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Abstract

In this paper, we consider unified Gould-Hopper based Apostol-type polynomials and investigate some of their formulas
including several implicit summation formulae and some symmetric identities by the series manipulation method. Moreover,
we acquire several new results for unified Gould-Hopper based Apostol-type polynomials using appropriate operational rules.
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1. Introduction

Apostol [2] introduced a class of the familiar Bernoulli numbers and polynomials when he studied
the Lipschitz-Lerch Zeta maps and developed multifarious fundamental relations of these numbers and
polynomials. Since Apostol’s time, Apostol type numbers and polynomials in conjunction with diverse
extensions have been introduced and examined by many mathematicians, for example, by Khan [7], Luo
et al. [21-23], Luo [16, 17, 19], Ozarslan [24, 25], Pathan et al. [28-30], see also the references cited therein.

The Apostol-Bernoulli polynomials BL) (x; A), the Apostol-Euler polynomials B (x;A), and the Apostol-
Genocchi polynomials G (x;A) of order « € C, are defined via the following exponential generating
functions (see [7, 11-14, 16, 17, 19, 24, 25, 28-30]):

t * xt - (o) "
ero1) ¢ = B N (1.1)

n=0

*Corresponding author

Email addresses: wkhan1@pmu.edu.sa (Waseem Ahmad Khan), n.sooppy@psau.edu.sa (Kottakkaran Sooppy Nisar),
acikgoz@gantep.edu.tr (Mehmet Acikgoz), mtdrnugur@gmail.com & ugur.duran@iste.edu.tr (Ugur Duran),
sufianmath97@hotmail.com (Abdallah Hassan Abusufian)

doi: 10.22436/jmcs.024.04.01
Received: 2021-01-08 Revised: 2021-01-28  Accepted: 2021-02-27


http://dx.doi.org/10.22436/jmcs.024.04.01
http://dx.doi.org/10.22436/jmcs.024.04.01
http://crossmark.crossref.org/dialog/?doi=10.22436/jmcs.024.04.01&domain=pdf

W. A. Khan, et al., ]. Math. Computer Sci., 24 (2022), 287-298 288

(Itl < 2r when A =1; [t| < [logA| when A # 1)

2 N\ v et
xt __ .
<?\et +1> et = E En (x5 A) my (1.2)

n=0
([t < mwhen A =1; [t] < [log(—A)| when A # 1)

and

2t * xt - (o) t
= =5 A)— 1.
<Aet+1> € — Gn (X/}\)n' ( 3)
(It < mwhen A =1; [t| <|log(—A)] when A #1).

It is noted that setting A =1 the polynomials given in (1.1) to (1.3) reduce to the classical counterparts (cf.
[7, 16,17, 19, 24, 25, 28-30]):

B (x;1) =B (x), BV (1) i= E)(x) and G (x;1) := G (x).
When o = 1, we obtain
B (xA) = Bn(xA), EY(xA) = En(A) and G (3 A) := Gn(x;A),

which are, respectively, classical Apostol-Bernoulli polynomials, Apostol-Euler polynomials, and the
Apostol-Genocchi polynomials.
Also, in special cases,

B (1) := Bn(x), X (x;1) := En(x) and G (x;1) := G (x)

are called usual Bernoulli, Euler and Genocchi polynomials, respectively.
In recent years, a unification of the Apostol type Bernoulli, Euler, and Genocchi polynomials

Yr(laé (x;k, a,b) of order « are considered as follows (cf. [14, 24]

21_ktk x 0 (X tTL

(1* =1, k € Ny; a,b € R\{O}, o, B eC).

—_—

for the details about the existence of the polynomials Y (x k,a,b).

)

B (x;k, a,b) include Apostol type Bernoulli, Euler, and Genocchl poly-

One can see the reference [14, 24

—

Note that the polynomials Y
nomials:

2

Y 1,1,1) = B (), Y (x:0,—1,1) = E (A)
and ,
V061, -1,1) = 561 ()

The Appell polynomials A, (x) [3] for g (t) are defined by the following generating function:

et Y A, (15)

n=0

where g(t) has the following expansion:

0 n
n.
n=0
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The Appell class includes several significant sequences such as the Euler, Genocchi, and Bernoulli
polynomials and their several generalized forms, cf. [1-4, 7-31] and also see the references cited therein.

