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Abstract

In this paper, we define the concept of statistical convergence of sequences by Nörlund summability method and obtain a
few results on the relationship between Nörlund summability and Nörlund statistical convergence in a complete, non-trivially
valued, non-archimedean field K. Also, the necessary and sufficient Tauberian conditions under which statistical convergence
follows from statistical summability by Nörlund means over K are discussed.

Keywords: Non-archimedean fields, Nörlund mean, statistical convergence, statistical summability (N,pn), Tauberian
conditions.

2020 MSC: 40A35, 40E05, 40G05, 40G15, 46S10.

c©2022 All rights reserved.

1. Introduction

In 1951, Fast [4] introduced the notion of statistical convergence. The relation between summability
theory and statistical convergence was brought in by Schoenberg, which was later studied in detail by
Fridy [5], Kolk, Freedman, Savas, Fridy and Miller [6], Mursaleen [10], Salat [12], Fridy and Orhan, Cakalli
[3] etc. Monna [7] started a systematic study of Functional Analysis over a field other than the Real or
Complex fields. A detailed study on the p-Adic numbers and Valuation theory was done by Bachman [1].
Suja and Srinivasan [14] introduced statistical convergence in non-archimedean fields.

Nörlund method of summability in non-archimedean fields was introduced by Srinivasan [13]. Natara-
jan [11] studied the relation between regular Nörlund methods and Nörlund summability. Braha [2],
Fekete, Totur, Canak, Loku, etc. worked on Tauberian theorems using different methods of summability.
Moricz [8] established the Tauberian conditions under which statistical convergence follows from statis-
tical summability (C, 1) and also by weighted means along with Orhan [9], in classical analysis. In this
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paper, the concept of statistical convergence of sequences by Nörlund summability method (N,pn) is de-
fined, and a few results on the relation between (N,pn) summability and (N,pn) statistical convergence
are found. Also, Tauberian conditions for sequences that are statistically summable by Nörlund means
over non-archimedean fields are studied.

1.1. Preliminaries
Let K be a complete, non-trivially valued, non-archimedean field. (Recall that a valued field (K, |.|) is

non-archimedean if |a+ b| 6 max{|a|, |b|}, for all a,b ∈ K). A sequence x = (xk), xk ∈ K, k = 0, 1, 2, · · · is
said to be statistically convergent [14] to a limit ‘l’ if, for every ε > 0,

lim
n→∞ 1

n
|{k 6 n : |xk − l| > ε}| = 0,

(where the outer vertical bars indicate the cardinality of the set), which we write as

st− lim
k→∞ xk = l.

Let p = (pk), k = 0, 1, 2, · · · be a sequence in K such that p0 6= 0, |p0| > |pj|, j = 1, 2, · · · and

Pn =

n∑
k=0

pk , n = 0, 1, 2, · · · .

It is clear that |Pn| = |p0| 6= 0, so Pn 6= 0, n = 0, 1, 2, · · · . Srinivasan [13] introduced the Nörlund method
of summability, that is, the (N,pn) method in K by the infinite matrix (an,k) where

an,k =

{
pn−k
Pn

, k 6 n,
0, k > n.

Definition 1.1. The Nörlund mean (N,pn) of the sequence x = (xn) is defined by

tn =
1
Pn

n∑
k=0

pn−kxk, n = 0, 1, 2, · · · .

Definition 1.2. The sequence (xk) is said to be statistically (N,pn) summable to a limit ‘l’ if

st− lim
n→∞ tn = l. (1.1)

That is,

lim
M→∞ 1

M

∣∣∣∣∣
{
n 6M :

∣∣∣∣∣ 1
Pn

n∑
k=0

pn−kxk − l

∣∣∣∣∣ > ε
}∣∣∣∣∣ = 0.

Definition 1.3. A sequence x = (xk) is said to be Nörlund statistically convergent to l if, for every ε > 0

lim
n→∞ 1

Pn
|{k 6 n : pn−k|xk − l| > ε}| = 0.

Definition 1.4. A sequence x = (xk) is said to be (N,pn) summable to l if,

lim
n→∞ 1

Pn

n∑
k=0

pn−k|xk − l| = 0.

