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Abstract

The purpose of this research is to formulate a new algorithm by combining a viscosity-type method with the extragradient
algorithm and explicit step size rule to figure out the equilibrium problems involving pseudo-monotone and Lipschitz-type
continuous bi-function in a real Hilbert space. A strong convergence theorem is well-established by the use of certain mild
conditions on the bi-function, as well as some conditions on the iterative control parameters. The designed algorithm uses a
non-monotonic step size rule based on the local bi-function information. Applications of the main results are also presented
to solve variational inequalities and fixed-point problems. The computational behaviour of the designed algorithm on a test
problem is performed related to other existing algorithms.
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1. Introduction

Assume that X is a closed and convex subset of a real Hilbert space € with the inner product and the
induced norm are denoted by (-,-) and || - ||, respectively. Let f : € x € — R be a bi-function and satisfying
f(y,y) =0 for all y € K. An equilibrium problem (EP) [5] for a bi-function f on X is defined by

Find p* € X such that f(p*,y) >0, Vy € K. (EP)

Moreover, Sgp represented a solution set of a problem (EP) over the set X and p* is any random
element of Sgp. A metric projection Py (u) of u € € onto a closed and convex subset X of € is defined by

Py (u) = argmin|jy —u/|.
yeX

The problem (EP) is a general mathematical problem in the sense that it brings together many numeri-
cal problems, i.e., the fixed point problems, the vector and scalar minimization problems, the problems of
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variational inequalities (VIP), complementarity problems, saddle point problems, the Nash equilibrium
problems in non-cooperative games and the inverse optimization problems [5, 17]. The problem (EP)
is also known as the well-established Ky Fan inequality due to his initial contribution [8]. Due to the
importance of the problem (EP) and its applications in both pure and applied sciences, many researchers
have investigated it broadly in recent years [1, 4, 18, 22, 23, 26, 33] and others in [10, 19-21, 24, 25, 27, 28].

An important method is introduced by Tran et al. in [31] and established an iterative sequence {u,} in
the following way:

y € X,
Yn = argmin{xf(un,y) + 3 [un —yl*},
yex (1.1)
Un1 = argmin{xf(yn,y) + 3/lun —yl?},
yeX
where 0 < x < min {%, ﬁ} It is important to note that some established methods are using constant

step sizes based on bi-functional Lipschitz-type coefficients as well as weak provides convergence [9, 11,
13, 31].

So, a reasonable question arises:

“Is it possible to introduce a new strongly convergent extragradient type method with non-monotone step size rule
to solve the equilibrium problem”?

In this paper, we present a positive answer to this question, i.e., the gradient method still provides a
strong convergence sequence by using a non-monotonic step size rule for solving equilibrium problems
accompanied with pseudo-monotone functions. Inspired by the works of Censor et al. [7] and Moudafi
[16] we introduce a new viscosity-type gradient method to figure out the problem (EP) in the context of
infinite-dimensional real Hilbert spaces.

In particular, the key contributions in this paper are listed below:

> We introduce an explicit subgradient viscosity method with a non-monotone step size rule to solve
the equilibrium problem in a real Hilbert space. In the proposed iterative scheme, we do consider
that the bi-function of the (EP) problem is a pseudo-monotone.

> We establish a strong convergence result under mild conditions and suitable iterative control pa-
rameters frameworks.

> Applications of our main results are studied to solve particular classes of equilibrium problems in
real Hilbert spaces.

> We provide numerical descriptions of our method for confirming the theoretical findings and com-
paring the results in [Algorithm 3.2 in [11]] and [Algorithm 3.1 in [12]]. Our numerical results
indicate that the proposed method is effective compared to the existing ones.

The remainder of this article has been organized as follows: Section 2 includes some preliminary
and basic results. Section 3 contains the proposed algorithm and the corresponding strong convergence
result. Section 4 contains applications of our main results. Section 5 involves the numerical discussion of
the proposed method compared to existing ones.

2. Preliminaries

In this article, the equilibrium problem is studied based on the following conditions. A bi-function
f:&x & — Ris said to be [3, 5]):

(®1) pseudo-monotone on X if

fy1,y2) =2 0= f(y2,y1) <0, Vy,yo € X.
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(®2) Lipschitz-type continuous [15] on X if there exist two constants cq, ¢, > 0 such that
f(y1,y3) < Flyn,y2) + Fy2,y3) +cillyr —yal* + c2lly2 —ysl>, Yy, y2,y5 € K.

