),rp(x)} by (2.1),
gr(y) = gr(0-y) by (2.1)
< max{gp(0- (x-y)), gr(0-x)} by (3.14)
= max{gp(x-y), gr(x)} by (2.1),
bp(y) =bp(0-y) by (2.1)
> min{bp(0- (x-y)),bp(0-x)} by (3.15)
(x-y), bp(x)} by (2.1).

Hence, P is a special picture fuzzy UP-filter of X. O

= min{bp

The following example show that the converse of Theorem 3.27 is not true.

Example 3.28. From Example 3.6, we have P is a special picture fuzzy UP-filter of X. Since rp(2-3) =0.2 >
0.1 =max{rp(2-(1-3)),rp(2-1)}, we have P is not a special picture fuzzy implicative UP-filter of X.

Theorem 3.29. Every special picture fuzzy implicative UP-filter of X is a special picture fuzzy UP-ideal.

Proof. Assume that P is a special picture fuzzy implicative UP-filter of X. Then P satisfies the conditions
(3.7), (3.8), and (3.9). Next, let x,y,z € X. Then

rp(x-z) <max{rp(x- (y-z)),rp(x-y)} by (3.13)
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<max{rp(x- (y-z)),rp(y)} by Theorems 3.27 and 3.23 and (3.4),
gp(x-z) < max{gp(x- (y-z)), gr(x-y)} by (3.14)
< max{gp(x-(y-z)),gpr(y)} by Theorems 3.27 and 3.23 and (3.5),
bp(x-z) = min{bp(x - (y-z)),bp(x-y)} by (3.15)
> min{bp(x - (y-z)), bp(y)} by Theorems 3.27 and 3.23 and (3.6).
Hence, P is a special picture fuzzy UP-ideal of X. O

The following example show that the converse of Theorem 3.29 is not true.
Example 3.30. From Example 3.14, we have P is a special picture fuzzy UP-ideal of X. Since gp(3-4) =
0.4 > 0 =max{gp(3-(3-4)),gpr(3-3)}, we have P is not a special picture fuzzy implicative UP-filter of X.
Theorem 3.31. Every special picture fuzzy comparative UP-filter of X is a special picture fuzzy UP-filter.

Proof. Assume that P is a special picture fuzzy comparative UP-filter of X. Then P satisfies the conditions
(3.7), (3.8), and (3.9). Next, let x,y € X. Then

((y-y
(0-y)
= max{rp(x-y), Tp(x
((

gr(y) < max{gp(x- ((y-

Tp(y) < max{rp(x- y)),rp(x)} by (3.16)
,Tp(x)} by (2.3)

)} by (2. 1)

y)-y)), gr(x)} by (3.17)
y)), gp(x }bY (2.3)
p(x)} by (2.1),

y)-y)), be(x)} by (3.18)
), be(x)} by (2.3)

(x)} by (2.1).

)
)

=max{rp(x -

-(0-
‘y), g
(x-((y-
= min{bp(x- (0-y)
= min{bp(x - y), bp

Hence, P is a special picture fuzzy UP-filter of X. O

The following example show that the converse of Theorem 3.31 is not true.

Example 3.32. From Example 3.6, we have P is a special picture fuzzy UP-filter of X. Since bp(2) = 0.5 <
0.6 = min{bp(0- ((2-3)-2)),bp(0)}, we have P is not a special picture fuzzy comparative UP-filter of X.

Theorem 3.33. Every special picture fuzzy shift UP-filter of X is a special picture fuzzy UP-filter.

Proof. Assume that P is a special picture fuzzy shift UP-filter of X. Then P satisfies the conditions (3.7),
(3.8), and (3.9). Next, let x,y € X. Then

Tp(y) =7p(((y-0)-0) -y) by (2.1) and (2.2)
<max{rp(x-(0-y)),rp(x)} by (3.19)
= max{rp(x-y),p(x)} by (2.1),

gr(y) = gp(((y-0)-0)-y) by (2.1) and (2.2)
< max{gp(x- (0-y)), gr(x)} by (3.20)
= max{gp(x-y), gr(x)} by (2.1),

bp(y) =bp(((y-0)-0)-y) by (2.1) and (2.2)
> min{bp (x - (0-y)), bp(x)} by (3.21)
= min{bp(x-y), bp(x)} by (2.1).

Hence, P is a special picture fuzzy UP-filter of X. O
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The following example show that the converse of Theorem 3.33 is not true.

Example 3.34. From Example 3.6, we have P is a special picture fuzzy UP-filter of X. Since bp(((1-0)-0) -
1) =0.5 < 0.6 = min{bp(0-(2-1)),bp(0)}, we have P is not a special picture fuzzy shift UP-filter of X.

Theorem 3.35. Every special picture fuzzy strong UP-ideal of X is a special picture fuzzy implicative UP-filter.

Proof. Assume that P is a special picture fuzzy strong UP-ideal of X. Then P satisfies the conditions (3.7),
(3.8), and (3.9). By Theorem 3.19, we have P is constant. Next, let x,y,z € X. Then

Tp(x-z) =71p(x-y) by rp is constant < max{rp(x - (y-z)),rp(x-y)},
gr(x-z) = gp(x-y) by gp is constant < max{gp(x- (y-z)),gp(x-y)},
bp(x-z) =bp(x-y) by bp is constant > min{bp(x- (y-z)), bp(x-y)k
Hence, P is a special picture fuzzy implicative UP-filter of X. O

Theorem 3.36. Every special picture fuzzy strong UP-ideal of X is a special picture fuzzy comparative UP-filter.

Proof. Assume that P is a special picture fuzzy strong UP-ideal of X. Then P satisfies the conditions (3.7),
(3.8), and (3.9). By Theorem 3.19, we have P is constant. Next, let x,y,z € X. Then

Tp(y) = rp(x) by 7p is constant < max{rp(x- ((y-z)-y)),rp(x)},
gr(y) = gp(x) by gp is constant < max{gp(x- ((y-z) -y)), gr(x)},
bp(y) = bp(x) by bp is constant > min{bp(x - ((y-z) -y)), bp(x)}
Hence, P is a special picture fuzzy comparative UP-filter of X. O

Theorem 3.37. Every special picture fuzzy strong UP-ideal of X is a special picture fuzzy shift UP-filter.

Proof. Assume that P is a special picture fuzzy strong UP-ideal of X. Then P satisfies the conditions (3.7),
(3.8), and (3.9). By Theorem 3.19, we have P is constant. Next, let x,y,z € X. Then

Tp(x) by rp is constant < max{rp(x - (y-z)), rp(x)},

Tp(((z-y)-y) - 2)
gr(((z-y)-y)-2)

= gp(x) by gp is constant < max{gp(x- (y-z)), gp(x)},
bp(((z-y)-y)-z) = bp(x) by bp is constant > min{bp(x- (y-z)), bp(x)}
Hence, P is a special picture fuzzy shift UP-filter of X. O

By Theorems 3.20, 3.23, 3.25, 3.27, 3.29, 3.31, 3.33, 3.35, 3.36, and 3.37 and Examples 3.21, 3.24, 3.26,
3.28, 3.30, 3.32, and 3.34, we have that the concept of special picture fuzzy UP-subalgebras is a general-
ization of special picture fuzzy near UP-filters, special picture fuzzy near UP-filters is a generalization of
special picture fuzzy UP-filters, special picture fuzzy UP-filters is a generalization of special picture fuzzy
comparative UP-filters, special picture fuzzy UP-filters is a generalization of special picture fuzzy shift
UP-filters, special picture fuzzy UP-filters is a generalization of special picture fuzzy UP-ideals, special
picture fuzzy UP-ideals is a generalization of special picture fuzzy implicative UP-filters, and special pic-
ture fuzzy implicative UP-filters, special picture fuzzy comparative UP-filters, and special picture fuzzy
shift UP-filters is a generalization of special picture fuzzy strong UP-ideals. Moreover, by Theorem 3.19,
we obtain that special picture fuzzy strong UP-ideals and constant picture fuzzy sets coincide.

Theorem 3.38. If P is a special picture fuzzy UP-subalgebra of X satisfying the following condition:

Tp(x) < Tp(Y)
(Vx,yeX) | x-y#0=qgrx)<grly) [, (3.28)
bp(x) = bp(y)

then P is a special picture fuzzy near UP-filter of X.
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Proof. Assume that P is a special picture fuzzy UP-subalgebra of X satisfying the condition (3.28). Let
x,y € X.

Case 1: x-y =0. Then

p(y) by (3.9).

rp(x-y) =71p(0) <
gp(x- )—9P(0)<9
bp(x-y) =bp(0) > Db
Case 2: x-y # 0. Then

Tp(y) by (3.1) and (3.28) for rp,
gr(y) by (3.2) and (3.28) for gp,
bp(y) by (3.3) and (3.28) for bp.

Tp(x-y) < max{rp(x),Tp(y)} =
gp(x-y) < max{gp(x), gr(y)
bp(x-y) > min{bp(x), bp(y)

1
b=
Hence, P is a special picture fuzzy near UP-filter of X. O

Theorem 3.39. If P is a special picture fuzzy near UP-filter of X satisfying the following condition:
Tp(0) = gp(0) = bp(0)
(Vx € X) rp(x) < bp(x , (3.29)
bp

then P is a special picture fuzzy strong UP-ideal of X.

Proof. Assume that P is a special picture fuzzy near UP-filter of X satisfying the condition (3.29). By
Theorem 3.22, we have P satisfies the conditions (3.7), (3.8), and (3.9). Next, let x € X.

Tp(0) < 7p(x) < bp(x) < bp(0) =1p(0),
gp(0) < gp(x) < bp(x) < bp(0) =gp(0),
bp(0) > bp(x) = 1p(x) = 1p(0) = bp(0)

Thus rp(x) = 1p(0), gp(x) = gp(0), and bp(x) = bp(0) for all x € X, that is, P is constant. By Theorem
3.19, we have P is a special picture fuzzy strong UP-ideal of X. O

Theorem 3.40. If P is a special picture fuzzy UP-filter of X satisfying the following condition:

—
N

rp(y) <Tp(y-(x-2)) = rp(y-(x-2)) <Tp(x-(y-z))
(¥x,y,z € X) gp(y)<9p(y (x-2)) = gprly-(x-2)) < gp(x-(y-2) |, (3.30)
bp(y) 2 bp(y-(x-z)) = bp(y-(x-z)) = bp(x-

then P is a special picture fuzzy UP-ideal of X.

Proof. Assume that P is a special picture fuzzy UP-filter of X satisfying the condition (3.30). Then P
satisfies the conditions (3.7), (3.8), and (3.9). Next, let x,y,z € X. Then

max{rp(x - (y - z)), p(y)} by (3.30) for rp,

<
< max{gp(x- (y-z)),gr(y)} by (3.30) for gp,
> min{bp (x - (y - z)), bp(y)} by (3.30) for bp.

rp(x-z) <max{rp(y - (x-z)),rp(y)} by (3.10)
gp(x-z) < max{gp(y - (x-z)),gr(y)} by (3.11)
bp(x-z) = min{bp(y - (x - 2)), bp(y)} by (3.12)

Hence, P is a special picture fuzzy UP-ideal of X. O
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Theorem 3.41. If P is a PFS in X satisfying the conditions (3.10), (3.11), and (3.12) and the following condition:

p(x-(y-z)) <vp((x-(y-2) - (x-2) = 7rp((x-(y-2)) - (x-2)) <Tply)
(vx,y,ze X) | gp(x-(y-2) <gpl(x-(y-2))-(x-2)) = gpl(x-(y-2))-(x-2) < gply) |, (3.31)
bp(x-(y-z)) 2 bp((x-(y-2))-(x-2)) = bp((x-(y-2))(x-2z)) = bp(y)

then P is a special picture fuzzy UP-ideal of X.

Proof. Assume that P is a PFS in X satisfying the conditions (3.10), (3.11), (3.12), and (3.31). If z = 0 and
by (3.31), we have P satisfies the conditions (3.7), (3.8), and (3.9). Next, let x,y,z € X. Then

rp(x-z) <max{rp((x- (y-z)) - (x-z]),mp(x - (y-2z))} by (3.10)
<max{rp(x- (y-z)),Tp(y)} by (3.31) for p,
gp(x-z) < max{gp((x-(y-2z)) - (x-2)),gr(x- (y-2))} by (3.11)
< max{gp(x - (y - 2)), gp(y)} by (3.31) for gp,
bp(x-z) = min{bp((x- (y-2z)) - (x-2)),bp(x- (y-2z))} by (3.12)
> min{bp(x - (y-z)),bp(y)} by (3.31) for bp.
Hence, P is a special picture fuzzy UP-ideal of X. O

Theorem 3.42. If P is a special picture fuzzy UP-ideal of X satisfying the following condition:

rp(x-(y-z)) <Tply) = rp(y) < Tp(x-y)
(vx,y,ze X) | gp(x-(y-2)) < gr(y) = grly) < gp(x-y)
bp(x-(y-z)) = bp(y) = bp(y) = bp(x-y)

(3.32)

then P is a special picture fuzzy implicative UP-filter of X.