Natarajan [11] proved that, if sequence (xk) is (N,pn) summable, then (xk) is bounded, and also
proved the necessary and sufficient conditions for a regular (N,pn) method, stated in the definition
below.

Definition 1.5. The (N,pn) method is regular if and only if pn → 0 as n→∞.

In this section, we consider the (N,pn) method to be regular.
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2. New results

Theorem 2.1. Let Pnn > 1, for every n ∈ N. If (xk) is statistically convergent to l, then (xk) is statistically
(N,pn) convergent to l.

Proof. Given, (xk) is statistically convergent to l. That is,

lim
n→∞ 1

n
|{k 6 n : |xk − l| > ε}| = 0. (2.1)

To prove (xk) is statistically (N,pn) convergent to l, that is to prove

lim
n→∞ 1

Pn

∣∣∣∣{k 6 n : pn−k|xk − l| > ε}

∣∣∣∣ = 0,

consider

1
Pn

∣∣∣∣{k 6 n : pn−k|xk − l| > ε}

∣∣∣∣ = n

Pn
× 1
n

∣∣∣∣{k 6 n : pn−k|xk − l| > ε}

∣∣∣∣
6

1
n

∣∣∣∣{k 6 n : pn−k|xk − l| > ε}

∣∣∣∣ (since
n

Pn
< 1)

→ 0, as n→∞. (since pn → 0, n→∞ and by (2.1))

Therefore,

lim
n→∞ 1

Pn

∣∣∣∣{k 6 n : pn−k|xk − l| > ε

}∣∣∣∣ = 0,

or, (xk) is statistically (N,pn) convergent to l.

The following example is an illustration of this theorem.

Example 2.2. Consider the sequence x = (xk) defined by

xk =

{
k−1
k2+1 , if k is a perfect square,
0, otherwise.

Choosing the non-archimedean valuation to be 2-adic, the terms of the sequence are

(0, 0, 0, 1, 0, 0, 0, 0,
1
4

, 0, 0, · · · ).

This sequence is clearly statistically convergent to 0, since,

lim
n→∞ 1

n
|{k 6 n : |xk − 0| > ε}| = 0.

Let (pn) = (3n), n = 0, 1, 2, · · · be a (N,pn) method in the 2-adic field Q2. Then, (pn) = (1, 1, 1, · · · ).
Therefore,

Pn = p0 + p1 + · · ·+ pn
= 1 + 1 + · · ·+ 1
= |n+ 1|2.

Now,

lim
n→∞ 1

Pn
|{k 6 n : pn−k|xk − 0| > ε}| = lim

n→∞ 1
|n+ 1|2

|{k 6 n : 3n−k|xk| > ε}| = 0,

which shows that (xk) is statistically (N,pn) convergent to 0.
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Theorem 2.3. If the sequence (Pn) is bounded such that lim
n→∞ supPnn < ∞, and if (xk) is statistically (N,pn)

convergent to l, then (xk) is statistically convergent to l.

Proof. Given, (xk) is statistically (N,pn) convergent to l; that is,

lim
n→∞ 1

Pn

∣∣∣∣{k 6 n : pn−k|xk − l| > ε

}∣∣∣∣ = 0. (2.2)

To prove (xk) is statistically convergent to l; that is, to prove

lim
n→∞ 1

n
|{k 6 n : |xk − l| > ε}| = 0,

consider

1
n
|{k 6 n : |xk − l| > ε}| 6

1
n
|{k 6 n : pn−k|xk − l| > ε}|

6
Pn

n
× 1
Pn

|{k 6 n : pn−k|xk − l| > ε}|

6
1
Pn

|{k 6 n : pn−k|xk − l| > ε}| (since lim
n→∞ sup

Pn

n
<∞)

→ 0 as n→∞ (by (2.2)).

Thus, (xk) is statistically convergent to l.

Theorem 2.4. If the sequence (xk) is (N,pn) summable to l, then (xk) is statistically (N,pn) convergent to l.