(®3) limsup f(un,y) < f(p*,y) forally € K and {u,} C X satisfies un, — p*.

n—o0

(P4) f(u,-) is sub-differentiable and convex on € for every each u € €.
A normal cone of X at u € X is defined by
Ny (u) ={we &: (w,y—u) <0, Vy € X}
Let ¢ : X — R is convex function. The subdifferential of ¢ at u € X is defined by
do(u) ={we:oly)—oe) = wy—u), Yy e X}
Lemma 2.1 ([2]). Assume that Py : € — K is a metric projection such that

(i)
[y1 — Pac (Y2) [I* + [P (y2) —y2|* < [ly1 — 2%, y1 € K,y € €.

(ii) y3 = Pxc(y1) if and only if
(Y1 —ys,y2—ys3) <0, Vy € K.

(iii)
ly1 = Pac(yoll < llyr —v2ll, y2 € K, y1 € €.
Lemma 2.2 ([32]). Assume that {pn} C (0, +00) is a sequence satisfying the following condition

Pnt1 < (1=v¥n)pn +vndn, VR EN,
where {yn} C (0,1) and {6,,} C R such that
lim vy, =0, Z Yn =400 and limsup d, < 0.

n—oo
n=1 n—oo

Then, limy, oo P = 0.

Lemma 2.3 ([14]). Assume that a sequence {pn} C R and there exists a subsequence {n} of {n} such that p,, <
Py, for all i € IN. Then, there is a non decreasing sequence my, C IN such that my. — oo as k — oo, and the
following conditions are fulfilled by all (sufficiently large) numbers k € IN:

Py < Py @A Pre < Py
In fact, myc = max{j < k:pj <vjL1h
Lemma 2.4 ([2]). For each yy,yz € € and & € IR, then the following relationships hold.
(i)
18y1 + (1= 8)y2* = 8J[yal* + (1 = 8)Jy2* — 8(1 — ) [ys —ya|*.
(if)
lyr + 2 < llyal? +2(y2, y1 +y2).

Lemma 2.5 ([29]). Let @ : X — IR be a proper convex, lower semi-continuous and sub-differentiable function on
XK. Then, uw € X minimize the function ¢ on X iff

0 € d¢(u) + Ny (u),

where d@ (u) stands for the sub-differential of @ at u € K and Ngc(u) a normal cone of K at .
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3. Main Results

In this section, we present an iterative scheme for solving pseudo-monotone equilibrium problems
that is based on Tran et al. in [31] and viscosity scheme [16]. It is important to note that the proposed
method has a simple structure for achieving strong convergence. Suppose that g : € — & be a strict
contraction function with constant & € [0, 1). The main algorithm has been presented as follows:

Algorithm 1 (A viscosity method for pseudo-monotone equilibrium problems)

Step 0: Choose up € X, 0 < 0 < min<1, 5,5~ ¢, u € (0,0), Xo > 0 and a sequence x,, C (0,1) meet
P q

72¢q1’ 2¢o
the following conditions:
—+o0

nli_1r>I;Oocn:0and Zocn:—l—oo.
n
Step 1: Compute

. 1
yn = argmin{xnf(un,y) + 5 un —y|%:
yeX

If u,, =yn, then stop the sequence. Otherwise, go to Step 2.
Step 2: Construct a half-space

En={z€&:(Un—XnWn —Yn,z—Yn) <0},
where wy, € 02f(un,Yn) satisfying un —Xnwn —Yn € Nx (yn). Compute
. 1
2n = arg min(ioxn f(yn, y) + 5 fun —y|:
yeén

Step 3: Compute
Un41 = (xng(un) + (1 - OCH)Z‘TL'

Step 4: Compute

: pf(Yn,zn) }
min § O,
{ ’ f(unlln)_f(un/yn]_cl”Ein_yn)HZ_CZHZn_yn‘|2+1 ’
_ . wf(yn,zn 3 1
= if .
Xn+1 f(un,zn)—f(un,yn)—c1llun—ynl?—c2llzn—yn|I*+1 = O, ( )
X0 otherwise.

Set n:=n+1 and go back to Step 1.

Lemma 3.1. Suppose that the conditions (O1)—(D4) are satisfied. Then, the sequence {u, } generated by Algorithm
1 is a bounded sequence.