Proof. Assume that P is a special picture fuzzy UP-ideal of X satisfying the condition (3.32). Then P
satisfies the conditions (3.7), (3.8), and (3.9). Next, let x,y,z € X. Then

< max{rp(x- (y-z)),rp(y)} by (3.22) < max{rp(x- (y - z)), rp(x - y)} by (3.32) for rp,
gr(x-z) < max{gp(x- (y-z)),gr(y)} by (3.23) < max{gp(x - (y - z)), gr(x - y)} by (3.32) for gp,
>m -(y-z)),bp(y)} by (3.24) > min{bp(x- (y-z)),bp(x-y)} by (3.32) for bp.

Hence, P is a special picture fuzzy implicative UP-filter of X. O

_.

=2
o

5
=

Theorem 3.43. If P is a picture fuzzy UP-ideal of X satisfying the following condition:

rp(x-y) <rp(x-((x-y)-z)) =rp(x-((x-y)-z)) <rp(x-(y-z))
(v, y,ze€ X) | gp(x-y) < gp(x-((x-y)-z)) = gp(x-((x-y)-2)) < gplx-(y-2)) |, (3.33)
bp(x-y) = bp(x-((x-y)-2z)) =bp(x-((x-y)-2z)) > bp(x-

then P is a special picture fuzzy implicative UP-filter of X.

Proof. Assume that P is a special picture fuzzy UP-ideal of X satisfying the condition (3.33). Then P
satisfies the conditions (3.7), (3.8), and (3.9). Next, let x,y,z € X. Then

rp(x-z) <max{rp(x- ((x-y)-z)),vp(x-y)} by (3.22) < max{rp(x - (y - z)), rp(x - y)} by (3.33) for rp,
gp(x-z) < max{gp(x- ((x-y)-z)),gp(x-y)}t by (3.23) < max{gp(x- (y-z)), gr(x-y)} by (3.33) for gp,
> m

bp(x-z) > min{bp(x- ((x-y) -2)), bp(x-y)} by (3.24) > min{bp (x- (y - 2)), bp(x - y)} by (3.33) for bp.

Hence, P is a special picture fuzzy implicative UP-filter of X. O
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Theorem 3.44. If P is a special picture fuzzy UP-filter of X satisfying the following condition:

‘y))
y)) (3.34)
‘y))

rp(x) <Tp(x-y) = Tp(x-y) <rp(x-((y-2z)-
(vx,y,ze X) | tp(x) <Tp(x-y) = gp(x-y) < gplx-((y-2)-
Tp(x) = 1p(x-y) = bp(x-y) = bp(x-((y-2)-

then P is a special picture fuzzy comparative UP-filter of X.

Proof. Assume that P is a special picture fuzzy UP-filter of X satisfying the condition (3.34). Then P
satisfies the conditions (3.7), (3.8), and (3.9). Next, let x,y,z € X. Then

rp(y) < max{re (x - y), 7p(x)} by (3.10) < max{re(x - (y - 2) -y)),7p (x)} by (3.34) for rp,
gr(y) <max{gp(x-y),gpr(x)} by (3.11) < max{gp(x- ((y-z)-y)), gp(x)} by (3.34) for gp,
br(y) > minfbp(x-y), bp(x)} by (3.12) > minfbp(x- ((y - z) -y)), bp(x)} by (3.34) for bp.
Hence, P is a special picture fuzzy comparative UP-filter of X. O

Theorem 3.45. If P is a PFS in X satisfying the conditions (3.10), (3.11), and (3.12) and the following condition:

rp(x-((y-2)-y)) <vp((x-((y-2)-y))-y) = rpllx-((y-2)-y))-y) <vp(x)
("xy,zeX) [ rp(x-((y-z)-y)) <rp((x-((y-2)-y))-y)=gpllx-((y-2)-y))-y)<gplx) ], (335
mp(x-((y-z)-y)) = 7p((x-((y-2)-y))-y)=bpllx-((y-2)-y))-y) > bpx)

then P is a special picture fuzzy comparative UP-filter of X.

Proof. Assume that P is a PFS in X satisfying the conditions (3.10), (3.11), (3.12), and (3.35). If y = 0 and
by (3.35), we have P satisfies the conditions (3.7), (3.8), and (3.9). Next, let x,y,z € X. Then

re(y) < max{re((x- ((y-2)-y))-y),re(x- ((y-2z)-y))} by (3.10)
< max{re(x - ((y -2) -y)), Tp (x)} by (3.35) for T,
gr(y) <maxige((x-((y-2)-y)) -y, grlx- ((y-2)-y))} by 3.11)
< max{gp(x- ((y-z)-y)), gr(x)} by (3.35) for gp,
bp(y) = min{bp((x- ((y-2)-y))-y),be(x-((y-2z)-y))} by (3.12)
> min{bp(x - ((y - ) - y)), bp(x)} by (3.35) for bp.
Hence, P is a special picture fuzzy comparative UP-filter of X. O

Theorem 3.46. If P is a special picture fuzzy UP-filter of X satisfying the following condition:

rp(x) <Tp(x-(((z-y)-y)-z)) = rp(x-(((z-y)-y)-2)) <rplx-(y-2))
(Vx,y,z€ X) | gp(x) < gp(x-(((z-y)-y)-2z)) = gp(x-(((z-y)-y)-2z)) < gp(x-(y-2))
bp(x) = bp(x-(((z-y)-y)-z)) = bp(x-(((z-y)-y)-2z)) = bp(x-(y-2))

then P is a special picture fuzzy shift UP-filter of X.

(3.36)

Proof. Assume that P is a special picture fuzzy UP-filter of X satisfying the condition (3.36). Then P
satisfies the conditions (3.7), (3.8), and (3.9). Next, let x,y,z € X. Then

(x- (((z-y) -y) - 2)), rp(x)} by (3.10)
(x-(y-z)),rp(x)} by (3-36) for vp,

max{gp(x- (((z-y) -y) - 2)), gr(x)} by (3.11)
max{gp(x - (y-z)),gp(x)} by (3 36) for gp,

Tp(((z-y)-y) - z) < max{rp(x-

max{rp

N

X

gr(((z-y)-y)-2z)

bp(((z-y)-y)-z) = min{bp(x-

((z-y)-y)-z)),bp(x)} by (3.12)
y-z)),bp(x)} by (3.36) for bp.

A\VARR\VARV/ANRV/AN

(
min{bp (x -

Hence, P is a special picture fuzzy shift UP-filter of X. O
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Theorem 3.47. If P is a PFS in X satisfying the conditions (3.10), (3.11), and (3.12) and the following condition:

rp(x-(y-2z)) <vpl(x-(y-2)) - (((z-y)-y)-z) = rp((x-(y-2))- (((z-y)-y)-z) < Tp(x)
("x,y,zeX) | gp(x-(y-2)) <gpllx-(y-2))-(((z-y)-y)-z) = gpl(x-(y-2))-(((z-y)-y)-z) < gplx) |, (3.37)
bp(x-(y-z)) Zbp((x-(y-2))-(((z-y)-y)-z) = bp((x-(y-2)) - (((z-y)-y) -z) = bp(x)

then P is a special picture fuzzy shift UP-filter of X.

Proof. Assume that P is a PFS in X satisfying the conditions (3.10), (3.11), (3.12), and (3.37). If z = 0 and
by (3.37), we have P satisfies the conditions (3.7), (3.8), and (3.9). Next, let x,y,z € X. Then

rp(((z-y)-y)-z) <max{rp((x- (y-2z)) - (((z-y)-y)-z),rp(x- (y-2))} by (3.10)
( ), el

(
max{rp(x-(y-z)),rp
(

< x)} by (3.37) for rp,
gr(((z-y)-y)-z) <max{gp((x-(y-2))- (((z-y)-y)-2)), gpr(x- (y-2z))} by (3.11)
< max{gp(x - (y-z)), gr(x)} by (3.37) for gp,
bp(((z-y)-y)-2z) 2 min{bp((x- (y-2z)) - ((z-y) -y)-z),bp(x- (y-2z))} by (3.12)
> min{bp(x - (y - z)), bp(x)} by (3.37) for bp.
Hence, P is a special picture fuzzy shift UP-filter of X. O

Theorem 3.48. If P is a PFS in X satisfying the following condition:

Tp(z) < max{rp(x),Tp(y)}
(Vx,y,z€ X) | z<x-y = ¢ gp(z) <max{gp(x),gr(y)} |, (3.38)
bp(z) > min{bp(x), bp(y)}

then P is a special picture fuzzy UP-subalgebra of X.

Proof. Assume that P is a PFS in X satisfying the condition (3.38). Let x,y € X. By (2.3), we have
(x-y)-(x-y) =0, thatis, x -y < x-y. It follows from (3.38) that

rp(x-y) S max{re(x),re(y)},  grlx-y) <maxige(x),gr(y)l,  brlx-y) = min{bp(x), be(y)}
Hence, P is a special picture fuzzy UP-subalgebra of X. O
Theorem 3.49. If P is a PFS in X satisfying the following condition:

Tp(y) < max{rp(z), Tp(x)}
(vx,y,z€ X) | z<x-y = < gp(y) <max{gp(z),gp(x)} |, (3.39)
bp(y) = min{bp(z), bp(x)}

then P is a special picture fuzzy UP-filter of X.

Proof. Assume that P is a PFS in X satisfying the condition (3.39). Let x € X. By (2.2), we have x - (x-0) =0,
that is, x < x - 0. It follows from (3.39) that

Tp(0) < max{rp(x), Tp(x)} = rp(x),
gr(0) < max{gp(x), gp(x)} = gp(x),
bp(0) > min{bp(x), bp(x)} = bp(x).

Next, let x,y € X. By (2.3), we have (x-y) - (x-y) =0, thatis, x -y < x-y. It follows from (3.39) that

rp(y) S max{rp(x-y),rp(x)},  gr(y) <max{gp(x-y),gr(x)},  bp(y) = min{bp(x-y), bp(x)}
Hence, P is a special picture fuzzy UP-filter of X. O
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Theorem 3.50. If P is a PFS in X satisfying the following condition:

rp(x - z) < max{rp(a),rp(y)}
(Va,x,y,z€X) [ a<x-(y-z) = ¢ gp(x-z) <max{gr(a), gr(y)} |, (3.40)
bp(x-z) = min{bp(a), bp(y)}

then P is a special picture fuzzy UP-ideal of X.

Proof. Assume that P is a PFS in X satisfying the condition (3.40). Let x € X. By (2.2), we have x - (0 (x -
0)) =0, thatis, x < 0- (x-0). It follows from (3.40) that
rp(0) =7p(0-0) < max{rp(x),rp(x)} = rp(x) by (2.1),
gr(0) = gp(0-0) < max{gp(x), gp(x)} = 9P( ) by (2.1),
bp(0) =bp(0-0) > p(x)} =bp(x) by (2.1).
e ha

Next, let x,y,z € X. By (2.3), we have (x- (y-z)) - (x-(y-z)) =0, thatis, x- (y-z) < x-(y-z). It follows
from (3.40) that

min{bp(x), b

Tp(x-z) <max{rp(x- (y-z)),rp(y)},
gp(x-z) <max{gp(x-(y-z)),gr(y)}
bp(x-z) > min{gp(x- (y-z)), gr(y)}

Hence, P is a special picture fuzzy UP-ideal of X. O

<
<

Theorem 3.51. If P is a PFS in X satisfying the following condition:

Tp(x-z) < max{rp(a), rp(x-y)}
(Va,x,y,z€ X) | a<x-(y-z) = { gp(x-z) <max{gp(a),gr(x-y)} [, (3.41)
bp(x-z) = min{bp(a), bp(x-y)}
then P is a special picture fuzzy implicative UP-filter of X.
Proof. Assume that P is a PFS in X satisfying the condition (3.41). Let x € X. By (2.2), we have x - (0- (x -
0)) =0, thatis, x < 0- (x-0). It follows from (3.41) that
Tp(0) =1p(0-0) < max{rp(x), rp(0-x)} = max{rp(x), rp(x)} = rp(x) by (2.1),
gr(0) = gp(0-0) < max{gp(x), gp(0-x)} = max{gp(x), gp(x)} = gr(x) by (2.1),
bp(0) =bp(0-0) > (x), bp(0-x)} = min{bp(x), bp(x)} = bp(x) by (2.1).