Proof. Given, lim
n→∞ tn = l. That is,

lim
n→∞ 1

Pn

n∑
k=0

pn−kxk = l,

i.e.,

lim
n→∞(pnx0 + pn−1x1 + · · ·+ p0xn) = lim

n→∞Pnl = lim
n→∞(p0 + p1 + · · ·+ pn)l,

i.e.,
lim
n→∞[pn(x0 − l) + pn−1(x1 − l) + · · ·+ p0(xn − l)] = 0,

i.e.,
lim
n→∞ |pn(x0 − l) + pn−1(x1 − l) + · · ·+ p0(xn − l)| = 0,

which implies that

lim
n→∞max{|pn(x0 − l)|, |pn−1(x1 − l)|, · · · , |p0(xn − l)|} = 0.

That is,
lim
n→∞ |pn−k||xk − l| = 0, k = 0, 1, · · · ,n,

implies,
lim
n→∞ |{k 6 n : pn−k|xk − l| > ε}| = 0,

or,

lim
n→∞ 1

Pn

∣∣∣∣{k 6 n : pn−k|xk − l| > ε}

∣∣∣∣ = 0.

This proves that (xk) is statistically (N,pn) convergent to l.
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Theorem 2.5. If (xk) is statistically (N,pn) convergent to l, then (xk) is (N,pn) summable to l.

Proof. Given,

lim
n→∞ 1

Pn

∣∣∣∣{k 6 n : pn−k|xk − l| > ε

}∣∣∣∣ = 0. (2.3)

Let us assume the contrary that (xk) is not (N,pn) summable to l. That is,

lim
n→∞ 1

Pn

n∑
k=0

pn−kxk > l.

i.e.,

lim
n→∞(pnx0 + pn−1x1 + · · ·+ p0xn) > lim

n→∞Pnl
> lim
n→∞(p0 + p1 + · · ·+ pn)l,

i.e.,
lim
n→∞[pn(x0 − l) + pn−1(x1 − l) + · · ·+ p0(xn − l)] > 0,

implies,
lim
n→∞ |pn(x0 − l) + pn−1(x1 − l) + · · ·+ p0(xn − l)| > 0,

which further implies that

lim
n→∞max{|pn(x0 − l)|, |pn−1(x1 − l)|, · · · , |p0(xn − l)|} > 0,

or,
lim
n→∞ |pn−k||xk − l| > 0, k = 0, 1, · · · ,n.

implies,
lim
n→∞ |{k 6 n : pn−k|xk − l| > ε}| > 0.

Also,

lim
n→∞ 1

Pn

∣∣∣∣{k 6 n : pn−k|xk − l| > ε}

∣∣∣∣ > 0.

But this cannot happen by (2.3). Thus, (xk) is (N,pn) summable to l.

This theorem is illustrated by the following example.

Example 2.6. For the sequence x = (xk) together with the sequence (pk) and the 2-adic valuation dis-
cussed in the previous example, which is statistically (N,pn) convergent to 0, we have

lim
n→∞ 1

Pn

n∑
k=0

pn−k|xk − 0| = lim
n→∞ 1

|n+ 1|2

n∑
k=0

3n−k|xk| = 0.

Thus it is clear that (xk) is (N,pn) summable to 0.

Theorem 2.7. Let p = (pk) be a sequence in K such that p0 6= 0, |p0| > |pj|, j = 1, 2, · · · . Let (λk) be a sequence
in K such that lim

k→∞ λk = 0 and

st− lim
n→∞ Pn

Pλn
< 1, for every 0 < λn < 1. (2.4)

Let x = (xk), xk ∈ K, k = 0, 1, 2, · · · , be a sequence which is statistically (N,pn) summable to a limit l. Then (xk)
is statistically convergent to l if and only if for every ε > 0,

lim
M→∞ 1

M

∣∣∣∣∣∣
n 6M :

∣∣∣∣∣∣ 1
(Pn − Pλn)

n∑
k=λn+1

pn−k(xn − xk)

∣∣∣∣∣∣ > ε

∣∣∣∣∣∣ = 0.



D. Eunice Jemima, V. Srinivasan, J. Math. Computer Sci., 24 (2022), 299–307 304

The following Lemmas are required in proving the theorem.

