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Abstract

The next element in the 3n+ 1 sequence is defined to be (3n+ 1)/2 if n is odd or n/2 otherwise. The Collatz conjecture
states that no matter what initial value of n is chosen, the sequence always reaches 1 (where it goes into the repeating sequence
(1, 2, 1, 2, 1, 2, . . .)). The only known Collatz cycle is (1, 2). Let c be an odd integer not divisible by 3. Similar cycles exist for the
more general 3n+ c sequence. The 3n+ c cycles are commonly grouped according to their length and number of odd elements.
The smallest odd element in one of these cycles is greater than the smallest odd elements of the other cycles in the group. A
parity vector corresponding to a cycle consists of 0’s for the even elements and 1’s for the odd elements. A parity vector generated
by the ceiling function is used to determine this smallest odd element. Similarly, the largest odd element in one of these cycles
is less than the largest odd elements of the other cycles in the group. A parity vector generated by the floor function is used to
determine this largest odd element. This smallest odd element and largest odd element appear to be in the same cycle. This
means that the parity vector generated by the floor function can be rotated to match the parity vector generated by the ceiling
function. Two linear congruences are involved in this rotation. The natural numbers generated by one of these congruences
appear to be uniformly distributed (after sorting).
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1. Introduction

Halbeisen and Hungerbühler [2] found new techniques which allow a refined analysis of rational (and
hence integer) Collatz cycles. In particular, they prove optimal estimates for the length of a cycle having
positive elements in terms of its minimum. Their main results are reproduced here since they are directly
applicable to 3n+ c cycles. Most lemmas are omitted.
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2. Halbeisen and Hungerbühler’s Results for Collatz Cycles

For x ∈ R let g0(x) = x/2 and g1(x) = (3x + 1)/2. Let Q[(2)] denote the local ring of fractions of
Z at the prime ideal(2), i.e. the domain of all rational numbers having (written in least terms) an odd
denominator. A number p/q ∈ Q[(2)] with odd q is considered even or odd according to the parity of
the numerator p. Then the Collatz sequence generated by x0 ∈ Q[(2)] is defined by xn = g0(xn−1) if xn−1
is even or g1(xn−1) if xn−1 is odd for n ∈ N. Let Sl,n denote the set of all 0-1 sequences of length l
containing exactly n ones, Sl = ∪ln=0Sl,n and S = ∪l∈NSl. With every s = (s1, . . . , sl) ∈ Sl we associate
the affine function φs : R → R, φs = gsl ◦ . . . ◦ gs2 ◦ gs1 . A sequence (x0, . . . , xl) of real numbers xi is
called a pseudo-cycle of length l if there exists s = (s1, . . . , sl) ∈ Sl such that (1) φs(x0) = x0 ∈ Q[(2)] and (2)
gsi+1(xi) = xi+1 for i = 0, . . . , l− 1.

Notice that if p/q ∈ Q with 2r|q then 2r|q̃ where q̃ denotes the denominator of gi(p/q) (i = 0, 1).
Hence every element of a pseudo-cycle is in Q[(2)]. Thus, if p/q and gi(p/q) = p̃/q̃ are consecutive
elements of a pseudo-cycle, then i = 0 if p is even (since else p̃/q̃ /∈ Q[(2)]) or i = 1 if p is odd (since else
p̃/q̃ /∈ Q[(2)]). The conclusion of this observation is given by the following lemma 2.1.

Lemma 2.1. The set of pseudo-cycles coincides with the set of Collatz cycles in Q[(2)]. Cycles consist of either
positive or negative elements.

The function ϕ : S → N will be defined recursively by ϕ(Ø) = 0, ϕ(s0) = ϕ(s), and ϕ(s1) =
3ϕ(s) + 2l(s) where s denotes an arbitrary element of S and l(s) the length of s. The function ϕ is
computed explicitly by ϕ(s) =

∑l(s)
j=1 sj3

sj+1+...+sl(s)2j−1.
A consequence of the above definition is the decomposition formula ϕ(ss̄) = 3n(s̄)ϕ(s) + 2l(s)ϕ(s̄).

Here ss̄ is the concatenation of s, s̄ ∈ S, and n(s) denotes the number of 1’s in the sequence s. The next
lemma 2.2 shows how ϕ is used to explicitly compute the function φs.

