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Abstract

In this paper, we define the concept of statistical convergence of sequences by Norlund summability method and obtain a
few results on the relationship between Norlund summability and Nérlund statistical convergence in a complete, non-trivially
valued, non-archimedean field K. Also, the necessary and sufficient Tauberian conditions under which statistical convergence
follows from statistical summability by Norlund means over K are discussed.
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1. Introduction

In 1951, Fast [4] introduced the notion of statistical convergence. The relation between summability
theory and statistical convergence was brought in by Schoenberg, which was later studied in detail by
Fridy [5], Kolk, Freedman, Savas, Fridy and Miller [6], Mursaleen [10], Salat [12], Fridy and Orhan, Cakalli
[3] etc. Monna [7] started a systematic study of Functional Analysis over a field other than the Real or
Complex fields. A detailed study on the p-Adic numbers and Valuation theory was done by Bachman [1].
Suja and Srinivasan [14] introduced statistical convergence in non-archimedean fields.

Norlund method of summability in non-archimedean fields was introduced by Srinivasan [13]. Natara-
jan [11] studied the relation between regular Norlund methods and Norlund summability. Braha [2],
Fekete, Totur, Canak, Loku, etc. worked on Tauberian theorems using different methods of summability.
Moricz [8] established the Tauberian conditions under which statistical convergence follows from statis-
tical summability (C,1) and also by weighted means along with Orhan [9], in classical analysis. In this
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paper, the concept of statistical convergence of sequences by Norlund summability method (N, pr ) is de-
fined, and a few results on the relation between (N, p;,) summability and (N, p.) statistical convergence
are found. Also, Tauberian conditions for sequences that are statistically summable by Norlund means
over non-archimedean fields are studied.

1.1. Preliminaries
Let K be a complete, non-trivially valued, non-archimedean field. (Recall that a valued field (K, |.|) is
non-archimedean if |a + b| < max{|al, [bl}, for all a,b € K). A sequence x = (xy), xx € K, k=0,1,2,--- is
said to be statistically convergent [14] to a limit ‘1" if, for every e > 0,
lim Sik <o~ 1> el =0,
n—oo N
(where the outer vertical bars indicate the cardinality of the set), which we write as

st— lim x, =L
k—o00

Letp = (px), k=0,1,2,--- be a sequence in K such that pg # 0, [po| > |p;l,j =1,2,--- and

n
Pn=) P, n=012-.
k=0

It is clear that [Py, = |pol # 0, s0 P, #0,n =0,1,2,---. Srinivasan [13] introduced the Norlund method
of summability, that is, the (N, p,,) method in K by the infinite matrix (a, x) where

Pk, k<m,
Anx =
0, k>n.

Definition 1.1. The Norlund mean (N, pn ) of the sequence x = (x;,) is defined by

1 n
tﬂ_])nlg)pn—kxkl nzollrzl"' .

Definition 1.2. The sequence (xy) is said to be statistically (N, p,,) summable to a limit ‘1" if

st— lim t, =1L (1.1)

n—oo
P e}

Definition 1.3. A sequence x = (xi) is said to be Norlund statistically convergent to 1 if, for every € > 0

That is,
=0.

M— o0

1
lim M {ngM:

1 n
P Z Pn—xXk —
™ x=0

n—oo

1
lim ——fk <n:pnoihi—1U > el =0,
Pn

Definition 1.4. A sequence x = (xi) is said to be (N, py,) summable to L if,

1
Jim P ];)pn—kb(k =1 =0.

Natarajan [11] proved that, if sequence (xi) is (N,pn,) summable, then (xi) is bounded, and also
proved the necessary and sufficient conditions for a regular (N,pn,) method, stated in the definition
below.

Definition 1.5. The (N, pn,) method is regular if and only if p, — 0 as n — oo.

In this section, we consider the (N, p,) method to be regular.
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2. New results

Theorem 2.1. Let P—T{‘ > 1, for every n € IN. If (xi) is statistically convergent to 1, then (xy) is statistically
(N, pn) convergent to 1.

Proof. Given, (xi) is statistically convergent to 1. That is,
1
Iim —f{k<n:[xx—1=¢€}l=0. (2.1)
n—oomn

To prove (xy) is statistically (N, pn) convergent to 1, that is to prove

1
im —{k<n:pnklxx—1 =€} =0,
n—oo n
consider
1 n 1
—Hk<n: pnklxk—U= e} ==—x=|{k<n:pn_xlxk—1 > €}
Pn Ppn n
1 ) n
< —Hk<n:pnxlxk—1U= €} (since — < 1)
n Pn
— 0, as n — oo. (since pn — 0, n — oo and by (2.1))
Therefore,
1
lim — {k <N:pnxlxk—1U2= e}‘ =0,
n—oo n
or, (xi) is statistically (N, pr) convergent to 1. O

The following example is an illustration of this theorem.

Example 2.2. Consider the sequence x = (xi) defined by

k2+1/

k=L if k is a perfect square,
Xk = .
0, otherwise.