Next, let x,y,z € X. By (2.3), we have (x-(y-z))-(x-(y-z)) =0, thatis, x- (y-z
from (3.41) that

rﬁ\_/

min{bp )
) < x-(y-z). It follows
<max{rp(x- (y-z)),Tp(x -y},
gp(x-z) <max{gp(x-(y-2z)),gpr(x-y)},
> min{bp(x - (y-z)), bp(x-y)}

Hence, P is a special picture fuzzy implicative UP-filter of X. O

Theorem 3.52. If P is a PFS in X satisfying the following condition:

Tp(y) < max{rp(a),Tp(x)}
(Va,x,y,zeX) | a<x-((y-z)-y) = { gr(y) <max{gp(a),gp(x)} |, (3.42)
bp(y) = min{bp(a), bp(x)}

then P is a special picture fuzzy comparative UP-filter of X.
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Proof. Assume that P is a PFS in X satisfying the condition (3.42). Let x € X. By (2.2), we have x - (x - ((0-
x)-0)) =0, thatis, x < x-((0-x)-0). It follows from (3.42) that

Tp(0) < max{rp(x),rp(x)} = Tp(x),
gr(0) < max{gp(x), gr(x)} = gp(x),
bp(0) > min{bp(x), bp(x)} = bp(x).

Next, let x,y,z € X. By (2.3), we have (x-((y-z)-y)) - (x-((y-z)-y)) =0, thatis, x- ((y-z)-y) <
x-((y-z)-y). It follows from (3.42) that

rp(y) <max{rp(x- ((y-z)-y)),rp(x)},
gr(y) <max{gp(x-((y-z)-y)), gp
bp(y) = min{bp(x- ((y-z)-y)), bp(x)}.

Hence, P is a special picture fuzzy comparative UP-filter of X. O
Theorem 3.53. If P is a PFS in X satisfying the following condition:
rp(((z-y)-y) - z) <max{rp(a), rp(x)

<m }
(Va,x,y,z€X) | a<x-(y-z) = { gp(((z-y)-y)-2z) < max{gp(a), gp(x)
bp(((z-y)-y)-z) > min{bp(a), bp(x)

Fo (3.43)
}
then P is a special picture fuzzy shift UP-filter of X.

Proof. Assume that P is a PFS in X satisfying the condition (3.43). Let x € X. By (2.2), we have x - (x - (x -
0)) =0, that is, x < x- (x-0). It follows from (3.43) that

Tp(0) = 7p(((0-x) -x) -0) < max{rp(x),rp(x)} = Tp(x) by (2.2),
gr(0) = gp(((0-x)-x)-0) < max{gp(x), gp(x)} = gp(x) by (2.2),
bp(0) = bp(((0-x)-x)-0) = min{bp(x), bp(x)} = bp(x) by (2.2).

I
=

Next, let x,y,z € X. By (2.3), we have (x - (y - z)
from (3.43) that

(x-(y-2)) thatis, x- (y-z) < x-(y-z). It follows

rp(((z-y) -y) - z) <max{rp(x- (y-z)),rp(x)}
gr(((z-y)-y)-z) <max{gp(x- (y-z)),gpr(x)},
bp(((z-y)-y)-z) = min{bp(x- (y-z)),bp(x)}

Hence, P is a special picture fuzzy shift UP-filter of X. O

Theorem 3.54. If P is a PFS in X satisfying the following condition:

Tp(z) <7Tp(y)
(VY zeX) [z<x-y={gprlz)<grly) |, (3.44)
bp(z) > bp(y)

then P is a special picture fuzzy strong UP-ideal of X.

Proof. Assume that P is a PFS in X satisfying the condition (3.44). Let x,y € X. By (2.2) and (2.3), we have
x-(y-y) =0, thatis, x < y-y. It follows from (3.44) that rp(x) < rp(y), gp(x) < gp(y), and bp(x) = bp(y).
Similarly, rp(y) < Tp(x),gr(y) < gp(x), and bp(y) > bp(x). Then rp(x) = rp(y),gr(x) = gr(y), and
bp(x) =bp(y). Thus P is constant. By Theorem 3.19, we have P is a special picture fuzzy strong UP-ideal
of X. O
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In this part, we define a picture fuzzy set in the same way as a characteristic function and study its
characterizations from the related subset.

For any fixed numbers r*,r—, g%, g~,b", b~ € [0,1] such that " > r—,g" > g~,b" > b~ and a
nonempty subset G of X, a PFS P[’, g+ g+] (X, Srplr], gp[g;] Sbp[P 1) in X, where Srp ], Gbp[ 4,
and Sbp [Ef] are functions on X which are given as follows:

- N L.
Grp[¥+](x):{r , ifxegG, Ggp[g}(x):{g , ifxegG, Gbp[gt](x):{b , ifxegG,

. + . _ .
T, otherwise, 9 g", otherwise, b~, otherwise.

Lemma 3.55. If the constant 0 of X is in a nonempty subset G of X, then the PFS GP[r+ 9+ E | in X satisfies the
conditions (3.7), (3.8), and (3.9).

Proof. 1f 0 € G, then Srp [10) =17, Ggp[g;](O) =g ,and Gbp[Ei](O) =b". Thus

Srpl)(0) =1 < SrplI(x)
(vxeX) | Sgp[d.1(0) =9~ < gpld1(¥)
Sp(21(0) = + > Soplp (%)
Hence, GP[:;:S;:EH satisfies the conditions (3.7), (3.8), and (3.9). O

Lemma 3.56. If the PFS GP[ ¥ +’b ] in X satisfies the condition (3.7) (resp., (3.8), (3.9)), then the constant 0 of X
is in a nonempty subset G of X

Proof. Assume that the PFS SP[",’ g+ E ] in X satisfies the condition (3.7). Then S1p[",](0) < Srp[T.](x) for

all x € X. Since G is nonempty, there exists g € G. Thus Svp[",](g) =17, 50 Srp[1,](0) < Srp[](g) =17,

that is, Stp [7.1(0) =r7. Hence, 0 € G. O

Theorem 3.57. The PFS GP[:;:g:igi] in X is a special picture fuzzy UP-subalgebra of X if and only if a nonempty
subset G of X is a UP-subalgebra of X.

Proof. Assume that SP[l’ g+,lt;+] is a special picture fuzzy UP-subalgebra of X. Let x,y € G. Then
Srp[Tl(x) =1~ = Srp[T](y). Thus

G T

rp[l](x - y) < max{Srp (%), Srp [l (y)) = maxr—, v} =1 < Srp[lL](x - y) by (3.1)

and so Srp [":](x-y) =1". Thus x-y € G. Hence, G is a UP-subalgebra of X. Conversely, assume that G
is a UP-subalgebra of X. Let x,y € X.

Case 1: x,y € G. Then

Srelfd0) =v7 =Srlly), Sgrlddx) =g~ =Cgrldly), CbelIIx) =b" = Sbel1(y).

Thus

max{Crp[I-](x), Srp (121 (y)} = max(r—, 7} =1,

max{®gp(J.1(x), ®gp g+( y)} =max{g”, g }—9 ,

min{Sbp[§"](x), Sbp[§ 1(y)} = min{b™,b"} =
Since G is a UP-subalgebra of X, we have x -y € G and so Grp[ﬁ](xy) =717, Ggp[g;](x-y) =g, and
Gbp[gf](x-y) = b*. Hence,

Srp[lil(x-y) =7 <1 =max{Crp[l.](x), Srp [ 1(y)},
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~ =max{gpl3.1(x), Sgrlg.1(y)],

G g
b =min{CSbp[d1(x), Sbp[2 I(y)}.

gr[Jlx-y) =g~ <
Soplp-lix-y) =b" >
Case2: x € Gory ¢ G. Then

Srply) =17,

Srp[l](x) =7" or

CgplfJ(x) =g" or Cgpl.](y) =97,

Spp[t](x) =b~ or Sbp[Bl(y) = b
Thus

max{Srp (] (x), Srel](y) =", max{Cgpld,(x), Sgpl3.](y)) = g*, min{Cbplg-1(x), Sbplg l(y)} = b

Therefore,
Srplld(x-y) <77 =max{®rp [l ](x), STp [ 1(y)},
Cgplf.1(x-y) < g* = max{®gp[.](x), gp[gmy)}
CbplyJ0x-y) > b” = min{Sbp [ 1(x), Sbplp-](y))
Hence, GP[}::S;:}?] is a special picture fuzzy UP-subalgebra of X. O

Theorem 3.58. The PFS © P[:;: g;:lb’f] in X is a special picture fuzzy near UP-filter of X if and only if a nonempty
subset G of X is a near UP-filter of X.

Proof. Assume that GP[T+ 9+ E | is special picture fuzzy near UP-filter of X. Let x € X and y € G. Then
Grp[7](y) = r~. Thus

Srplil(x-y) < Srpllil(y) =7 < Srpllil(x-y) by (3.4)

and so Srp [II](X -y) =71". Thus x -y € G. Hence, G is a near UP-filter of X.
Conversely, assume that G is a near UP-filter of X. Let x,y € X.

Case 1: y € G. Then Srp[T](y) =17, Ggp[g:](y) =g ,and Gbp[gf](y) = b™. Since G is a near UP-filter
of X, we have x-y € G and so Srp[l,](x-y) =17, Ggp[g;](x-y) =g ,and GbP[Et](X'H) =b". Thus

G — G

rpl(x-y) =17 <7 =Crplli(y),
Cgpld llx-y) =g <
SbpR l(x-y) =b* >

Case 2: y € G. Then Svp[",](y) =17, Ggp[g+](y) =g",and Gbp[g+](y) =b~. Thus

<
GQP[gl](X'y) <gh= GQP[SI](UL
Sop7](x-y) =

Hence, GP[:;’& E ] is a special picture fuzzy near UP-filter of X. O

Theorem 3.59. The PFS © P[:;:g;:gt] in X is a special picture fuzzy UP-filter of X if and only if a nonempty subset
G of X is a UP-filter of X.
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Proof. Assume that GP[T+ +’E+] is a special picture fuzzy UP-filter of X. Since SP[ . g+’g+] satisfies the

condition (3.7), it follows from Lemma 3.56 that 0 € G. Next, let x, y € X be such that x-y€ Gand x € G.

Then Srp[.](x-y) =1~ = Srp[](x). Thus

Srpll)(y) < max{Srp[l)(x-y), Srpll)(x)} = max{r™, "} = 1~ < Srp[l.](y) by (3.10)

and so Grp[ﬁ](y) =1. Thusy € G. Hence, G is a UP-filter of X.
r—,97,bt

Conversely, assume that G is a UP-filter of X. Since 0 € G, it follows from Lemma 3.55 that G P[T+: g+:b_]
satisfies the conditions (3.7), (3.8), and (3.9). Next, let x,y € X.

Case 1: x-y € G and x € G. Then

G G T G

el y) =17 =Crelil(x), Sgplfllx-y) =g~ =Cgplf(x), Cbplp-llx-y) =b" = Cbpp I(x).

Thus
max{Srp [T ](x - y), SrplTLI(x)} = maxr—, 1} =17,
max{®gp[9.1(x-y), “gr g+( x)}=max{g”, g }=9g,
min{®bp (5 ](x - y), “bp[§ ](x)} = min{b ", bF} =b".

Since G is a UP-filter of X, we have y € G and so S1p Clly)=r, Ggp[g;](y) =g ,and Gbp[gf](y) =bt.
Thus

G T

el (y) =17 <7 = max{Crp [ I(x-y), Crel(x)),

Corlgly) =g~ < g” =max{“gplg.10x-y), “grlg.I0x)},
Sbp[p-1(y) =b* > b* = min{SbpR-](x-y), “bel 1(x)}.

Case 2: x-y ¢ Gorx ¢ G. Then

G G

rpli](x-y) =17 or Crp[[](x) =17,
Cgplf](x-y)=g" or Sgpll.]1(x) =g",

Sbplp l(x-y)=b" or SbpR'I(x) =b".