Lemma 2.8. Let p = (pk) be a sequence in K such that p0 6= 0, |p0| > |pj|, j = 1, 2, · · · , and

st− lim
n→∞ Pn

Pλn
< 1, for every 0 < λn < 1,

where {λk} is a sequence in K such that lim
k→∞ λk = 0. Let x = (xk), xk ∈ K, k = 0, 1, 2, · · · be a sequence which is

statistically (N,pn) summable to a limit l. Then for every 0 < λn < 1,

st− lim
n→∞ tλn = l, (2.5)

where (Pn) and (tλn) are non-decreasing sequences.

Proof. Given that the sequence (xn) is statistically (N,pn) summable to a limit l. This means that

st− lim
n→∞ tn = l.

That is
lim
M→∞ 1

M
|{n 6M : |tn − l| > ε}| = 0,

or,

lim
M→∞ 1

M

∣∣∣∣∣
{
n 6M :

∣∣∣∣∣ 1
Pn

n∑
k=0

pn−kxk − l

∣∣∣∣∣ > ε
}∣∣∣∣∣ = 0. (2.6)

To prove, st− lim
n→∞ tλn = l, that is to prove

lim
M→∞ 1

M
|{λn 6M : |tλn − l| > ε}| = 0,

(or) to prove

lim
M→∞ 1

M

∣∣∣∣∣
{
λn 6M :

∣∣∣∣∣ 1
Pλn

λn∑
k=0

pλn−kxk − l

∣∣∣∣∣ > ε
}∣∣∣∣∣ = 0,

let us consider

1
M

∣∣∣∣∣
{
λn 6M :

∣∣∣∣∣ 1
Pλn

λn∑
k=0

pλn−kxk − l

∣∣∣∣∣ > ε
}∣∣∣∣∣ = 1

M

∣∣∣∣∣
{
λn 6M :

∣∣∣∣∣
(
Pn

Pλn

)
1
Pn

λn∑
k=0

pλn−kxk − l

∣∣∣∣∣ > ε
}∣∣∣∣∣

6
1
M

∣∣∣∣∣
{
n 6M :

∣∣∣∣∣ 1
Pn

n∑
k=0

pn−kxk − l

∣∣∣∣∣ > ε
}∣∣∣∣∣ (using (2.4))

→ 0 as M→∞. (using (2.6))

Therefore,

lim
M→∞ 1

M

∣∣∣∣∣
{
λn 6M :

∣∣∣∣∣ 1
Pλn

λn∑
k=0

pλn−kxk − l

∣∣∣∣∣ > ε
}∣∣∣∣∣ = 0,

which shows that st− lim
n→∞ tλn = l. This proves the lemma.

We shall now prove,

Lemma 2.9. For 0 < λn < 1,

1
(Pn − Pλn)

n∑
k=λn+1

pn−kxk = tn +
Pλn

(Pn − Pλn)
(tn − tλn),

provided Pn > Pλn .
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Proof. Consider the right-hand side:

tn +
Pλn

Pn − Pλn
(tn − tλn)

=
Pntn − Pλntn + Pλntn − Pλntλn

Pn − Pλn

=
1

Pn − Pλn

[
Pn

(
1
Pn

n∑
k=0

pn−kxk

)
− Pλn

(
1
Pλn

λn∑
k=0

pλn−kxk

)]

=
1

Pn − Pλn

 λn∑
k=0

pλn−kxk +

n∑
k=λn+1

pn−kxk −

λn∑
k=0

pλn−kxk


=

1
Pn − Pλn

n∑
k=λn+1

pn−kxk.

Thus,
1

(Pn − Pλn)

n∑
k=λn+1

pn−kxk = tn +
Pλn

Pn − Pλn
(tn − tλn).

Now, adding xn to the above equation we get,

xn − tn =
Pλn

Pn − Pλn
(tn − tλn) +

1
(Pn − Pλn)

n∑
k=λn+1

pn−k(xn − xk). (2.7)

Proof of Theorem 2.7. Necessity: Here, we assume that

st− lim
n→∞ xn = l,

and prove that, for every 0 < λn < 1,

lim
M→∞ 1

M

∣∣∣∣∣∣
n 6M :

∣∣∣∣∣∣ 1
(Pn − Pλn)

n∑
k=λn+1

pn−k(xn − xk)

∣∣∣∣∣∣ > ε

∣∣∣∣∣∣ = 0.