Proof. By the use of definition of z,, we obtain

0€ az{Han(UmU) + %Hun —UHZ}(Zn) + Nac(zn).
Therefore, there exists a wy, € 02f(yn, zn) and Wy, € Ngc(zy ) such that
UXnWn + Zn — Un + 0y = 0.
This relationship implies that

(Un —2zn, Y —2zn) = tXn{Wn, Y —2zn) + (0On,y —zn), Yy € K.
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Due to @y, € Ny (zyn) imply that (On,y —zn) <0, for every y € K. Thus, we have
HXn(Wn, Y —2zn) 2 (Un —2Zn, Y —2zn), Yy € K.
By given wn € 02f(Yn, zn), we get
flyn,y) — f(Yn, zn) = (wn,y —zn), Vy € K.

From (3.2) and (3.3), we get

ixXnf(Yn,Y) = mxnf(Yn, zn) 2 (Un —zn,y —zn), Vy € X.
In similar way yn, gives that

Xn{f(un,y) = f(un,yn)} = (Un —Yn,y —yn), Vy € K.
By the use of y = z,, into (3.5), we get

Xn{f(un, zn) = f(un, yn)} > (Un —Yn,zn —Yn).

By the use of y = p* into (3.4), we get

P'»an(ynr ZQ*) - Han(yn/ Zn) = <U-n —Zn, Zp* - Zn)-

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

Since * € Sgp, this implies that f(9*,yn) > 0 and pseudo-monotonicity of a bi-function f provides

f(yn, 9*) < 0. Thus, (3.6) implies that
(Un —2zn,zZn = ") 2 uxnf(Yn, zn).
From (3.1), we have
KF (Y, Zn) > Xn 1 | f(tn, 2n) = F(itn, Yn) = illin = yn 2 = c2llyn — znl?].
Combining (3.8) and (3.9) provides that
(Un —zn,zn —9") 2 Xn1 [Xn{f(un/ zn) = f(un, Yyn) }
—cixnun = yn 2 = caxnlzn — ynl?].
From (3.6) and (3.10), we obtain
2(un —zn,Zn = 97) 2 Xn+1 [2<un ~Yn,Zn —Yn)
— 261 [n = Ynl? = 26230 120 —yn ).
We have the following facts:
2(un —zn, zn = ") = [un = 9"|* = [lzn —unl® = llzn — 0|,

2(Un —Yn,Zn —Yn) = [[Un _UnHz + [|zn _Un”Z — [[un _Zn”z-

The above relations with (3.11), provides the following

lzn — 0% < ltn — %> — (1 = Xns1)l|zn —un)?

*Xn—i—l(l - 2C1Xn)||un *UnH2 *Xn—o—l(l - ZCZXn)HZn *ynHZ'

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)
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From (3.12), we obtain
lzn = "> < lun —o*[%, ¥Yn > 1. (3.13)

It is given that p* € Sgp. From the definition of sequence {u,, 11} and due to the fact that g is a contraction
with & € [0,1), we have

Hun—b—l_p*H = H“ng(un)‘{'(l_o‘n)zn ZQ*H
= || onlg(un) — ™1+ (1 — o) zn — 0*]||
= |lon[g(un) + gle )—g(z@*)—zp ]+ (1—ocn)[zn—zp*]H (3.14)

< ‘Xan(Un) —g(p*)H + (Xan(p*) - ZQ*H +(1— O‘n)HZn - ZQ*H
< andlfun — 9% || + anl[gle*) — o || + (1 — an) ||z — 07]|-

Combining (3.13) and (3.14) and o, C (0, 1), this is what we deduce.

lns1 =7 < anffun = "] + an[gle™) — 07| + (1 = an)Jun — 97|

= 11— ctn + Eotn] [[in — 9% + (1 — ‘E)W
< max { |un — 0", Hg(ﬁ )_a)p H } (315
<ma{ oo B

Thus, we conclude that the {u,} is bounded sequence. This completes the proof of Lemma. O

Theorem 3.2. Assume that {un} is a sequence generated by Algorithm 1 and o* € Sgp # 0. Then, {un} converges
strongly to ©* = Ps., o g(p*).

Proof. Now, we prove the strong convergence of the iterative sequence {u,} generated by Algorithm 1.
The Lipschitz-continuity and pseudo-monotone property of the bi-function f implies that the solution set
Sep is a closed and convex set (for more details see [31]). Since the mapping is a contraction and so does
Ps., og. Now, we are in position to use the Banach contraction theorem for the existence of a unique
fixed point p* € Sgp such that

9" = Ps..(gle*).