Thus
max{Crp[1](x - y), Sre (X))} =17,
max{Ggp ](X y), QP[SI](X)} = 9+,
mm{Gbp[bJ(x y), Sop[p X)) =b".
Therefore,
Srp[(x) <77 =max{CSrp[(x-y), CrplH](x),
€gp(§.1(x) < g = max(®gp[d.1(x-y), Cgpld.](x)},
Sbp[p1(x) = b =min{“bp[§ 1(x - y), “bp[R 1(x)}.
Hence, ©P[ g; E | is a special picture fuzzy UP-filter of X. O

Theorem 3.60. The PFS CP[,’ g+l§ | in X is a special picture fuzzy implicative UP-filter of X if and only if a
nonempty subset G of X is an zmplzcatwe UP-filter of X.
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Proof. Assume that GP[;:QI:EH is a special picture fuzzy implicative UP-filter of X. Since GP[:;:S;:EH
satisfies the condition (3.7%, it follows from Lemma 3.56 that 0 € G. Next, let x,y,z € X be such that

x-(y-z) € Gand x-y € G. Then Grp[ﬁ](x- (y-z))=r"= Grp[ﬁ](wy). Thus

Crplil(x-z) < max{Srp[lil(x- (y-2)), Srplli](x-y)} = max{r—, v} =1 < Crp[l.](x - z) by (3.13)
and so Srp [ ](x-z) =v7. Thus x -z € G. Hence, G is an implicative UP-filter of X.

Conversely, assume that G is an implicative UP-filter of X. Since 0 € G, it follows from Lemma 3.55
that GP[ri’gi’w] satisfies the conditions (3.7), (3.8), and (3.9). Next, let x,y,z € X.

+,g%, b~

Case1: x-(y-z) € Gand x-y € G. Then

Srpll(x-(y-2) =1 = Srpld(x-y),

Cop[f.llx-(y-2) =g =Cgplg.llx-y),
Soplp-l(x- (y-2)) =b" = SbpR-](x-y).

Thus

max{Crp[[](x - (y-2)), S rpli](x - y)} = max{r—, v} =17,

max{Sgp (3. 1(x- (y-2)), ®gr[d.](x - y)} =max{g—, g } =g,
min{Sbp[R 1(x- (y-z)), Sbpl2 1(x-y)} =min{b*,b*} =b".

Since G is an implicative UP-filter of X, we have x -z € G and so Grp [lx-z) =17, Ggp[gJ(x z) =g,
and Gbp[gf](x-z) =b". Thus

Srp[ll(x-z) =7 <1 =max{®rp[lL](x- (y-2)), Srplll(x-y)},
Coplfl(x-2) =9~ < g =max{®gp[J.](x- (y-2)), gpl.1(x -y}

g
Shple](x-2) = bt = b* =min{Cbp[Y 1(x - (y-2)), SbpR 1(x -y}
Case2: x-(y-z) € Gorx-y ¢ G. Then

G G

plil(x-(y-2z) =" or “rp[lLl(x-y) =17,
GQP[S;](X' (y-z))=g" or Ggp[g;](x.y) — g,

Sbp[5 ) (x- (y-2z)) = b~ or Sbp[8 I(x - y) =b".

Thus
max{Crp[T.](x - (y-2)), Srp[l](x-y)} =17,
max{gp[J.](x- (y-2)), “grlf:1(x-y)} = g*,
min{®bp [ ](x - (y-z)), SbplL I(x-y)} =b".
Therefore,

<t =max{Crp[l](x- (y-2)), Srplll(x - y)),
Cgplf.](x-2) < g" =max{®gp[.1(x " (y-2)), “gplZ.](x -y}
> b =min{bp[5 ](x- (y-2)), S bp[B 1(x-y)}

- g b+
Hence, SP[,/9./°

r+ g+ p-] 1S a special picture fuzzy implicative UP-filter of X. O
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Theorem 3.61. The PFS SP[ . g+’b+] in X is a special picture fuzzy comparative UP-filter of X if and only if a

nonempty subset G of X is a comparative UP-filter of X.
Proof. Assume that SP[l,’ gg?] is a special picture fuzzy comparative UP-filter of X. Since SP[l’ g+ E+]
satisfies the condition (3. 7) it follows from Lemma 3.56 that 0 € G. Next, let x,y,z € X be such that

x-((y-z)-y) € Gand x € G. Then Srp[,](x- ((y-2)-y)) =r~ = Srp[l.](x). Thus
G

T

rp [ )(y) < max{Crp[-)(x- ((y - 2) -y)), Srplal(0)} = max{r—, v~} = v~ < Srp[lL](y) by (3.16)

and so Srp [:](y) =r7. Thus y € G. Hence, G is a comparative UP-filter of X.
Conversely, assume that G is a comparative UP-filter of X. Since 0 € G, it follows from Lemma 3.55

that GP[:+ 9. g ] satisfies the conditions (3.7), (3.8), and (3.9). Next, let x,y,z € X.
Case 1: x- ((y z)-y) € G and x € G. Then
Srpldx-((y-2)-y)) =1 = Srpli1(x),
Cgpldlx-((y-2)-y) =g~ = gprld.1(x),
Sbplplix- ((y-2)-y) =b" = Cbplp ().
Thus
max{Crp[L](x - ((y-2)-y)), Srpl)(x)} = max{r—, v} =17,
max{®gp[J.]1(x- ((y-2)-y)), ®gp[f.J(x)) =max{g~, g} = ¢,
min{bp[5 1(x- ((y-2) -y)), “bp[-]1(x)} = min{b*, b"} = b*

Since G is a comparative UP-filter of X, we have y € G and so Grp[:l](y) =1, Ggp[g+](y) = g, and
Sbp[R7](y) = b*. Thus

G - —

el ]y) =17 <v = max{SrplH](x- ((y-2)-y), Srel (X)),
Sgp(d)y) =9~ <g~ =max{Sgp[d,)(x- ((y-2)-y)), Sgrld (X)),

)
Cbrlp-l(y) =b" > b* =min{Cbp[ ](x- ((y-2)-y))
Case 2: x-((y-z)-y) € Gorx ¢ G. Then

G

,SbplRl1(x))

el l(x- ((y-2)-y) =77 or Srp[(x) =77,

Sgpl3-1x-((y2)-y)) = 9" or Sgpld](x) = g7,
SoplpI0x- ((y-2)-y)) = b~ or Sbpl 1) = b~

Thus
max{Crp[[](x- ((y-2)-y)), Sre 1)} =17,
max{€gp[J.](x- ((y-2)-y)), “grlJ ](x)} = g*,
min{Sbp[p_I(x- ((y-2)-y)), “belp-1(x)} =b .
Therefore,

Srpl1(x)),

= max{Srp[l)(x- ((y-2) -y),
= max{gp(L.](x - ((y-2) -y)), S 10,

g
Sopl(y) = b~ =min{CbpR 1(x- ((y-2) - y)), SbpRI1(x)).

Hence, SP[ g+ E | is a special picture fuzzy comparative UP-filter of X. O
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Theorem 3.62. The PFS SP[’,’ S+’b | in X is a special picture fuzzy shift UP-filter of X if and only if a nonempty
subset G of X is a shift UP-filter of X.

Proof. Assume that GP[;;g;’E,] is a special picture fuzzy shift UP-filter of X. Since GP[:;’QI’Ef] satisfies

the condition (3.7), it follows from Lemma 3.56 that 0 € G. Next, let x,y,z € X be such thatx- (y-z) € G
and x € G. Then Srp [x-(y-z))=r" = Grp[ﬁ](x). Thus

T

Srpll(((z+y) - y) - 2) < max{Srp[(x- (y - 2)), Srpll](x))
= max{r™, } =1 < Srp[L(((z-y) -y) - 2) by (3.19)

and so Grp[ﬁ](((zy) ‘y)-z) =1".Thus ((z-y) -y) - z € G. Hence, G is a shift UP-filter of X.
Conversely, assume that G is a shift UP-filter of X. Since 0 € G, it follows from Lemma 3.55 that

GP[:;:S;:EH satisfies the conditions (3.7), (3.8), and (3.9). Next, let x,y,z € X.
Case 1: x-(y-z) € G and x € G. Then

G G

el l(x- (y-2) =17 = Crp[lL](x),
Cgrldlx-(y-2)) =g~ = Sgpld.1(x),
ShplB (x- (y-2)) =b" = Sbp[2](x).
Thus

G

max(Srp(l1(x - (y - 2)), SrplT](x)} = max{r—, 1} =17,
max{®gp[J.](x - (y-2)), “gp(J.1(x)} = max{g~, g }—9 ,

min{®bp [ ](x - (y - 2)), Sbp[ ] (x)} = min{b ¥, b} =

Since G is a shift UP-filter of X, we have ((z-y)-y) -z € G and so Grp[ﬁ](((z-y) y)-z) =1-,%gp[9.1(((z-
y)-y)-z) =g, and Sbp[2 )(((z-y)-y) -z) = b*. Thus

Srp[l](((z-y) - y) - 2) =1~ <1 =max{Crp[l.](x- (y-2), Srp[l](x)},
Cop[f.1(((z-y)-y)-2) =g <g =max{®gpl.1(x-(y-2)), “gr[1(¥)},
ShplR 1(((z+y) y)-2) =b" >b" =min{Sbp[X I(x- (y-2)), Sbp[L I(x)}.
Case 2: x-(y-z) ¢ Gorx ¢ G. Then
Srplll(x- (y-2z)) =" or Srp[lL](x) =17,
Coplg.l(x-(y-2)) = g" or Sgp[lx) =g,

Sbplp (¢ (y-2) = b~ or “bplp I(x) = b

Thus
max{Crp[[](x- (y-2)), Srpll](x)} =7,
max{®gp[.](x- (y-2)), gel g+ J0)r=g",
min{Sbp (5 ](x- (y-2)), Sbplf 1)} =b".
Therefore,

Srpl1(((z-y) - y) - 2) <77 =max{®rp[L ](x- (y-2)), SrplLil(x)},
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Sgpl1(((z-y)-y)-2) < g7 =max{®gpld.](x - (y-2)), Sgpld1(x)},
Sbpl1(((z-y) -y)-2) = b~ =min{Cbp[2 1(x - (y-2)), SbpR 1(x)).

Hence, GP[:;: g;:gf] is a special picture fuzzy shift UP-filter of X. O
Theorem 3.63. The PFS GP[:;:S;:EH in X is a special picture fuzzy UP-ideal of X if and only if a nonempty subset
G of X is a UP-ideal of X.

Proof. Assume that SP[",’ 3+E ] is a special picture fuzzy UP-ideal of X. Since SP[ 9+’E+} satisfies the
condition (3. 7) it follows from Lemma 3.56 that 0 € G. Next, let x, y,z € X be such that x - (y-z) e Gand

y € G. Then Srp[l,](x- (y-z)) =7~ = Srp[.](y). Thus

Srpl](x-z) < max{Crpll](x- (y-2)), Srpl](y)} = max{r—, 7} =1~ < Srp[1](x - ) by (3.22)

and so Srp [[](x-z) =r7. Thus x -z € G. Hence, G is a UP-ideal of X.

Conversely, assume that G is a UP-ideal of X. Since 0 € G, it follows from Lemma 3.55 that ©P[
satisfies the conditions (3.7), (3.8), and (3.9). Next, let x,y,z € X.

Case1: x-(y-z) € Gand y € G. Then

T’,g*,bj
r+,gt,b-

Srplll(x-(y-2)) =1 = rp[(y),

Cgplfx-(y-2) =g~ = gpl.](v),
Sbplp I(x- (y-2) =b" =CSbpl I(y).

Thus

max{Crp[(x- (y - 2)), Grp[ﬁ ()} =max{r—, "} =17,

max{®gp[J.](x- (y-2)), gel g+ J(y)} = max{g~, g }—9 ,
min{Cbp[§ ](x - (y - 2)), “bp[R 1(y)} = min{b", b} =

Since G is a UP-ideal of X, we have x-z € G and so Grp[ﬁ](x z) =1,6

Gbp[EtMX'Z) =b™". Thus

G G

rpllil(x-z) =1 <1 =max{Srp[lL](x- (y-2)), Srpllil(y)},

Coplgl(x-z) =g~ < g~ =max{®gplJ.l(x- (y-2)), “br[Z.(y)},
SopRl(x-2) =b" = b" =min{Sbp[ )(x - (y - 2)), Sop [ 1(y))

Case2: x-(y-z)  Gory ¢ G. Then

G T . . + G

Sgplg.10x- (y-2)) = g" or Sgplf.I(y) =
(

g
SbplPI(x-(y-2)) =b~ or SbplXI(y) =b".
Thus

max{Crp[I.](x - (y -2)), Srp[l ) (y)} = 17,

max(gp(.](x - (y -2)), SgplS-Iy)} = g,
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min{Sbp[5 )(x - (y-2)), Sbely-I(y)} =b .