The Gould Hopper polynomials Hi™ (x,y) are defined by the following generating function [6]:

Tl

xt+y tm Z H (1 6)

which are solutions of the generalized heat equation

m

D D N
D—yf(x Jy) = Wf(x,y) and f(x,0) = x

Also, we note that
H'(x,y) = Ha(x,y) and Hy(2x,1) = Ha (x),
where H;,(x,y) are two variable Hermite polynomials and Hy (x) are the classical Hermite polynomials
[1,5-7, 10, 24, 28, 34].
Inspired by the significance of the bivariate special functions in applications, the 2-variable general
polynomials pn (x,y) are defined by the following exponential generating function [9]:

oy, t) an X, y Wlth polx,y) =1, (1.7)

where ¢(y, t) has the following series expansion

Z —wmu# (1.8)

In view of generating function (1.6), the Gould Hopper polynomials (1.6) are the members of the 2-variable
general polynomials.

The Gould-Hopper-Appell polynomials HA;‘“) (x,y) [4, 9] (or known as the 2D Appell polynomials)
and the Hermite-Appell polynomials A (x,y) [10], are given by the following generating functions:

my_ N am)
Alt) exp(xt +yt )—ZHAn (x,y)ﬁ (1.9)

and
n

A(t) exp( (xt+yt?) = Z HAR (X, y t (1.10)

The polynomials pn(x,y) are quasi-monomial [5, 35] under the action of the following multiplicative
and derivative operators:

= ¢y Dy _ D (. D
Mp =x+ (u,Dy) (DX = D. and ¢ (y,t) == Dtd)(y,t)> (1.11)
and R
P, = Dx. (1.12)

Most of the properties of families of polynomials known as quasimonomial can be deduced by utiliz-
ing operational rules related to the appropriate derivative and multiplicative operators. The notion of
quasimonomiality has been exploited within varied contexts to cope with isospectral problems [32] and
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to work the relations of new families of special functions, see [5]. According to the monomiality principle
and in view of Egs. (1.11) and (1.12), we have

Mp{pn (% Y)} = Prr1(x,y) and Pplpn(x,y)} = npn_1(x,y). (1.13)

Now since the pn (x,y) are quasi-monomial, the properties of these polynomials can be derived from
those of the multiplicative and derivative operators M, and P}, respectively. In fact, we have

M, Pp{pn (x,4)} = npn(x,y), (1.14)

which gives the following differential equation satisfied by pn(x,y):

¢'(y D)y _
(xDX + oy, Dy) Dy n) Pn(x,y) =0. (1.15)

Since po(x,y) = 1, the pn(x,y) can be clearly as:

pn(x,y) = MMpo(x,y)} = M1},
which means that the generating function of the p»(x,y) can be cast in the following form

tﬂ.

exp(/l\/\lpt){l} = Z Pn(XIU)H,

n=0

(1.16)

which gives the generating function (1.7). It can readily be confirmed that
Py, M, = 1.

For an arbitrary complex or real parameter A and k € Ny, the numbers Sy (n,A) is defined by means
of the following exponential generating function, cf. [33]:

0 £k Ae(m+Dt _q
2 SkA) g = (1.17)
k=0

which, for A = 1, reduces to the power sum Sy(n,1) := Si(n). Several symmetry identities for the

BT(fx) (x;A), E%“) (x;A) and G&x) (x;A) involving a generalized sum of integer powers Sy (n, A) are derived in
[28, 33].

In this paper, we consider unified Gould-Hopper based Apostol type polynomials and investigate
some of their properties including several implicit summation formulae and some symmetric identities
by series manipulation method. Moreover, we acquire several new results for unified Gould-Hopper
based Apostol type polynomials by means of appropriate operational rules.

2. On unified Gould-Hopper based Apostol type polynomials

The generating function of the 2-variable general-Appell polynomials is provided by replacing x by
multiplicative operator M,, of the p, (x,y) in (1.5):

1 —~ 1 — tm
mexp (Mpt) = We th(y,t) = nZO pAn(x,y)ﬁ. (2.1)

The polynomials ,An(x,y) are quasimonomial with respect to the following multiplicative K/l\p and

derivative P, operators (cf. [9]):
A o+ C[)/ (Ur DX) i 9/ (Dx)
Mt =Xt 4,00~ (DY) 22)
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and R
Pp = Dx. (2.3)

In order to generate unified Gould-Hopper based Apostol type polynomials, replacing x by the mul-
tiplicative operator M, in (1.4), we have

21 kik & g [eS) (o) i
<[3bet—ab> eXP(Mpt) = Z Yn,B(MP;k/ a,b)H
n=0
and
2k T Xt iY(cX DX)—g/(DX)-kab)i o
Bbet_ab y’ TL (y, ) g(DX) 7 Ny Yy n!- .