By using useful result of projection mapping, we have

(gle™) — 9", y—9") <0, Yy € Sgp. (3.16)
By Lemma 2.4 (i) and (3.12), we have

HUnH—K’*HZ

:Hocng(un)—l-(l—ocn)zn gp*”2

= [Jn[g(1n) — 9% + (1 — o) lzn — 971

= otnflg(wn) = %[ + (1 — otn)[zn — * > — an (1 — &) [[g(un) — zn |

3.17
< a5 (un) — o2+ (1= o) [ — 917 — (1~ Xn1)llzm — n G17

—Xn+1(1—=2c1xn)[[un _Un”z —Xn+1(1—2coxn)||zn _Un”z —on(l— (Xn)”g(un) _ZnHz
< onllgun) — %[> + [[un — o2

—(1—otn) [(1 —Xn+1)|lzn —un”z —Xn+1(1—=2¢c1xn)|un _QnHZ —Xn+1(1—2coxn)l|zn —ynHz
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The above expression implies that

(1—otn) | (1 —Xns1)]zn *unHZ —Xn+1(1=2c1xn ) [un *UnHZ —Xn+1(1—2c2xn)||zn *UnHZ

(3.18)
< onflglun) = "2 + [[un — 0" 1> — unr1 — ")
The remainder of the proof shall be split into the following two parts:
Case 1: Assume that there is a fixed number N; € IN (N7 > 1) such that
unt1 — 9% < lun — ", V1 > Ny (3.19)
Then, limn s ||un — 9*|| exists. Let limn_, o [[un — ©*|| = L. By the use of (3.17), we obtain
(1= ) | (1 =) lzn =t P = (1= 20 fun = ynl* = (1= 2exm)llzn —ynlf - )
< onlg(un) = o[ + [[un — "> — [un1 — "%
Thus, the limy o [|un — 9*|| exists and «,, — 0, we obtain
T}gréo [zn —un| = nh_rgo [un —ynll = nh_rgo [zn —ynl[ =0. (3.21)
Furthermore, we have
Hun+1 - unH = H(Xng(un) +(1—on)zn — unH
= H(Xn[g(un)_un]‘i‘(1_“n)[zn_un]H (3.22)
< on||g(un) — un || + (1 — &n)|jzn —un| — 0.
The term referred to above implies that
lim |[un41 —un| =0. (3.23)
n—oo

Thus, implies that the sequences {yn} and {z} are bounded. Let {u,, } be subsequence of {u,} such that
{un, } converges weakly to i € €. Next, we need to prove that t € Sgp. Due to the inequality (3.4), (3.6)
and (3.9), we obtain

X F(Ynys Zng ) + (Uny — 2 Y — Zny)

X Xmy 41 (Uny, Zny ) = Xy X 41 F (Uny Uny ) — €1 X 41 1ny, — Yy |

— XXy 1Yy = Zng P 4 (Uny, — 20y Y — Zny) (3.24)
2 X +1(Uny — Ynyo Zny — Yny) — C1Xi X+ 11Uy — Yny HZ

— C2Xn Xng+1 Hynk - anHZ + <u’nk —Zng, Y — an>

W f(Yn, y) 2
=

where y is an arbitrary member in €,. From (3.21), (3.23) and the boundedness of {u,,} imply that right-
hand side goes to zero. From X, > 0, the condition (®3) and y,, — {1, we obtain

0 < limsup f(yn,,y) < f(1,y), Yy € &n. (3.25)

k—o0

It follows that f(11,y) > 0, for all y € K, and hence 1t € Sgp. Next, we consider

lim sup(g(*) — ", un — ")
n—oo

. o . . o (3.26)
= limsup(g(p*) — ", un, — ") = (glp*) —p*, 0 —p*) <O0.

k—o0
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Due to the use of limn e Hunﬂ — unH = 0. We deduce that

limsup(g(p*) — ", Uuny1 — ")

< limsup(g(p*) — 9", Uny1 —un) +limsup(g(p™) — ™, un — ™) <0.
n—oo n—oo

By the use of Lemma 2.4(ii) and (3.13), we obtain

n =7

= ||atng(un) + (1 — xn)zn —p*HZ
= [Jan[gun) — ™1+ (1 — otn)zn — ]H

9%, (1= on)lzn — 91+ anlgun) — 9*1)
glp™) +gl") — " Uni1 — ")

g(9"), Uns1— %) + 20 (g(9") — 9", Uns1 — ) (3.28)