Therefore,
Srplil(x-z) < F =max{Crp[(x- (y - 2)), Sreli(y)),
Cgp(gil(x-2) < g =max{®gpld.1(x- (y-2)), “grlg. (W)}
CoplgJ(x-2) > b™ = min{Cbpp-)(x- (y-2)), Sbplp-](y)}
Hence, SP[ g; E | is a special picture fuzzy UP-ideal of X. O

Theorem 3.64. The PFS © P[I::g;:gf] in X is a special picture fuzzy strong UP-ideal of X if and only if a nonempty
subset G of X is a strong UP-ideal of X.

Proof. Assume that GP[:;’ ;'{T] is a special picture fuzzy strong UP-ideal of X. By Theorem 3.19, we have

G

GP[:+ gyz ] is constant, that is, Srp ['.] is constant. Since G is nonempty, we have “rp[7.](x) = v~ for all

x € X. Thus G = X. Hence, G is a strong UP-ideal of X.
Conversely, assume that G is a strong UP-ideal of X. Then G =X, so

T
(vxeX) | Sgpldil(x) =g~

Thus Srp ], Ggp[g;], and Gbp[};f] are constant, that is, GP[r g+g | is constant. By Theorem 3.19, we

have GP[gig;:Ei] is a special picture fuzzy strong UP-ideal of X. O

4. Level subsets of a PFS

In this section, we discuss the relationships between special picture fuzzy UP-subalgebras (resp., spe-
cial picture fuzzy near UP-filters, special picture fuzzy UP-filters, special picture fuzzy UP-ideals, special
picture fuzzy strong UP-ideals) of UP-algebras and their level subsets.

Definition 4.1. [26] Let f be a fuzzy set in X. For any t € [0, 1], the sets

U(f;t) ={x e X | f(x) > t}, Ut (f;t) ={x € X|f(x) > t},
L(f;t) ={x e X|f(x) < t}, L™ (f;t) ={x e X | f(x) <},
E(f;t) ={x € X| f(x) =t}

are called an upper t-level subset, an upper t-strong level subset, a lower t-level subset, a lower t-strong level
subset and an equal t-level subset of f, respectively.

Theorem 4.2. A PFS P in X is a special picture fuzzy UP-subalgebra of X if and only if for all t € [0,1], the sets
L(rp;t),L(gp;t), and U(bp;t) are UP-subalgebras of X if L(rp;t), L(gp;t), and U(bp;t) are nonempty.

Proof. Assume that P is a special picture fuzzy UP-subalgebra of X. Let t € [0, 1] be such that L(rp;1),
L(gp;t), and U(bp;t) are nonempty.

Let x,y € L(rp;t). Then rp(x) < tand rp(y) < t, so t is an upper bound of {rp(x),rp(y)}. By (3.1), we
have rp(x-y) < max{rp(x),rp(y)} < t. Thus x-y € L(rp;1).

Let x,y € L(gp;t). Then gp(x) < t and gp(y) < t, so t is an upper bound of {gp(x), gp(y)}. By (3.2),
we have gp(x-y) < max{gp(x),gp(y)} < t. Thus x-y € L(gp; t).

Let x,y € U(bp;t). Then bp(x) > t and bp(y) > t, so t is a lower bound of {bp(x), bp(y)}. By (3.3), we
have bp(x-y) > min{bp(x),bp(y)} > t. Thus x-y € U(bp;t).
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Hence, L(rp;t),L(gp;t), and U(bp;t) are UP-subalgebras of X.

Conversely, assume that for all t € [0, 1], the sets L(rp;t),L(gp;t), and U(bp;t) are UP-subalgebras of
L(rp;t),L(gp;t), and U(bp;t) are nonempty.

Let x,y € X. Then rp(x), rp(y) € [0,1]. Choose t = max{rp(x),p(y)}. Thus rp(x) < tand rp(y) < t, so
x,y € L(rp;t) # 0. By assumption, we have L(rp;t) is a UP-subalgebra of X and so x -y € L(rp;t). Thus
Tp(x-y) <t =max{rp(x),p(y)}

Let x,y € X. Then gp(x), gp(y) € [0,1]. Choose t = max{gp(x), gp(y)}. Thus gp(x) < tand gp(y) < t,
so x,y € L(gp;t) # 0. By assumption, we have L(gp;t) is a UP- subalgebra of X and so x-y € L(gp;t).
Thus gp(x-y) <t =max{gp(x), gr(y)}

Let x,y € X. Then bp(x),bp(y) € [0,1]. Choose t = min{bp(x), bp(y)}. Thus bp(x) > t and bp(y) > t,
so x,y € U(bp;t) # (. By assumption, we have U(bp;t) is a UP-subalgebra of X and so x -y € U(bp;1).
Thus bp(x-y) > t = min{bp(x), bp(y)}.

Therefore, P is a special picture fuzzy UP-subalgebra of X. O

Theorem 4.3. If P is a special picture fuzzy UP-subalgebra of X, then for all t € [0,1], the sets L™ (rp;t), L™ (gp; t),
and U™ (bp; t) are UP-subalgebras of X if L~ (vp;t), L™ (gp;t), and U™ (bp;t) are nonempty.

Proof. Assume that P is a special picture fuzzy UP-subalgebra of X. Let t € [0,1] be such that L™ (rp; 1),
L~ (gp;t), and U™ (bp;t) are nonempty.

Let x,y € L~ (rp;t). Then vp(x) < t and rp(y) < t, so t is an upper bound of {rp(x), rp(y)}. By (3.1),
we have Tp(x-y) < max{rp(x),rp(y)} < t. Thus x-y € L™ (rp; t).

Let x,y € L~ (gp;t). Then gp(x) < t and gp(y) < t, so t is an upper bound of {gp(x), gr(y)}. By (3.2),
we have gp(x-y) < max{gp(x),gp(y)} < t. Thusx-y € L= (gp; t).

Let x,y € U (bp;t). Then bp(x) > t and bp(y) > t, so t is a lower bound of {bp(x), bp(y)}. By (3.3),
we have bp(x-y) = min{bp(x),bp(y)} > t. Thus x-y € U" (bp;1).

Hence, L~ (rp;t), L~ (gp; t), and U™ (bp;t) are UP-subalgebras of X. O

Theorem 4.4. A PFS P in X is a special picture fuzzy near UP-filter of X if and only if for all t € [0, 1], the sets
L(rp;t), L(gp;t), and U(bp;t) are near UP-filters of X if L(rp;t), L(gp;t), and U(bp;t) are nonempty.

Proof. Assume that P is a special picture fuzzy near UP-filter of X. Let t € [0,1] be such that L(rp;t),
L(gp;t), and U(bp;t) are nonempty.

Letx € Xandy € L(rp;t). Thenrp(y) < t. By (3.4), wehave rp(x-y) < rp(y) < t. Thusx-y € L(rp;1).
Letx € Xand y € L(gp;t). Then gp(y) < t. By (3.5), we have gp(x-y) < gp(y) < t. Thus x-y € L(gp;t).
Let x € Xand y € U(bp;t). Then bp(y) > t. By (3.6), we have bp(x-y) > bp(y) > t. Thus x-y € U(bp;t).

Hence, L(rp;t),L(gp; t), and U(bp;t) are near UP-filters of X.

Conversely, assume that for all t € [0,1], the sets L(rp;t),L(gp;t), and U(bp;t) are near UP-filters of
X if L(rp;t),L(gp;t), and U(bp;t) are nonempty. Let x,y € X. Then rp(y) € [0,1]. Choose t = rp(y).
Thus rp(y) < t, soy € L(rp;t) # 0. By assumption, we have L(rp;t) is a near UP-filter of X and so
x-y € L(rp;t). Thus rp(x-y) < t = rp(y). Let x,y € X. Then gp(y) € [0,1]. Choose t = gp(y).
Thus gp(y) < t, soy € L(gp;t) # 0. By assumption, we have L(gp;t) is a near UP-filter of X and so
x-y € L(gp;t). Thus gp(x-y) < t = gp(y). Let x,y € X. Then bp(y) € [0,1]. Choose t = bp(y).
Thus bp(y) > t, soy € U(bp;t) # (. By assumption, we have U(bp;t) is a near UP-filter of X and so
x-y € U(bp;t). Thus bp(x-y) >t = bp(y). Therefore, P is a special picture fuzzy near UP-filter of X. [

Theorem 4.5. If P is a special picture fuzzy near UP-filter of X, then for all t € [0,1], the sets L™ (rp;t), L™ (gp; t),
and U™ (bp; t) are near UP-filters of X if L™ (vp; t), L~ (gp; t), and U™ (bp; t) are nonempty.

Proof. Assume that P is a special picture fuzzy near UP-filter of X. Let t € [0,1] be such that L™ (rp;1),
L~ (gp;t), and U™ (bp;t) are nonempty.

Let x € Xand y € L™ (rp;t). Then rp(y) < t. By (3.4), we have rp(x-y) < rp(y) < t. Thusx-y €
L= (rp;t). Let x € Xand y € L™ (gp;t). Then gp(y) < t. By (3.5), we have gp(x-y) < gp(y) < t. Thus
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x-y € L7 (gp;t). Let x € Xand y € U (bp;t). Then bp(y) > t. By (3.6), we have bp(x-y) > bp(y) > t.
Thus x -y € UT (bp;t). Hence, L (rp;t),L (gp;t), and U™ (bp;t) are near UP-filters of X. O

Theorem 4.6. A PFS P in X is a special picture fuzzy UP-filter of X if and only if for all t € [0,1], the sets
L(rp;t), L(gp;t), and U(bp;t) are UP-filters of X if L(rp;t), L(gp;t), and U(bp;t) are nonempty.

Proof. Assume that P is a special picture fuzzy UP-filter of X. Let t € [0, 1] be such that L(rp; 1), L(gp;1t),
and U(bp;t) are nonempty.

Let x € L(rp;t). Then rp(x) < t. By (3.7), we have rp(0) < rp(x) < t. Thus 0 € L(rp;t). Next, let
X,y € X be such that x-y € L(rp;t) and x € L(rp;t). Then rp(x-y) < t and rp(x) < t, so t is an upper
bound of {rp(x-y), rp(x)}. By (3.10), we have rp(y) < max{rp(x-y),rp(x)} < t. Thus y € L(rp; t).

Let x € L(gp;t). Then gp(x) < t. By (3.8), we have gp(0) < gp(x) < t. Thus 0 € L(gp;t). Next, let
x,y € X be such that x-y € L(gp;t) and x € L(gp;t). Then gp(x-y) < tand gp(x) < t, so t is an upper
bound of {gp(x-y),gp(x)}. By (3.11), we have gp(y) < max{gp(x-y),gp(x)} < t. Thusy € L(gp;1).

Let x € U(bp;t). Then bp(x) > t. By (3.9), we have bp(0) > bp(x) > t. Thus 0 € U(bp;t). Next, let
X,y € X be such that x-y € U(bp;t) and x € U(bp;t). Then bp(x-y) > t and bp(x) > t, so t is a lower
bound of {bp(x-y), bp(x)}. By (3.12), we have bp(y) > min{bp(x-y),bp(x)} > t. Thusy € U(bp;1).

Hence, L(rp;t),L(gp;t), and U(bp;t) are UP-filters of X.

Conversely, assume that for all t € [0, 1], the sets L(rp;t),L(gp;t), and U(bp;t) are UP-filters of X if
L(rp;t),L(gp;t), and U(bp;t) are nonempty.