Choosing the non-archimedean valuation to be 2-adic, the terms of the sequence are
(0,0,0,1,0,0,0,0, 3,0,0,- ).
This sequence is clearly statistically convergent to 0, since,
Jim k< ha— 0/ > € =0,

Let (pn) = (3™), n =10,1,2,--- be a (N,pn) method in the 2-adic field Q,. Then, (pn) = (1,1,1,---).
Therefore,

Pn=potpr+---+pn

=n+1.
Now,
1
lim —H{k <n:pnxx—0> e}l = lim ——— [k <n:3" ¥y > e}l =0,
n—oo Py n—oo [N+ 1Jp

which shows that (xy) is statistically (N, pn) convergent to 0.
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Theorem 2.3. If the sequence (Py) is bounded such that lim sup% < oo, and if (xy) is statistically (N, pn)

n—oo
convergent to 1, then (xy) is statistically convergent to 1.

Proof. Given, (xy) is statistically (N, pn) convergent to 1; that is,

. 1
Iim —
n—oo Py

{kgn:pnklxk—ll > e}‘ =0. (2.2)
To prove (xy) is statistically convergent to 1; that is, to prove

1
lim —{k<n:px—1 =€} =0,
n—oo N

consider
1 1
EHk <=1 > el < EHk <M:pnklxk =1 = €l
<Pn>< l|{k<n | 1> e}
X e X : —kIXx — =
n Pn Pn—klXk
1 . . Pn
< —Kk <n:ipn_xlxk—1 = €} (since lim sup — < o0)
P n—oo n

—0 as n—oo (by(2.2)).

Thus, (xx) is statistically convergent to L. O
Theorem 2.4. If the sequence (xy) is (N, pn) summable to 1, then (xy) is statistically (N, pn) convergent to 1.

Proof. Given, lim tn =1. Thatis,
n—oo

1 n
lim — Z Pn—xXx = l,
k=0

n—oo P
ie.,
lim (pnxo+Pn-1%1+ - +Ppoxn) = lim Pyl= lim (po+p1+---+pn)l,
n—oo n—oo n—oo
ie.,
Jim [pn(x =Y +pralxs =Y+ +polxn =] =0,
ie.,

151(}0 pn(xo =1 +pn_1(x1 =1+ +po(xn —1)| =0,

n

which implies that

lim max{|pn(xo =V, [pn—1(x1 =V, -+, [po(xn — I} = 0.
n—oo

That is,
lim |pn—k||xk*1| = 0/ k= O/ 1/ M,
n—oo
implies,
lim Ik <1 pryhoc— 1> e}l =0,
n—oo
or,

1
Iim —{k<n:pnklxk—1=¢€}=0.

n—oo Py

This proves that (x) is statistically (N, pn) convergent to L. O
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Theorem 2.5. If (xy) is statistically (N, pn) convergent to 1, then (xy) is (N, pn) summable to 1.
Proof. Given,

1
lim —
n—oo

{k <N:pn_xlxk—1U2= e}‘ =0. (2.3)

Let us assume the contrary that (xi) is not (N, pn,) summable to 1. That is,

lim —an kX > L

n—oo Py
ie.,
lim (pnXxo+Ppn_1X1 + - +Ppoxn) > lim Pyl
n—oo n—oo
> lim (po+p1+---+pnll,
n—oo
ie.,
im [pn(xo—1) +pn1(x1 =+ +polxn —1)] >0,
n—oo
implies,

lim [pn(xo—1) +pn_1(x1 =1 +---+po(xn —1)| >0,

n—oo

which further implies that
T}E};o maxﬂpn(xo - l)|I |pn—1 (Xl - l)|/ Tty |p0(xn - l)|} > OI

or,
lim |pnfk||xk_l| >O/ kZO/]-I M
n—oo
implies,
im {k <n:pp_xhx—1 =€} >0.
n—oo
Also,
1
Iim —{k<n:pn_klxxk—1=¢€} >0.
n—oo Py
But this cannot happen by (2.3). Thus, (xk) is (N, pn) summable to L. O

This theorem is illustrated by the following example.

Example 2.6. For the sequence x = (xi) together with the sequence (px) and the 2-adic valuation dis-
cussed in the previous example, which is statistically (N, pn) convergent to 0, we have

1 n
lim — —0= 1 3™ Mxy| =0.
Jim ann khac— 0] = lim - +1|2];) il

Thus it is clear that (xi) is (N, pn) summable to 0.

Theorem 2.7. Let p = (px) be a sequence in K such that po # 0, [pol > Ip;l, j =1,2,---. Let (Ax) be a sequence
in K such that lim Ay = 0 and

k—o0

P
st— lim —— <1, forevery 0<An<1. (2.4)

n—oo An

Let x = (xx), xx € K, k=0,1,2,-- -, be a sequence which is statistically (N, prn ) summable to a limit 1. Then (xy)
is statistically convergent to 1 if and only if for every e > 0,

1
lim — <M: - P = 0.
T R e PRI CR E
™ k=An+1
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The following Lemmas are required in proving the theorem.