[zn —p

(1_‘xn) Hln—p*H2+2txn<g Un) —

—otn)?[|zn — 97"+ 200 (g () -
) —

(

(Un

— &n) Hzn p*H2+20cn<g(un

1 0 {fzn — o |* 4 20mE Jun — 97 [[Juns1 = 97| + 200n (89%) = 7, uns1 — 97)

14 o2 —20t,) Hun—p*Hz—i—Zoan,Hun—p*HZ+20cn<g(p*)—p*,un+1—p*>

1—2ocn)Hun—zp*H2+oc%LHun—p*H2~I—20an,Hun—(p*H2—|—2cxn<g((p*)—p*,un+1—p*>

ot |[un — 0| N <g(z9*)—zp*,un+1—z9*>]

2(1-¢) 1-¢ '

= [1— 200 (1= &)]|[un — 0*||* + 200 (1 — &) [
It is clear from the expressions (3.27) and (3.28) that we obtain

<0. (3.29)

21-8) 1-¢

lim sup
n—oo

[anHun_p*Hz (g(p*)—&’*,unﬂ—&’*)]

By taking n > Ny € IN (Np > Nj) substantial sufficient such that 20, (1 — &) < 1. By using (3.28), (3.29)
and applying Lemma 2.2, we obtain that ||u, — p*|| — 0 as n — oo.

Case 2: Assume there is a subsequence {n;} of {n} such that
Iun, — &% < lung, — 871, Vi €.
Thus, by Lemma 2.3 there exists a sequence {my} C IN as {my} — oo, such that
um, — o7l < [umy, =0l and  flue — 97| < [Jum,., — 7|, forall k € N. (3.30)

As the similar to Case 1, the expression (3.17) gives that

(1 - ‘ka) |:(]- _ka+1)||zmk _umk H2 _ka+1(1 - 201ka)||umk _Umk H2 _ka+1(1 - ZCZka)Hka _ymk H2:|

< oty [lg (my) = 97117 + Tty — 971 = [[um 1 — 9" (3.31)
By the use of ay,, — 0, we get the following:
lim [|zm, —Um [l = Im [um, —ym, || = Im [zm, —ym, || =0. (3.32)
k—o0 k—o00 k—ro0
Next, we obtain

Hukarl - umkH = H‘kag(umk) + (1 - (xmk)zmk _umkH
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= |lotm, [8(tm,) — um,J + (1 — &y ) Zmy, — Um, ]| (3.33)

< meng(umk) _umkH +(1- (ka)Hka —UmkH — 0.

We must use the same argument as in Case 1 in order to do so

lim sup(g(p*) — ", wm, 41 — %) <0. (3.34)

k—o0

By using the expressions (3.28) and (3.30), we have

s = 97| < [ = 200m, (1= &) Jum, — 97"

_ ) B}
e [um =0t (8le7) — 0" winr1 — 97)
+20tm, (1—&) _ 208 + Tt _ -
< [1_2“mk(1_6)]Humk—o—l_p*Hz .
_ ) }
e [um =0t (8le7) — 0" win1 — 97)
+20tm, (1 E)_ 20-%) + 1t _.
It continues on from that
2 oy lume — 0% )7 (gl9*) — 9 U 11— 07)
ity — %P < Tl + u . (3.36)

2(1-¢) 1-¢&

Since &, — 0, and ||um, — p*|| is a bounded sequence. Then, the expressions (3.34) and (3.36) indicate
that

[ty 11— 0> = 0, as k — oco. (3.37)
The above implies that
lim [[u —o*|]> < Hm |[um, 11— [* <O. (3.38)
k—o0 k—o00
Consequently, u, — p*. This completes the proof of the theorem. O

4. Applications

Now, we consider the application of our main results to solve the problem of classic variational in-
equalities [30] for an operator G : € — € is described as follows:

Fins p* € K such that (G(p*),y—p*) 20, Vy € X. (VIP)
We consider the following conditions to study variational inequalities.
(G1) The solution set of the problem (VIP) denoted by VI(9, X) is non-empty.