Let x € X. Then rp(x) € [0,1]. Choose t = rp(x). Thus rp(x) < t, so x € L(rp;t) # 0. By assumption,
we have L(rp;t) is a UP-filter of X and so 0 € L(rp;t). Thus rp(0) < t = rp(x). Next, let x,y € X.
Then rp(x-y),rp(x) € [0,1]. Choose t = max{rp(x-y),rp(x)}. Thus rp(x-y) < t and rp(x) < t, so
x-y,x € L(rp;t) # 0. By assumption, we have L(rp;t) is a UP-filter of X and so y € L(rp;t). Thus
rp(y) < t = max{rp(x - y), Tp (X))

Let x € X. Then gp(x) € [0,1]. Choose t = gp(x). Thus gp(x) < t, so x € L(gp;t) # (. By assumption,
we have L(gp;t) is a UP-filter of X and so 0 € L(gp;t). Thus gp(0) < t = gp(x). Next, let x,y € X.
Then gp(x-y),gp(x) € [0,1]. Choose t = max{gp(x-y),gp(x)}. Thus gp(x-y) < t and gp(x) < t, so
x-y,x € L(gp;t) # 0. By assumption, we have L(gp;t) is a UP-filter of X and so y € L(gp;t). Thus
gr(y) <t =max{gp(x-y), gp(x)}

Let x € X. Then bp(x) € [0,1]. Choose t = bp(x). Thus bp(x) > t, so x € U(bp;t) # (. By assumption,
we have U(bp;t) is a UP-filter of X and so 0 € U(bp;t). Thus bp(0) > t = bp(x). Next, let x,y € X.
Then bp(x-y),bp(x) € [0,1]. Choose t = min{bp(x-y),bp(x)}. Thus bp(x-y) > t and bp(x) > t, so
x-y,x € U(bp;t) # (. By assumption, we have U(bp;t) is a UP-filter of X and so y € U(bp;t). Thus
bp(y) = t = min{bp(x-y), bp(x)}.

Therefore, P is a special picture fuzzy UP-filter of X. O

Theorem 4.7. If P is a special pzcturefuzzy UP-filter of X, then for all t € [0,1], the sets L~ (rp;t), L™ (gp; 1), and
U™ (bp;t) are UP-filters of X if L™ (rp; t), L~ (gp; t), and U™ (bp; t) are nonempty.

Proof. Assume that P is a special picture fuzzy UP-filter of X. Let t € [0,1] be such that L™ (rp;t), L™ (gp; t),
and U™ (bp;t) are nonempty.

Let x € L™ (rp;t). Then rp(x) < t. By (3.7), we have rp(0) < rp(x) < t. Thus 0 € L™ (rp;t). Next,
let x,y € X be such that x-y € L™ (rp;t) and x € L™ (rp;t). Then rp(x-y) < t and rp(x) < t, so t is an
upper bound of {rp(x - y), rp(x)}. By (3.10), we have rp(y) < max{rp(x-y),vp(x)} < t. Thusy € L~ (rp; ).
Let x € L~ (gp;t). Then gp(x) < t. By (3.8), we have gp(0) < gp(x) < t. Thus 0 € L~ (gp;t). Next, let
X,y € Xbe such that x-y € L™ (gp;t) and x € L™ (gp; t). Then gp(x-y) < tand gp(x) < t, so t is an upper
bound of {gp(x - y), gp(x)}. By (3.11), we have gp(y) < max{gp(x-y),gp(x)} <t. Thusy € L= (gp;t). Let
x € UM (bp;t). Then bp(x) > t. By (3.9), we have bp(0) > bp(x) > t. Thus 0 € U™ (bp; t). Next, let x,y € X
be such that x -y € Ut (bp;t) and x € Ut (bp;t). Then bp(x-y) >t and bp(x) > t, so t is a lower bound
of {bp(x-y),bp(x)}. By (3.12), we have bp(y) > min{bp(x-y), bp(x)} > t. Thus y € UT(bp;t). Hence,
L~ (rp;t),L (gp;t), and U™ (bp;t) are UP-filters of X. O
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Theorem 4.8. A PFS P in X is a special picture fuzzy implicative UP-filter of X if and only if for all t € [0, 1], the
sets L(rp; 1), L(gp; t), and U(bp;t) are implicative UP-filters of X if L(rp; 1), L(gp; t), and U(bp;t) are nonempty.

Proof. Assume that P is a special picture fuzzy implicative UP-filter of X. Let t € [0,1] be such that
L(rp;t),L(gp;t), and U(bp;t) are nonempty.

Let x € L(rp;t). Then rp(x) < t. By (3.7), we have rp(0) < rp(x) < t. Thus 0 € L(rp;t). Next, let
x,Y,z € Xbe such that x- (y-z) € L(rp;t) and x-y € L(rp; t). Thenrp(x- (y-z)) < t and rp(x~y) <tsot
is an upper bound of {rp(x - (y - z)),rp(x - y)}. By (3.13), we have rp(x - z) < max{rp(x- (y-z)),rp(x- )}

t. Thus x-z € L(rp;t). Let x € L(gp;t). Then gp(x) < t. By (3.8), we have gp(0 ) < gp(x) <
Thus 0 € L(gp;t). Next, let x,y,z € X be such that x-(y-z) € L(gp;t) and x-y € L(gp;t). Then
gp(x-(y-z)) < tand gp(x-y) < t, so t is an upper bound of {gp(x - (y-2z)),gp(x-y)}. By (3.14),
we have gp(x z) < max{gp(x-(y-z)),gp(x-y)} < t. Thus x-z € L(gp;t). Let x € U(bp;t). Then
bp(x) > t. By (3.9), we have bp(0) > bp(x) > t. Thus 0 € U(bp;t). Next, let x,y,z € X be such
that x- (y-z) € U(bp;t) and x-y € U(bp;t). Then bp(x-(y-z)) > t and bp(x-y) > t, so t is a lower
bound of {bp(x - (y-z)),bp(x-y)}. By (3.15), we have bp(x-z) > min{bp(x- (y-z)),bp(x-y)} > t. Thus
x-z € U(bp;t). Hence, L(rp;t),L(gp;t), and U(bp;t) are implicative UP-filters of X.

Conversely, assume that for all t € [0,1], the sets L(rp;t),L(gp;t), and U(bp;t) are implicative UP-
filters of X if L(rp;t),L(gp; 1), and U(bp;t) are nonempty.

Let x € X. Then rp(x) € [0,1]. Choose t = rp(x). Thus rp(x) < t, so x € L(rp;t) # (. By assumption,
we have L(rp;t) is an implicative UP-filter of X and so 0 € L(rp;t). Thus mp(0) < t = rp(x). Next,
let x,y,z € X. Then rp(x-(y-z)),rp(x-y) € [0,1]. Choose t = max{rp(x- (y-z)),rp(x-y)}. Thus
tp(x-(y-z)) <tand rp(x-y) <t sox-(y-z),x-y € L(rp;t) # 0. By assumption, we have L(rp;t) is an
implicative UP-filter of X and so x -z € L(rp;t). Thus rp(x-z) <t =max{rp(x- (y-z)),rp(x-y)k

Let x € X. Then gp(x) € [0,1]. Choose t = gp(x). Thus gp(x) < t, so x € L(gp;t) # (). By assumption,
we have L(gp;t) is an implicative UP-filter of X and so 0 € L(gp;t). Thus gp(0) < t = gp(x). Next,
let x,y,z € X. Then gp(x-(y-2z)),gp(x-y) € [0,1]. Choose t = max{gp(x-(y-2z)),gp(x-y)}. Thus
gp(x-(y-z)) <tand gp(x-y) <t ,sox-(y-z),x-y € L(gp;t) # (. By assumption, we have L(gp;t) is an
implicative UP-filter of X and so x -z € L(gp;t). Thus gp(x-z) < t =max{gp(x-(y-2z)),gp(x-y)}

Let x € X. Then bp(x) € [0,1]. Choose t = bp(x). Thus bp(x) > t, so x € U(bp;t) # 0. By assumption,
we have U(bp;t) is an implicative UP-filter of X and so 0 € U(bp;t). Thus bp(0) > t = bp(x). Next,
let x,y,z € X. Then bp(x-(y-z)),bp(x-y) € [0,1]. Choose t = min{bp(x- (y-z)),bp(x-y)}. Thus
bp(x-(y-z)) >tand bp(x-y) > t,sox-(y-z),x-y € U(bp;t) # 0. By assumption, we have U(bp;t) is
an implicative UP-filter of X and so x -z € U(bp;t). Thus bp(x-z) >t = min{bp(x- (y-z)),bp(x-y)k

Therefore, P is a special picture fuzzy implicative UP-filter of X. O

Theorem 4.9. If P is a special picture fuzzy implicative UP- ﬁlter of X, then for all t € [0,1], the sets L™ (rp; 1),
L~ (gp;t), and U™ (bp;t) are implicative UP-filters of X if L~ (rp;t), L~ (gp; t), and U™ (bp;t) are nonempty.

Proof. Assume that P is a special picture fuzzy implicative UP-filter of X. Let t € [0,1] be such that
L~ (rp;t),L (gp;t), and U™ (bp;t) are nonempty.

Let x € L™ (rp;t). Then rp(x) < t. By (3.7), we have rp(0) < rp(x) < t. Thus 0 € L™ (rp;t). Next, let
x,y,z € Xbesuchthatx-(y-z) € L (rp;t)and x-y € L™ (rp;t). Thenrp(x-(y-z)) < tand rp(x-y) < t, so
t is an upper bound of {rp(x - (y-z)),rp(x-y)}. By (3.13), we have rp(x - z) < max{rp(x- (y-z)),vp(x-y)} <
t. Thus x-z € L™ (rp; t).

Let x € L7 (gp;t). Then gp(x) < t. By (3.8), we have gp(0) < g (x) < t. Thus 0 € L™ (gp;t).
Next, let x,y,z € X be such that x-(y-z) € L™ (gp;t) and x-y € L (gp;t). Then gp(x-(y-2z)) <
and gp(x-y) < t, so t is an upper bound of {gp(x - (y-z)),gp(x-y)}. By (3.14), we have gp(x z)
max{gp(x- (y-z)),gp(x-y)} <t. Thusx-z € L~ (gp; ).

Let x € UT(bp;t). Then bp(x) > t. By (3.9), we have bp(0) > bp(x) > t. Thus 0 € UT (bp;t).
Next, let x,y,z € X be such that x- (y-z) € Ut (bp;t) and x-y € Ut (bp;t). Then bp(x-(y-z)) >t
and bp(x-y) > t, so t is a lower bound of {bp(x - (y-z)), bp(x-y)}. By (3.15), we have bp(x-z) >
min{bp(x - (y-z)),bp(x-y)} > t. Thus x -z € U* (bp;1).

t
<
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Hence, L™ (rp;t), L (gp;t), and U™ (bp; t) are implicative UP-filters of X. O

Theorem 4.10. A PFS P in X is a special picture fuzzy comparative UP-filter of X if and only if for all t € [0, 1], the
sets L(rp;t), L(gp;t), and U(bp;t) are comparative UP-filters of X if L(rp; 1), L(gp; 1), and U(bp; t) are nonempty.

Proof. Assume that P is a special picture fuzzy comparative UP-filter of X. Let t € [0,1] be such that
L(rp;t),L(gp;t), and U(bp;t) are nonempty.

Let x € L(rp;t). Then rp(x) < t. By (3.7), we have rp(0) < rp(x) < t. Thus 0 € L(rp;t). Next, let
x,Y,z € Xbesuchthatx-((y-z)-y) € L(rp;t)and x € L(rp;t). Thenrp(x-((y-2z)-y)) < tand rp(x) < t, so
tis an upper bound of {rp(x- ((y-z)-y)), rp(x)}. By (3.16), we have rp(y) < max{rp(x- ((y-z)-y)), rp(x)} <
t. Thusy € L(rp;t).

Let x € L(gp;t). Then gp(x) < t. By (3.8), we have gp(0) < gp(x) < t. Thus 0 € L(gp;t). Next,
let x,y,z € X be such that x- ((y-z)-y) € L(gp;t) and x € L(gp;t). Then gp(x-((y-2z)-y)) < t and
gr(x) < t,sotisan upper bound of {gp(x- ((y-z)-y)), gr(x)}. By (3.17), we have gp(y) < max{gp(x- ((y-
z)-y)),gp(x)} < t. Thusy € L(gp;t).

Let x € U(bp;t). Then bp(x) > t. By (3.9), we have bp(0) > bp(x) > t. Thus 0 € U(bp;t). Next,
let x,y,z € X be such that x- ((y-z)-y) € U(bp;t) and x € U(bp;t). Then bp(x-((y-z)-y)) > t and
bp(x) > t, so t is a lower bound of {bp(x - ((y - z) -y)), bp(x)}. By (3.18), we have bp(y) > min{bp(x - ((y -
z)-y)),bp(x)} > t. Thusy € U(bp;t).

Hence, L(rp;t),L(gp;t), and U(bp;t) are comparative UP-filters of X.

Conversely, assume that for all t € [0,1], the sets L(rp;t),L(gp;t), and U(bp;t) are comparative UP-
filters of X if L(rp;t),L(gp;t), and U(bp;t) are nonempty.