Lemma 2.2 ([3, Lagarias]). For arbitrary s ∈ S, φs(x) =
3n(s)x+ϕ(s)

2l(s) and hence for every s ∈ S there exists a
unique x0 ∈ Q[(2)] which generates a Collatz cycle in Q[(2)] of length l(s) and which coincides with the pseudo-
cycle generated by s. The value x0 is given by x0 =

ϕ(s)

2l(s)−3n(s) .

Proof. The proof is by induction with respect to l(s). (1) l(s) = 1: This is checked from the definition. (2)

l(s) > 1: If s = s̄0 then φs̄0(x) =
φs̄(x)

2 =
3n(s̄)x+ϕ(s̄)

2·2l(s̄) =
3n(s)x+ϕ(s)

2l(s) . The case s = s̄1 is analogous.

For s ∈ Sl let σ(s) denote the orbit of s in Sl generated by the left-shift permutation λl : (s1, . . . , sl)→
(s2, . . . , sl, s1), i.e. σ(s) := {λkl (s) : k = 1, . . . , l}. Furthermore, let Ml,n denote maxs∈Sl,n{mint∈σ(s)ϕ(t)}.

Now suppose the Collatz conjecture is verified for all initial values x0 6 m. If one can then show that
∀n, l < L :

Ml,n
2l−3n 6 m, it follows that the length of a Collatz cycle in N which does not contain 1 is at least

L.
Let s̃ denote the sequence for which ϕ attains the value Ml,n.

Lemma 2.3. Let n 6 l be natural numbers. Let s̃i := din/le − d(i − 1)n/le (for 1 6 i 6 l). Then ϕ(s̃) =
mint∈σ(s̃){ϕ(t)} =Ml,n.

Corollary 2.4. For every l and n 6 l we have Ml,n =
∑l
j=1(djn/le− d(j− 1)n/le)2j−13n−djn/le.

3. The Minimum Element in a 3n+ c Cycle

Setting c to 2l(s) − 3n(s) in Lemma 2.2 gives integer 3n+ c cycles. A staircase for s̃ where l = 27 and
n = 17 along with a staircase representing the partial sums of bin/lc− b(i− 1)n/lc is given in Figure 1.
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Figure 1: staircase for s̃ and the partial sums of bin/lc− b(i− 1)n/lc

The staircase using the floor function can be viewed as being an upside-down staircase where Hal-
beisen and Hungerbühler’s logic can be used to find a lower bound of the maximum odd element in a
3n+ c cycle. Let tj = djn/le− d(j− 1)n/le, j = 1, . . . , l. This parity vector is an element of Sl,n. Let r
denote gcd(l,n). The parity vector bjn/lc− b(j− 1)n/lc, j = 1, . . . , l, consists of r identical sub-vectors.
Similarly, the parity vector tj consists of r identical sub-vectors and each of these sub-vectors is the same
as the corresponding sub-vector of bjn/lc− b(j− 1)n/lc, j = 1, . . . , l, except for the first and last elements.
First suppose that l and n are relatively prime. When the parity vector bjn/lc− b(j− 1)n/lc, j = 1, . . . , l,
is right-rotated by one position (corresponding to a multiplication by 2), it matches tj except for the
first two elements of each sub-vector. The first mismatch corresponds to a loss of 3n−1 and the second
mismatch corresponds to a gain of 2 · 3n−1. In general, the loss is

∑r−1
i=0 2i(l/r)3n−1−i(n/r). Let Nl,n

denote 2Ml,n −
∑r−1
i=0 2i(l/r)3n−1−i(n/r). A primitive 3n+ c cycle doesn’t have any common divisors of

its elements. A generalization of Halbeisen and Hungerbühler’s result is given by Corollary 3.1:

Corollary 3.1. If c = 2l − 3n, Ml,n is greater than or equal to the minimum odd elements in the 3n+ c cycles
corresponding to s ∈ Sl,n (not necessarily primitive) and Nl,n is less than or equal to the maximum odd elements
in the cycles.

The elements of the 3n+ c cycles are ϕ(t)t∈σ(s) where s ∈ Sl,n. From the definition of Nl,n, it is not
apparent that it is in a cycle, but it appears to be in the same cycle as Ml,n.