(G2) §: & — € is called to be a pseudo-monotone, i.e.,
(S(w),y—u) >0= (S(y),u—y) <0, Vu,y € X.
(G3) §: & — € is called to be a Lipschitz continuous if there exits a constants L > 0 such that

1S(wW) =S <Lu—yll, Vwy eX;

(94) limsup(G(un),y—un) < (9(q*),y—q*) for every y € C and {un} C € satisfying un, — q*.

n—o00
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By the use of f(u,y) = <9(u),y — u>, for all u,y € X. Thus, our main problem turns into the problem
of variational inequalities outlined above while L = 2¢; = 2¢,. From the above value of the bi-function f,
we obtain
Yn = argmin{xnf(un,y) + %Hun _UHZ} = Payc(un —XnG(un)),

ek ) , (4.1)
zn = arg min{uxn f(yn, y) + 5[un —y[|*} = Pe, (un — ixnS(yn)).
yeSn

Corollary 4.1. Let § : X — €& be a mapping satisfying the conditions (51)—(54). Choose up € X, 0 < 0 <
min {1, %}, n e (0,0), xo > 0and a sequence o, C (0,1) meet the following conditions, i.e.,

“+o00
lim o =0 and E o = +o00.
n—oo 1

n=

Assume that {u,} generated as follows:

Yn = Px(un —xnG(un)),
Zn = PSH(un — 1xn9(yn)),
Un41 = (Xng(un) +(1—an)zn,

where £ ={z € € (Un —XnSG(Un) —Yn,z—Yyn) < 0}. Update the step size rule in the following way:

: 1{SYn,Zn—Yn)
min-< o
{ ’ <9U—nzln*yn>*%||un*9n‘|2*% [zZn—yn|?+1 [’

Xn+1 = zf.‘ H<gynlzn_yn> > 0, (42)

<9unrzn_9n>_% ||un_yn|‘2_% lzn—ynl?>+1

X0 else.

Then, the sequence {uy } converges strongly to p* € VI(G,X).

Next, we study the application of our main results to figure out fixed-point problems associated with
the k-strict pseudo-contraction operator. A fixed point problem for an operator T : &€ — & is defined as
follows:

Find p* € X such that T(p*) = ™. (FPP)

We assume that the following requirements have been met to study fixed point problems.

(T1) T:XK — K is said to be a k-strict pseudo-contraction [6] on X if

ITw =Ty < [l =yl +«ll(u—Tw) — (y = Ty)|?, Y,y € X;

(72) weakly sequentially continuous on X if

T(un) — T(p*) for any sequence in X satisfy un, — p*.

If we consider that the mapping 7 is a k-strict pseudocontraction and weakly continuous then f(u,y) =
(u—Tu,y —u) satisfies the conditions (®1)-(®4) and 2¢; = 2¢c; = 3112 . Thus, we have

Yn = argmin{xnf(un, y) + 3[[un —y||*} = Px [un — xn(un — T(un))],

vex . ) (4.3)
Zn = argmln{Han(ynry) + EHun —yl7 ="Pe, [un — WxXn(Yn — T(Un))] .

yeén
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Corollary 4.2. Let X be a nonempty, convex and closed subset of a Hilbert space € and T : KX — K is a k-strict
pseudo-contraction and weakly continuous with solution set Fix(T) # 0. Choose up € K, 0 < 0 < min {1, 3»1:2KK },
we (0,0), xo > 0and a sequence o, C (0,1) meet the following conditions, i.e.,

“+00
Iim oy, =0 and E Xn = +00.
n—oo 1

n=

Assume that {un} generated as follows:

Yn = Px [un —Xn(un — T(un))],
zn =P, [un — ixn(yn — T(yn))],
Un4+1 = o‘ng(un) + (1 —an)zn.

where En ={z € €: (1 —xn)un +xnT(Uun) —Yn,z—yn) < 0}. Compute

. _T _
mln{G, u<2112,< 9“’2“ y2> 3—2k ) }/
(un—T(un)zn—yn)— (322) llun—ynlP— (335 lzn—yn 2 +1
XTL+1 - lf- H<Un—79nrln—yn>
(un—T(un)zn—yn)— (325 un—ynlP— (322) zn—ynl?+1
X0 otherwise.

7

Then, sequence {un } strongly converges to p* € Fix(7T).