Let x € X. Then rp(x) € [0,1]. Choose t = rp(x). Thus rp(x) < t, so x € L(rp;t) # (. By assumption,
we have L(rp;t) is a comparative UP-filter of X and so 0 € L(rp;t). Thus rp(0) < t = rp(x). Next,
let x,y,z € X. Then vp(x- ((y-2)-y)),rp(x) € [0,1]. Choose t = max{rp(x- ((y-z)-y)),rp(x)}. Thus
rp(x-((y-z)-y)) <tand rp(x) <t,sox-((y-z)-y),x € L(rp;t) # 0. By assumption, we have L(rp;t) is
a comparative UP-filter of X and soy € L(rp;t). Thus rp(y) <t =max{rp(x- ((y-z)-y)), rp(x)}

Let x € X. Then gp(x) € [0,1]. Choose t = gp(x). Thus gp(x) < t, so x € L(gp;t) # (. By assumption,
we have L(gp;t) is a comparative UP-filter of X and so 0 € L(gp;t). Thus gp(0) < t = gp(x). Next,
let x,y,z € X. Then gp(x-((y-z)-y)),gp(x) € [0,1]. Choose t = max{gp(x-((y-z)-y)),gp(x)}. Thus
gr(x-((y-z)-y)) <tand gp(x) <t,sox-((y-z)-y),x € L(gp;t) # 0. By assumption, we have L(gp;t) is
a comparative UP-filter of X and soy € L(gp;t). Thus gp(y) <t =max{gp(x-((y-2z)-y)), gp(x)}

Let x € X. Then bp(x) € [0,1]. Choose t = bp(x). Thus bp(x) > t, so x € U(bp;t) # (. By assumption,
we have U(bp;t) is a comparative UP-filter of X and so 0 € U(bp;t). Thus bp(0) > t = bp(x). Next,
let x,y,z € X. Then bp(x- ((y-2z)-y)),bp(x) € [0,1]. Choose t = min{bp(x- ((y-z)-y)),bp(x)}. Thus
bp(x-((y-z)-y)) =>tand bp(x) > t,sox-((y-z)-y),x € U(bp;t) # (. By assumption, we have U(bp;t)
is a comparative UP-filter of X and so y € U(bp;t). Thus bp(y) > t = min{bp(x- ((y-z) -y)), bp(x)}

Therefore, P is a special picture fuzzy comparative UP-filter of X. O

Theorem 4.11. If P is a special picture fuzzy comparative UP- ﬁlter of X, then for all t € [0,1], the sets L™ (rp; t),
L~ (gp;t), and U™ (bp;t) are comparative UP-filters of X if L~ (rp; t), L~ (gp; t), and U™ (bp; t) are nonempty.

Proof. Assume that P is a special picture fuzzy comparative UP-filter of X. Let t € [0,1] be such that
L~ (rp;t),L (gp;t), and U (bp; t) are nonempty.

Let x € L™ (rp;t). Then rp(x) < t. By (3.7), we have rp(0) < rp(x) < t. Thus 0 € L™ (rp;t). Next,
let x,y,z € X be such that x- ((y-z)-y) € L~ (rp;t) and x € L™ (rp;t). Then rp(x-((y-2z)-y)) < t and
Tp(x) < t, 50 tis an upper bound of {rp(x- ((y-z)-y)), rp(x)}. By (3.16), we have rp(y) < max{rp(x- ((y-
z)-y)),rp(x)} < t. Thusy € L™ (rp; t).

Let x € L™ (gp;t). Then gp(x) < t. By (3.8), we have gp(0) < gp(x) < t. Thus 0 € L™ (gp;t). Next,
let x,y,z € X be such that x- ((y-z)-y) € L~ (gp;t) and x € L~ (gp;t). Then gp(x-((y-2z)-y)) < t and
gr(x) < t, so tis an upper bound of {gp(x - ((y-z)-y)), gp(x)}. By (3.17), we have gp(y) < max{gp(x- ((y-
z)-y)),gp(x)} < t. Thusy € L (gp; t).
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Let x € U (bp;t). Then bp(x) > t. By (3.9), we have bp(0) > bp(x) > t. Thus 0 € U™ (bp;t). Next,
let x,y,z € X be such that x- ((y-z)-y) € U"(bp;t) and x € UT (bp;t). Then bp(x-((y-z)-y)) >t and
bp(x) > t, so t is a lower bound of {bp(x - ((y-z)-y)),bp(x)}. By (3.18), we have bp(y) > min{bp(x - ((y -
z)-y)),bp(x)} > t. Thusy € UT (bp; t).

Hence, L~ (rp;t), L~ (gp;t), and U™ (bp;t) are comparative UP-filters of X. O

Theorem 4.12. A PFS P in X is a special picture fuzzy shift UP-filter of X if and only if for all t € [0, 1], the sets
L(rp;t),L(gp;t), and U(bp;t) are shift UP-filters of X if L(vp; t), L(gp;t), and U(bp;t) are nonempty.

Proof. Assume that P is a special picture fuzzy shift UP-filter of X. Let t € [0,1] be such that L(rp;1t),
L(gp;t), and U(bp;t) are nonempty.

Let x € L(rp;t). Then rp(x) < t. By (3.7), we have rp(0) < rp(x) < t. Thus 0 € L(rp;t). Next, let
x,Y,z € X be such that x- (y-z) € L(rp;t) and x € L(rp;t). Then rp(x-(y-z)) < tand rp(x) < t,so tisan
upper bound of {rp(x - (y-z)), rp(x)}. By (3.19), we have rp(((z-y) - y) - z) <max{rp(x-(y-z)),rp(x)} < t.
Thus ((z-y)-y) -z € L(rp; t).

Let x € L(gp;t). Then gp(x) < t. By (3.8), we have gp(0) < gp(x) < t. Thus 0 € L(gp;t). Next, let
x,Y,z € Xbesuch thatx- (y-z) € L(gp;t) and x € L(gp;t). Then gp(x-(y-z)) < tand gp(x) < t,sotisan
upper bound of {gp(x - (y - 2)), gr(x)}. By (3.20), we have gp(((z-y) -y) -z) < max{gp(x-(y-2)),gr(x)} < t.
Thus ((z-y) -y) -z € L(gp; t).

Let x € U(bp;t). Then bp(x) > t. By (3.9), we have bp(0) > bp(x) > t. Thus 0 € U(bp;t). Next, let
x,Y,z € X be such that x- (y-z) € U(bp;t) and x € U(bp;t). Then bp(x-(y-z)) > tand bp(x) >t,sotisa
lower bound of {bp(x - (y - z)), bp(x)}. By (3.21), we have bp(((z-y) -y) - z) = min{bp(x- (y-z)),bp(x)} > t.
Thus ((z-y) -y) -z € U(bp; t). Hence, L(rp;t),L(gp;t), and U(bp;t) are shift UP-filters of X.

Conversely, assume that for all t € [0, 1], the sets L(rp;t), L(gp;t), and U(bp;t) are shift UP-filters of X
if L(rp;t),L(gp;t), and U(bp;t) are nonempty.

Let x € X. Then rp(x) € [0,1]. Choose t = rp(x). Thus rp(x) < t, so x € L(rp;t) # . By assumption,
we have L(rp;t) is a shift UP-filter of X and so 0 € L(rp;t). Thus rp(0) < t = rp(x). Next, let x,y,z € X.
Then rp(x - (y-2z)),mp(x) € [0,1]. Choose t = max{rp(x-(y-z)),rp(x)}. Thus rp(x-(y-2z)) < t and
Tp(x) < t,sox-(y-z),x € L(rp;t) # 0. By assumption, we have L(rp;t) is a shift UP-filter of X and so
((z-y)-y)-z € L{rp;t). Thus rp(((z-y) - y) - 2) <t =max{rp(x- (y-z)),Tp(x)}.

Let x € X. Then gp(x) € [0,1]. Choose t = gp(x). Thus gp(x) < t, so x € L(gp;t) # (). By assumption,
we have L(gp;t) is a shift UP-filter of X and so 0 € L(gp;t). Thus gp(0) < t = gp(x). Next, let x,y,z € X.
Then gp(x - (y-z)),gp(x) € [0,1]. Choose t = max{gp(x- (y-z)),gp(x)}. Thus gp(x-(y-z)) < t and
gp(x) < t,sox-(y-z),x € L(gp;t) # 0. By assumption, we have L(gp;t) is a shift UP-filter of X and so
((z-y)-y)-z € Ligp;t). Thus gp(((z-y) -y) -z) <t =max{gp(x- (y-2)),gp(x)}

Let x € X. Then bp(x) € [0,1]. Choose t = bp(x). Thus bp(x) > t, so x € U(bp;t) # 0. By assumption,
we have U(bp;t) is a shift UP-filter of X and so 0 € U(bp;t). Thus bp(0) > t = bp(x). Next, let x,y,z € X.
Then bp(x- (y - z)),bp(x) € [0,1]. Choose t = min{bp(x- (y-z)),bp(x)}. Thus bp(x-(y-z)) > t and
bp(x) > t,s0x-(y-z),x € U(bp;t) # (. By assumption, we have U(bp; 1) is a shift UP-filter of X and so
((z-y)-y)-z € U(bp;t). Thus bp(((z-y)-y)-z) =t =min{bp(x- (y-z)),bp(x)}

Therefore, P is a special picture fuzzy shift UP-filter of X. O

Theorem 4.13. If P is a special picture fuzzy shzft UP-filter of X, then for all t € [0,1], the sets L™ (rp;t), L™ (gp; 1),
and U™ (bp; t) are shift UP-filters of X if L™ (vp;t), L~ (gp;t), and U™ (bp;t) are nonempty.

Proof. Assume that P is a special picture fuzzy shift UP-filter of X. Let t € [0,1] be such that L™ (rp;t),
L~ (gp;t), and U™ (bp;t) are nonempty.

Let x € L™ (rp;t). Then rp(x) < t. By (3.7), we have rp(0) < rp(x) < t. Thus 0 € L™ (rp;t). Next, let
Xx,y,z € Xbe such thatx- (y-z) € L™ (rp;t) and x € L™ (rp;t). Then rp(x- (y-z)) < tand rp(x) < t,so tis
an upper bound of {rp(x- (y-z)),rp(x)}. By (3.19), we have rp(((z-y) -y) - z) < max{rp(x-(y-z)),rp(x)} < t.
Thus ((z-y)-y)-z€ L (rp;t).
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Let x € L (gp;t). Then gp(x) < t. By (3.8), we have gp(0) < gp(x) < t. Thus 0 € L™ (gp; t). Next, let
x,Y,z € Xbesuch thatx-(y-z) € L7 (gp;t) and x € L™ (gp;t). Then gp(x-(y-z)) < tand gp(x) < t,so tis
an upper bound of {gp(x - (y-z)), gp(x)}. By (3.20), we have gp(((z-y) -y) -z) < max{gp(x- (y-z)),gp(x)} <
t. Thus ((z-y)-y)-z € L (gp;t).

Let x € UT(bp;t). Then bp(x) > t. By (3.9), we have bp(0) > bp(x) > t. Thus 0 € UT (bp; t). Next, let
x,Y,z € Xbesuch that x- (y-z) € UT(bp;t) and x € Ut (bp;t). Thenbp(x-(y-z)) > tand bp(x) > t,sotis
a lower bound of {bp(x - (y-z)), bp(x)}. By (3.21), we have bp(((z-y) -y) - z) > min{bp(x- (y-z)), bp(x)} > t.
Thus ((z-y)-y) -z € Ut (bp;1).

Hence, L™ (rp;t), L (gp;t), and U™ (bp;t) are shift UP-filters of X. O

Theorem 4.14. A PFS P in X is a special picture fuzzy UP-ideal of X if and only if for all t € [0,1], the sets
L(rp;t),L(gp;t), and U(bp;t) are UP-ideals of X if L(rp;t),L(gp; 1), and U(bp;t) are nonempty.

Proof. Assume that P is a special picture fuzzy UP-ideal of X. Let t € [0, 1] be such that L(rp; 1), L(gp;1t),
and U(bp;t) are nonempty.

Let x € L(rp;t). Then rp(x) < t. By (3.7), we have rp(0) < rp(x) < t. Thus 0 € L(rp;t). Next, let
x,Y,z € X be such that x- (y-z) € L(rp;t) and y € L(rp;t). Then rp(x-(y-2z)) < tand rp(y) < t, so tis
an upper bound of {rp(x- (y-z)),Tp(y)}. By (3.22), we have rp(x-z) < max{rp(x - (y-z)),rp(y)} < t. Thus
x-z € L(rp;t).