For example, for (l,n) = (6, 4), the parity vector for Ml,n is (1, 1, 0, 1, 1, 0), c = −17, and the odd
elements of the cycle containing Ml,n and Nl,n are (85, 119, 85, 119). There is only one more element
in Sl,n in this case and its odd elements are (65, 89, 125, 179). The smallest odd element in the cycle
containing Ml,n (equal to 85) is greater than 65 and the largest odd element in the cycle containing Nl,n
(equal to 119) is less than 179. The cycle with odd elements of (85, 119) is not primitive and reduces to
a cycle with odd elements of (5, 7) for c = −1. When l and n are not relatively prime and c = 2l − 3n,
the cycles generated from Ml,n are not primitive. This is due to the duplicated sub-vectors in the parity
vector forming a geometric progression. This geometric progression is the same as in the expansion of
(ax−bx)/(a−b). Reducing the cycle generated fromM6,4 effectively divides 26 − 34 by (26 − 34)/(23 − 32).

When l = 11 and n = 7, Ml,n = 3767, Nl,m = 6805, and 2l − 3n = −139. The quotient 3767/139 (ap-
proximately equal to 27) is greater than the minimum odd element in the c = −1 cycle of (34, 17, 25, 37, 55
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, 82, 41, 61, 91, 136, 68) and 6805/139 (approximately equal to 49) is less than the maximum odd element.
For the c = −1 cycle of (5, 7, 10), M3,2 = 5 and N3,2 = 7 (−1 equals 23 − 32). For c = −17, the cycles are
(85, 119, 170, 85, 119, 170), (103, 146, 73, 101, 143, 206), and (65, 89, 125, 179, 260, 130) (26 − 34 = −17). The
first cycle contains M6,4 (equal to 85) and N6,4 (equal to 119). As expected, 85 is greater than 73 and 65,
and 119 is less than 143 and 179. The cycle (85, 119, 170) is not primitive and reduces to the above c = −1
cycle. For the c = 1 cycle of (2, 1), 22 − 31 = 1 and M2,1 = N2,1 = 1. There can be no other such c = 1
cycles due to the Catalan conjecture (proved by Mihǎilescu [5]). This theorem states that the only natural
number solutions of xa − yb are x = 3, a = 2, y = 2, and b = 3. This leaves the possibility of 3n+ c cycles
where s ∈ Sl,n that are not primitive and reduce to c = 1 cycles.

All the parity vectors in S are used up by the 3n+ c cycles where c = 2l − 3n. Two 3n+ c cycles
with different c values can’t have the same parity vector. For example, the elements of a c = 5 cycle are
(19, 31, 49, 76, 38) and a c = 7 sequence having the same parity vector is (65, 101, 155, 236, 118, . . .). The
ratios of the odd elements are 0.2923, 0.3069, and 0.3161 and would have to keep increasing to match the
iterations of the 3n+ 5 cycle. So the unreduced 3n+ c cycles where c = 2l − 3n account for all possible
primitive 3n+ c cycles.

4. Statistical Results

Let d denote the rotation of the floor function parity vector required to match the ceiling function
parity vector (measured in the clockwise direction). This quantity appears to satisfy the congruence
n · d ≡ −1 mod l when gcd(l,n) = 1. A similar congruence is d(n − x) − (l − d)x ≡ −1 mod l. This
congruence was derived using the staircases and can be solved given the d value so that the values of
(n− x, x) are not specific to properties of 3n+ c cycles.

For a real number x, let [x] denote the integral part of x and {x} the fractional part. The sequence
ω = (xn), n = 1, 2, 3, . . . of real numbers is said to be uniformly distributed modulo 1 (abbreviated u.d. mod
1) if for every pair a,b of real numbers with 0 6 a < b 6 1 we have limN→∞ A([a,b);N;ω)

N = b− a. The
formal definition of u.d. mod 1 was given by Weyl [6, 7]. Let ∆ : 0 = z0 < z1 < z2 < . . . be a subdivision
of the interval [0,∞) with limk→∞ zk = ∞. For zk−1 6 x < zk put [x]∆ = zk−1 and {x}∆ = x−zk−1

zk−zk−1
so that

0 6 {x}∆ < 1. The sequence of (xn), n = 1, 2, 3, . . . of non-negative real numbers is said to be uniformly
distributed modulo ∆ (abbreviated u.d. mod ∆) if the sequence ({xn}∆), n = 1, 2, 3, . . . is u.d. mod 1. The
notion of u.d. mod ∆ was introduced by LeVeque [4].