Lemma 2.8. Let p = (px) be a sequence in K such that po # 0, Ipol > Ip;l,j =1,2,---, and

. Pn
st—ggr;oa<l, forevery 0<An <1,

where {\\} is a sequence in K such that klim A =0. Let x = (xx), xxk € K, k=0,1,2,--- be a sequence which is
—00
statistically (N, pn) summable to a limit 1. Then for every 0 < A, <1,
st— lim t\, =1, (2.5)

n—o0

where (Py,) and (t, ) are non-decreasing sequences.

Proof. Given that the sequence (x,,) is statistically (N, pn,) summable to a limit l. This means that

st— lim t, =L

n—,oo
That is
1‘ A < - 7
Jim n<M:]| U>elf=0
or,
1 n
i — < = — =0. .
]\/1113100M {n\M Pngpn KXk — 1 e} 0 (2.6)

To prove, st— lim t)_ =1, thatis to prove
n—oo

(or) to prove

A
1 mn
{AnSMi P E PAan—kXk — 1| =€

A 2o

let us consider

1 1
M {}\ngM:‘nkZOpM KXk — 1 = H M {7\n<M (Pxn> ZPM KXk — 1 = H
1
< M {n <M a ];)pnkxk—l > e}| (using (2.4))
— 0 as M — co. (using (2.6))
Therefore,
) 1
] e S B
which shows that st — lim t,, = L. This proves the lemma. O
n—oo
We shall now prove,
Lemma 2.9. For 0 < A, <1,
1 P
— Xk =t e (ty — ),
(Pn_PAn) k_)\Zn+lpn b " (Pn_P?\n) "

provided Py, > Pj,..
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Proof. Consider the right-hand side:

P
t —n(t, —t
n+Pn_P7\n(n An)
. Patn — P)\ntn + P?\ntn — P)\nt)\n
B P —Pa,
1] 1 & 1 &
= |Pu | — _ —Pr | — _
PP, n <Pn an ka> An (P;\ ZPAn kxk>]
no| k=0 n k=0
1 [ An n An
=P Py D PaaXkt D ProkXk— ) P kXk
n _k:0 k:)\n+1 k=0
1 n
= Pn—kXk-
Pn—Pa, K=An+1
Thus,
1 = Pa
% Xk = th o (tn —ta ).
W k_%+lp“ PPy
O]
Now, adding x,, to the above equation we get,
Xn—tnh = Pan (th —t )+¥ i (Xn —Xk) (2.7)
n n Pn - P?\n " An (Pn - P?\n) K=An+1 PnokiXn b ‘
Proof of Theorem 2.7. Necessity: Here, we assume that
st— lim x,, =1,
n—,oo
and prove that, for every 0 < A, <1,
lim ! n<M ! i ( )| > e 0
im — <M:|— “1(xn —xx)| = =0.
M50 M (Pn—Py,) o=, P T

Now, since st— lim x,, =land st — lim t, =1, we have
n—oo n—oo

st— lim (x,, —tn) =0.

n—oo
That is,
. 1
Nlllinoo MHTL <M:fxn—tnl = €}l =0.
This shows that
1 Pa
1 A A M: 2 t t
dim g {2t
1 n
PP —klxn—x)| > € p| =0. (using (2.7
PP 2 Prokbm—d| > e 0. (using (2.7))
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Since the valuation is non-archimedean wherein |a + b| = |a] if |a|] > |b]|, and since

1 Pa

by (1.1) and (2.5), we have that

26}’—>OasM—>oo,

Iim —|<{n<M: P Pn_k(Xxn—xk)| =€ | =0,
An) K=An+1

and prove that

st— lim x, =1
n—oo

To this end, it is enough if we prove that

st— lim (x, —tn) =0.

n—oo
That is to prove,

1
I\/lllin MH“ M:xn —tnl = €} =0.

Using (2.7) we have,

1 1 N
< M:lxn —tnl =€)l = — <M:|—M (4, —t
il < M =l e = [ e [P,
1 n
+ D> prklm—xi)|>e
(Pn—Pa.) Ant+1
& [{n <M |2t —ta)| 2 ¢},
< max
ﬁ‘{néM ‘Wzk A1 Pn—k(x _Xk)‘>€}’
By our assumption,
1
— {n<M: Pn-k(Xn—xk)| =€ | =0 as M — oo.
M —P}\
n) k=An+1
Therefore,
i|{n<M|x tn] > €} < max n<M Pan (th —tr.)| =€ 4l,0
M X n nl = M X (Pn_P)\n) n Ant| = s
1 Pa
< - <M = th —t =
e 2t 2 ef

—0 asM — o0, (by(1.1)and (2.5))
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which implies that

. 1
I\/lllinoo MH“ <SMilxn—tal 2 €}l =0,

which means that

st— lim (x, —t,) =0.
n—o0

Thus, sequence (x, ) is statistically convergent to ‘l". This completes the proof of the theorem. O
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