Now, since st− lim
n→∞ xn = l and st− lim

n→∞ tn = l, we have

st− lim
n→∞(xn − tn) = 0.

That is,

lim
M→∞ 1

M
|{n 6M : |xn − tn| > ε}| = 0.

This shows that

lim
M→∞ 1

M

∣∣∣∣{n 6M :

∣∣∣∣ Pλn
(Pn − Pλn)

(tn − tλn)

+
1

(Pn − Pλn)

n∑
k=λn+1

pn−k(xn − xk)

∣∣∣∣∣∣ > ε

∣∣∣∣∣∣ = 0. (using (2.7))



D. Eunice Jemima, V. Srinivasan, J. Math. Computer Sci., 24 (2022), 299–307 306

Since the valuation is non-archimedean wherein |a+ b| = |a| if |a| > |b|, and since

1
M

∣∣∣∣{n 6M :

∣∣∣∣ Pλn
(Pn − Pλn)

(tn − tλn)

∣∣∣∣ > ε}∣∣∣∣→ 0 as M→∞,

by (1.1) and (2.5), we have that

lim
M→∞ 1

M

∣∣∣∣∣∣
n 6M :

∣∣∣∣∣∣ 1
(Pn − Pλn)

n∑
k=λn+1

pn−k(xn − xk)

∣∣∣∣∣∣ > ε

∣∣∣∣∣∣ = 0.

Sufficiency: We now assume that

lim
M→∞ 1

M

∣∣∣∣∣∣
n 6M :

∣∣∣∣∣∣ 1
(Pn − Pλn)

n∑
k=λn+1

pn−k(xn − xk)

∣∣∣∣∣∣ > ε

∣∣∣∣∣∣ = 0,

and prove that
st− lim

n→∞ xn = l.

To this end, it is enough if we prove that

st− lim
n→∞(xn − tn) = 0.

That is to prove,

lim
M→∞ 1

M
|{n 6M : |xn − tn| > ε}| = 0.

Using (2.7) we have,

1
M

|{n 6M : |xn − tn| > ε}| =
1
M

∣∣∣∣{n 6M :

∣∣∣∣ Pλn
(Pn − Pλn)

(tn − tλn)

+
1

(Pn − Pλn)

n∑
k=λn+1

pn−k(xn − xk)

∣∣∣∣∣∣ > ε

∣∣∣∣∣∣

6 max


1
M

∣∣∣{n 6M :
∣∣∣ Pλn
(Pn−Pλn)

(tn − tλn)
∣∣∣ > ε}∣∣∣ ,

1
M

∣∣∣{n 6M :
∣∣∣ 1
(Pn−Pλn)

∑n
k=λn+1 pn−k(xn − xk)

∣∣∣ > ε}∣∣∣
 .

By our assumption,

1
M

∣∣∣∣∣∣
n 6M :

∣∣∣∣∣∣ 1
(Pn − Pλn)

n∑
k=λn+1

pn−k(xn − xk)

∣∣∣∣∣∣ > ε

∣∣∣∣∣∣→ 0 as M→∞.

Therefore,

1
M

|{n 6M : |xn − tn| > ε}| 6 max
{

1
M

∣∣∣∣{n 6M :

∣∣∣∣ Pλn
(Pn − Pλn)

(tn − tλn)

∣∣∣∣ > ε}∣∣∣∣ , 0
}

6
1
M

∣∣∣∣{n 6M :

∣∣∣∣ Pλn
(Pn − Pλn)

(tn − tλn)

∣∣∣∣ > ε}∣∣∣∣
→ 0 as M→∞, (by (1.1) and (2.5))
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which implies that

lim
M→∞ 1

M
|{n 6M : |xn − tn| > ε}| = 0,

which means that
st− lim

n→∞(xn − tn) = 0.

Thus, sequence (xn) is statistically convergent to ‘l’. This completes the proof of the theorem.
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