If f is a function having a Riemann integral in the interval [a,b], then its integral is the limit of Riemann
sums taken by sampling the function f in a set of points chosen from a fine partition of the interval. This
is then a criterion for determining if a sequence is uniformly distributed. A sequence of real numbers
is uniformly distributed mod 1 if and only if for every Riemann-integrable function f on [0, 1] one has
limN→∞ 1/N

∑
n6N f({xn}) =

∫1
0 f(x)dx. In the following, evidence that n− x and x are u.d. mod ∆ is

presented using this criterion and Weyl’s criterion [6, 7].
Weyl’s criterion is that the sequence (γn), n = 1, 2, 3, . . ., is u.d. mod 1 if and only if

lim
N→∞ 1/N

N∑
n=1

e2πimγn = 0

for every integer m 6= 0. In the following, the z increments in the subdivision are set to
√

2 to avoid any
aliasing with the integer n− x and x values. A plot of the resulting sequence generated from the sorted
n− x values for n = 1, . . . , l− 1 and l = 997 is given in Figure 2.
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Figure 2: sequence generated from the sorted n− x values for n = 1, . . . , l− 1 and l = 997

The red curve corresponds to a linear least-squares fit of the data. In the following, (γn) is set to such
sequences and the moduli of the complex-valued results are computed. The moduli for l = 1999, n− x,
and m = 1 are given in Figure 3.

Figure 3: Moduli for l = 1999, n− x, and m = 1

A cubic least-squares fit of the curve (where R-squared=0.9999) is included (the red curve). The moduli
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for l = 1999, x, and m = 1 (excluding 16 values of zero in the input sequence) are given in Figure 4.

Figure 4: Moduli for l = 1999, x, and m = 1

The moduli for l = 9973, n− x, and m = 10 are given in Figure 5.

Figure 5: Moduli for l = 9973, n− x, and m = 10
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The moduli for l = 9973, x, and m = 10 (excluding 18 values of zero in the input sequence) are given
in Figure 6.

Figure 6: Moduli for l = 9973, x, and m = 10

In general, there are m− 1 oscillations in such curves.
The functions f(x) to be considered are x, x2, x3, x4,

√
x,

√√
x, log(x), ex, sin(x), cos(x), tan(x), and

1
a2+x2 . The values of

∫1
0 f(x)dx are 1/2, 1/3, 1/4, 1/5, 2/3, 4/5, −1, 2.72, 0.84, 0.54, 1.56, and 1

a tan−1 x
a

(equal to 0.23 for a = 2 and 0.11 for a = 3) respectively. For l = 997 and the sequence generated from x,
the results are 0.49, 0.31, 0.22, 0.17, 0.66, 0.80, −1.00, 2.69, 0.84, 0.56, 1.45, 0.23 (for a = 2), and 0.11 (for
a = 3) respectively. For l = 9973 and the sequence generated from n− x, the results are 0.50, 0.34, 0.25,
0.20, 0.67, 0.80, −0.97, 2.74, 0.84, 0.54, 1.55, 0.23 (for a = 2), and 0.11 (for a = 3) respectively.

The trigonometric functions require a fixed amount to be added to the sequence values (apparently
to change the phase). The exponential function also requires a fixed amount to be added to the sequence
values - the same as for the cosine function. Apparently, this is due to Euler’s formula eix = cos(x) + i ·
sin(x). Denote the amounts for sine and cosine by j and k respectively. These values satisfy the equation
j2 +k2 = cos(1), similar to the formula sin(x)2 + cos(x)2 = 1. They also satisfy the equation j/k =

√
tan(1),

similar to the formula sin(x)/ cos(x) = tan(x). The amount required for the sine function is sin−1(cos(1)).
The amount required for the cosine function can be determined by using the formula j2 + k2 = cos(1).
The amount required for the tangent function is 1/e (e = tan(1)/j).

5. Conclusion

Halbeisen and Hungerbühler’s function Ml,n is applied to 3n + c cycles and the corresponding
function Nl,n is introduced. The congruences n · d ≡ −1 mod l and d(n − x) − (l − d)x ≡ −1 mod l,
gcd(l,n) = 1, are involved in rotating the floor function parity vector to match the ceiling function parity
vector. All primitive 3n+ c cycles are shown to be generated from cycles (possibly unreduced) where
c = 2l − 3n. Future research would involve determining the properties of the purportedly uniformly
distributed sequence mentioned above. Cox [1] investigated convolving the zeta function zeros with the
Möbius function. This method is applicable to any uniformly distributed sequence.
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