5. Numerical Illustrations

Numerical study results are provided in the following section to illustrate the effectiveness of the
proposed methodology. To this end, we have studied one test problem in finite-dimensional spaces, and
we have seen experiments on how the starting point affects the quality of the efficiency algorithms.

Example 5.1. Consider that f : X x KX — R is defined by
f(wy) =(Pu+Qy+cy—u), vuyeX,

where ¢ € R™ and P, Q are matrices of order n. The matrix P is symmetric positive semi-definite and the matrix
Q — P is symmetric negative semi-definite with Lipschitz-type constants c1 = ¢, = ||P — Q|| (see [31] for details).
The matrices P, Q and vector c are defined by

31 2 0 0 O 16 1 0 0 O 1
2 36 0 0 O 1 16 0 0 O —2
P=]10 0 35 2 0 Q=10 0 15 1 0 c=1]-1
0 0 2 330 0 0 1 150 2
o 0 0 0 3 o 0 0 0 2 -1

The constraint set C C R™ is defined by
C={ueR":-10 <u; < 10}L

The numerical and graphical results for three methods are shown in Figures 1-4 and Table 1 by using uy = Yo.
In addition, the control parameters conditions are taken in the following manner:

(i) x = 41?1, O = m and Dy, = |[Un 41 — Un ||? for Algorithm 2 (Hal-EgA) in [11].
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(i) Xn = 7=, 0tn = 55, D = |[un 1 —un||? for Algorithm 3.1 (Reg-EgA) in [12].

(n+1)05~

(iii) xo = 0.15, 0 = 0.33, oty = m, g(u) = ¥ and Dy, = ||[un 41 —un||? for Algorithm 1 (Vis-EgA).

Table 1: Numerical results values for Figures 1-5.

Number of iterations | Elapsed time in seconds
Ug Hal-EgA Reg-EgA Vis-EgA | Hal-EgA Reg-EgA Vis-EgA
(1,0,1,0,1)7 19 24 11 0.169763  0.219508  0.103597
(1,2,-5,2,1)T 26 31 17 0.267813  0.296752  0.167452
(0,1,—2,2,3)T 24 30 16 0.219131  0.308820 0.167213
(3,—4,5,—4,3)T 27 31 16 0.247530  0.282134 0.210123
(2,5,3,52)7 23 27 14 0.210685 0.253114 0.179625
10t ‘
Hal-EgA
- - =Reg-EgA
10%F 3

10° F

104 ¢

10,5 L L L L
0 5 10 15 20 25
Number of iterations

Figure 1: Numerical behaviour of Algorithm 1 with Algorithm 3.1 in [12] and Algorithm 2 in [11] when uy = (1,0, 1,0, 1T

10t T
Hal-EgA
- = =Reg-EgA
100 4
10t
S 102
108 ¢
104 ¢
10,5 L L L L L L
0 5 10 15 20 25 30 35

Number of iterations

Figure 2: Numerical behaviour of Algorithm 1 with Algorithm 3.1 in [12] and Algorithm 2 in [11] when vy = (1,2, 5,2, 1.
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10t .
E Hal-EgA

- = =Reg-EgA

10° I I I |
0 5 10 15 20 25 30

Number of iterations

Figure 3: Numerical behaviour of Algorithm 1 with Algorithm 3.1 in [12] and Algorithm 2 in [11] when uy = (0,1, 2,2, 3)T.

102

Hal-EgA
- = =Reg-EgA/| |

100F %

10,5 L L L L L L
0 5 10 15 20 25 30 35
Number of iterations

Figure 4: Numerical behaviour of Algorithm 1 with Algorithm 3.1 in [12] and Algorithm 2 in [11] when uy = (3,—4,5, —4,3)7.

102 ‘
Hal-EgA
- = =Reg-EgA | |

10t &

.
0 5 10 15 20 25 30

Number of iterations

Figure 5: Numerical behaviour of Algorithm 1 with Algorithm 3.1 in [12] and Algorithm 2 in [11] when uy = (2,5,3, 52)7.
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6. Conclusion

We have designed a certain explicit viscosity type extragradient as a method to work out a pseudo-
monotone equilibrium problem in real Hilbert space, and we also verify that the layout sequence is
strongly converging with the solution. The implementation of our results is being discussed in order to
solve particular classes of equilibrium problems. Numerical conclusions have been drawn to explain the
numerical efficiency of our algorithms compared to other methods. These numerical studies have shown
that viscosity effects improve the efficiency of the iterative sequence in this context.
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