Let x € L(gp;t). Then gp(x) < t. By (3.8), we have gp(0) < gp(x) < t. Thus 0 € L(gp;t). Next, let
x,Y,z € X be such that x- (y-z) € L(gp;t) and y € L(gp;t). Then gp(x-(y-z)) < tand gp(y) < t,sot
is an upper bound of {gp(x - (y - z)), gr(y)}. By (3.23), we have gp(x - z) < max{gp(x- (y-z)),gr(y)} < t.
Thus x-z € L(gp; t).

Let x € U(bp;t). Then bp(x) > t. By (3.9), we have bp(0) > bp(x) > t. Thus 0 € U(bp;t). Next, let
x,Y,z € X be such that x- (y-z) € U(bp;t) and y € U(bp;t). Then bp(x-(y-z)) > tand bp(y) > t,so tis
a lower bound of {bp(x - (y-z)),bp(y)}. By (3.24), we have bp(x -z) > min{bp(x- (y-z)),bp(y)} > t. Thus
x-z € U(bp;t). Hence, L(rp;t), L(gp;t), and U(bp;t) are UP-ideals of X.

Conversely, assume that for all t € [0,1], the sets L(rp;t), L(gp;t), and U(bp;t) are UP-ideals of X if
L(rp;t),L(gp;t), and U(bp;t) are nonempty.

Let x € X. Then rp(x) € [0,1]. Choose t = rp(x). Thus rp(x) < t, so x € L(rp;t) # 0. By assumption,
we have L(rp;t) is a UP-ideal of X and so 0 € L(rp;t). Thus rp(0) < t = rp(x). Next, let x,y,z € X. Then
rp(x- (y-2)),7mp(y) € [0,1]. Choose t = max{rp(x- (y-z)),mp(y)}. Thus rp(x- (y-z)) < tand rp(y) < t, so
x-(y-z),y € L(rp;t) # (. By assumption, we have L(rp;t) is a UP-ideal of X and so x -z € L(rp;t). Thus
rp(x-z) < t = max(rp(x- (y - 2)), Tp(y)):

Let x € X. Then gp(x) € [0,1]. Choose t = gp(x). Thus gp(x) < t, so x € L(gp;t) # (. By assumption,
we have L(gp;t) is a UP-ideal of X and so 0 € L(gp;t). Thus gp(0) < t = gp(x). Next, let x,y,z € X. Then
gr(x-(y-z)),gr(y) € [0 1]. Choose t = max{gp(x- (y-z)),gpr(y)}. Thus gp(x-(y-z)) < tand gp(y) < t,
so x-(y-z),y € L(gp;t) # (. By assumption, we have L(gp, ) is a UP-ideal of X and so x-z € L(gp;1t).
Thus gp(x-z) < t =max{gp(x- (y-2z)),gr(y)}

Let x € X. Then bp(x) € [0,1]. Choose t = bp(x). Thus bp(x) > t, so x € U(bp;t) # (. By assumption,
we have U(bp; 1) is a UP-ideal of X and so 0 € U(bp;t). Thus bp(0) >t = bp(x). Next, let x,y,z € X. Then
bp(x-(y-z)),bp(y) € [0,1]. Choose t = min{bp(x-(y-z)),bp(y)}. Thus bp(x-(y-z)) > tand bp(y) > t,
sox-(y-z),y € U(bp;t) # 0. By assumption, we have U(bp;t) is a UP-ideal of X and so x -z € U(bp;1).
Thus bp(x-z) > t = min{bp(x- (y-2)), br(y)}

Therefore, P is a special picture fuzzy UP-ideal of X. O

Theorem 4.15. If P is a special picture fuzzy UP-ideal of X, then for all t € [0,1], the sets L~ (rp;t), L™ (gp;t),
and U™ (bp; t) are UP-ideals of X if L™ (vp;t), L~ (gp; t), and U™ (bp;t) are nonempty.

Proof. Assume that P is a special picture fuzzy UP-ideal of X. Let t € [0,1] be such that L™ (rp;t), L™ (gp; t),
and U*(bp;t) are nonempty.
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Let x € L™ (rp;t). Then rp(x) < t. By (3.7), we have rp(0) < rp(x) < t. Thus 0 € L™ (rp;t). Next, let
x,Y,z € Xbesuch that x- (y-z) € L™ (rp;t) andy € L™ (rp;t). Then rp(x-(y-2z)) < tand rp(y) < t, so
t is an upper bound of {rp(x - (y-z)),vp(y)}. By (3.22), we have rp(x - z) < max{rp(x- (y-z)),vp(y)} < t.
Thus x-z € L= (rp;t). Let x € L™ (gp;t). Then gp(x) < t. By (3.8), we have gp(0) < gp(x) < t.
Thus 0 € L= (gp;t). Next, let x,y,z € X be such that x- (y-z) € L™ (gp;t) and y € L (gp;t). Then
gr(x-(y-z)) < tand gp(y) < t, so t is an upper bound of {gp(x- (y-z)),gpr(y)}. By (3.23), we have
gp(x-z) < max{gp(x-(y-z)),gp(y)} < t. Thus x-z € L~ (gp;t). Let x € UT(bp;t). Then bp(x) > t. By
(3.9), we have bp(0) > bp(x) > t. Thus 0 € U™ (bp;t). Next, let x,y,z € Xbe such thatx- (y-z) € U (bp;t)
andy € U (bp;t). Then bp(x-(y-z)) > tand bp(y) > t, so tis a lower bound of {bp(x- (y-z)),bp(y)}. By
(3.24), we have bp(x-z) > min{bp(x- (y-z)),bp(y)} > t. Thusx-z € U (bp;t). Hence, L~ (rp;t), L (gp;t),
and U™ (bp;t) are UP-ideals of X. O

Theorem 4.16. A PFS P in X is a special picture fuzzy strong UP-ideal of X if and only if the sets E(rp;1p(0)),
E(gp; gr(0)), and E(bp; bp(0)) are strong UP-ideals of X.

Proof. Assume that P is a special picture fuzzy strong UP-ideal of X. By Theorem 3.19, we have P is
constant, that is, rp, gp, and bp are constant. Thus

Tp(x) =1p(0)
(vx € X) [ gp(x) =gp(0) | .
bp(x) =bp(0)
Hence, E(rp;1p(0)) = X, E(gp;gpr(0)) = X, and E(bp;bp(0)) = X and so E(rp;rp(0)), E(gp; gp(0)), and
E(bp; bp(0)) are strong UP-ideals of X.

Conversely, assume that E(rp;Tp(0)), E(gp; gp(0)), and E(bp; bp(0)) are strong UP-ideals of X. Then
E(rp;Tp(0)) = X, E(gp; gr(0)) = X, and E(bp; bp(0)) = X and so

Tp(x) = 1p(0)
(vx € X) | gp(x) =gp(0) | .
bp (0

bp(x) = )
Thus rp, gp, and bp are constant, that is, P is constant. By Theorem 3.19, we have P is a special picture
fuzzy strong UP-ideal of X. O
Definition 4.17. Let P be a PFS in X. For any «, 3,y € [0, 1], the sets
UULp(e, B,v) ={x € X|Tp(x) = &, gp(x) = B,bp(x) <V},
LLUp(o, B,v) ={x € X|1p(x) < o, gp(x) < B,bp(x) =V},
o, gp(x) = B, bp(x) = v}

)
Ep(a, B,v) ={x e X|rp(x) =
)-

are called a UUL-(«, 3,v)-level subset, a LLU-(«, 3,v)-level subset, and an E-(«, 3,7v)-level subset of P, re-
spectively. Then we see that

UULp (o, B,v) = U(rp; &) N U(gp; B) N L(bp;7y),
LLUp(e, B,v) = L(rp; o) N L(gp; B) N U(bp;v),
EP((XI BIY) =t TP, X )ﬁE(QP,B)ﬂE(bP,Y)

Corollary 4.18. A PFS P in X is a special picture fuzzy UP-subalgebra of X if and only if for all o, B,y €
[0,1], LLUp (e, B, V) is a UP-subalgebra of X if LLUp (e, B,7v) is nonempty.

Proof. 1t is straightforward by Theorems 4.2 and 2.5. O

—

Corollary 4.19. A PFS P in X is a special picture fuzzy near UP-filter of X if and only if for all o, 3,y €
[0,1], LLUp (e, B,7) is a near UP-filter of X if LLUp(x, 3,7) is nonempty.

Proof. 1t is straightforward by Theorems 4.4 and 2.5. O
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Corollary 4.20. A PFS P in X is a special picture fuzzy UP-filter of X if and only if for all o, 3,y € [0,1],
LLUp (e, B,v) is a UP-filter of X if LLUp (, B,Y) is nonempty.

Proof. 1t is straightforward by Theorems 4.6 and 2.5. O

Corollary 4.21. A PFS P in X is a special picture fuzzy implicative UP-filter of X if and only if for all o, 3,y €
[0,1], LLUp (e, B,7) is a implicative UP-filter of X if LLUp(«, 3,7) is nonempty.

Proof. It is straightforward by Theorems 4.8 and 2.5. O

Corollary 4.22. A PFS P in X is a special picture fuzzy comparative UP-filter of X if and only if for all , 3,y €
[0,1], LLUp (e, B,7) is a comparative UP-filter of X if LLUp (e, 3,7y) is nonempty.

Proof. It is straightforward by Theorems 4.10 and 2.5. O

Corollary 4.23. A PFS P in X is a special picture fuzzy shift UP-filter of X if and only if for all o, B,y €
[0,1], LLUp (, B, V) is a shift UP-filter of X if LLUp(x, 3,Y) is nonempty.

Proof. It is straightforward by Theorems 4.12 and 2.5. O

Corollary 4.24. A PFS P in X is a special picture fuzzy UP-ideal of X if and only if for all , 3,y € [0,1],
LLUp(x, B,v) is a UP-ideal of X if LLUp («, B,7Y) is nonempty.

Proof. 1t is straightforward by Theorems 4.14 and 2.5. O

Corollary 4.25. A PFS P in X is a special picture fuzzy strong UP-ideal of X if and only if Ep (rp(0), gp(0), bp(0))
is a strong UP-ideal of X, that is, E(rp,Tp(0)) = X, E(gp, gp(0)) = X, and E(bp, bp(0)) = X.

Proof. 1t is straightforward by Theorems 4.16 and 2.5. O

5. Conclusions

In this paper, we have introduced the eight new concepts of picture fuzzy sets by means of a spe-
cial type: special picture fuzzy UP-subalgebras, special picture fuzzy near UP-filters, special picture
fuzzy UP-filters, special picture fuzzy implicative UP-filters, special picture fuzzy comparative UP-filters,
special picture fuzzy shift UP-filters, special picture fuzzy UP-ideals, and special picture fuzzy strong
UP-ideals of UP-algebras and investigated some of their important properties. Then, we get the diagram
of generalization of PFSs in UP-algebras as shown in Figure 1 and sufficient conditions of PFSs as shown
in Figure 2.

(3.7),(3.8), (3.9)
Special picture fuzzy UP-subalgebra
Special picture fuzzy near UP-filter
Special picture fuzzy UP-filter
/ Special piClureTfuzZy UP-ideal \
Special picture fuzzy comparative UP-filter Special picture fuzzyTimplicalive UP-filter Special picture fuzzy shift UP-filter

Special picture fuzzy strong UP-ideal

Figure 1: PFSs in UP-algebras by means of a special type
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Picture fuzzy set

+(3.38)
Special picture fuzzy UP-subalgebra

+(3.44) +(3.10),3.11), +(3.41) 1+(3.23) (339)+ | | +(3.40) | +(3.10),(3.11), | +(3.10),(3.11),
(3.12),(3.35) (3.12),331) | (3.12),3.37)

Special picture fuzzy near UP-filter

Special picture fuzzy UP-filter

l +(3.30)
+(3.29 +(3.42 +(3.34) +(3.36, 3.43)+
@29 642 @39 Special picture fuzzy UP-ideal @39 G4
1 +(3.32)/(3.33)
Special picture fuzzy comparative UP-filter — Special picture fuzzy implicative UP-filter Special picture fuzzy shift UP-filter +

Special picture fuzzy strong UP-ideal

Figure 2: Sufficient conditions of PFSs in UP-algebras

In our future study, we will apply the concepts/results to other type of PFSs in UP-algebras. Also, we
will study interval-valued picture fuzzy sets/soft sets/cubic sets/rough sets of PFSs in UP-algebras.
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