Thus, we give the generating function for the umfled Gould-Hopper based Apostol type polynomials
pYT(s‘é (x,y;k, a,b) as follows

<[3bet—ab> e oy, t) Z B (xyk q, b)—. (2.5)

We remark that (2.4) and (2.5) gives the operational representation between Yflf‘g(x; k,a,b) and

() .
pYnp (x,y;k, a,b).

In order to frame the unified Gould-Hopper based Apostol type polynomials within the context of
monomiality principle, we provide the following theorem.

Theorem 2.1. The polynomials pY B ) (x, y; k, a, b) are quasimonomial with respect to the following multiplicative
and derivative operators

—~  d'(y,Dx)  oak(pPe'—a®)— ap®DyePx
MpA =X+ 5y, D) Dy(pPet —ab) (20
and R
Ppa = Dx. (2.7)
Proof. Consider the relation
Di{e* by, 1)} = t{e* oy, t)} (2.8)

and differentiating (2.5) partially with respect to t, we find
$'(y,Dy)  oak(pPet —ab)— apPtet Hl—kik \ % - 0 | o
<X+ d)(y/Dx) + t(Bbet_ab) Bbet—ab ¢y, Z n+1(3 xy,k,alb)a_

Since ¢(y,t) is an invertible series of t, thus CL’)((;’SX")) has power series expansion of t. Hence, by (2.8), it

gives
¢'(y,Dx) , k(B ePx —a®) — ap®DyeP 2R VT
<X+ d(y,Dy) + D, (BPet —ab) pbet — b e Py, 1)
o0 tn
Z pYn+1 s XYk q b)
n=0
which yields

D) Dy (BPet —aP)

> ' , Dy k(BPePx —ab) — bDX Px o2 L
Z <X+(§)((3/ )+ [0 8 (B e a ) op e ){pYT(l’[;(x,y,’k,a,b)}n!

[e]

n=
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o0 tn
Z pYn+1 g% vk q, b)ﬁ

n=0

Comparing the coefficients of 17 in the last equation, we get

‘(y,D k(BbePx — ab) — apPDyePx
(X+¢(y x) , ok(pPe™> —a?) —af Dye >{prl‘fg(x,y;k,a,b)}— Ve Uik a,b),

$(y, Dx) Dy (BPet —ab) n+1,B

which provides the desired result (2.6) by (1.13).
By (2.5) and (2.8), we have

{Z Bxy,kab)tn}

() . t"
Z PYn—l,ﬁ(Xry/kr azb)m/

n=1
which means
D« {pY((x[g), (x,y;k, q, b)} = anT(loi)l B(X/U;k/ a,b), n=l,

n,
which gives the claimed result (2.7) via (1.13). O
We give the following theorem.

Theorem 2.2. For n being non-negative integer, the unified Gould-Hopper based Apostol type polynomials satisfy
the following differential equation

d)/(y/Dx) (Xk(f)bet—ab) _CbiDXer ()
DX 7DX —_ , ;k/ , — . 2‘
(X oW, Dy X (BPet — ab) n|pY,pxykab)=0 (2.9)
Proof. Using (2.6) and (2.7) and in view of (1.15), the asserted result (2.9) can be readily obtained. So, we
omit the proof. -

Now, we derive some summation formulae for unified Gould-Hopper based Apostol type polynomi-
als.
Here is the first summation formula for PYT(L?CB) (x,9;k, a,b) as follows.

Theorem 2.3. The following implicit summation formula holds:

q,1
1
YéH B(Z y;k,a,b) = E < ?L ) < . > (z—x)*T Yqul . n|3(x,y;k,a,b). (2.10)
n,p=0

Proof. We replace t by t 4+ u and rewrite the generating function (2.5) as

21k (pu)k\ W tdu
<[3bet+“—> ey, t+u)=e "~ x(t+ Z Yq+l(5(xy’kab)ql T

b
a q,1=0
Changing x by z in the last equation and we can write
(t tdut tdut
elz—x) (t+u) Z YqHB(x y,kab)q' U Z Yqﬂﬁ(z,y,kab)q' -
q,1=0 q,1=0
which gives
2 [(z—x)(t+uw)N t9u t9ut
Z N! ZP q+16(xy’kab)q17_ ZP q+1f5(zy’kab)q| u:

z
g

q,1=0 q,1=0
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Using the following series manipulation formula

Zf X+y Z f(n+m)%?ﬂ—'

n,m=0

we have

nlr!

2 (z—x) Tt t9ul t9ul
> Z pYothp (ol ab) oo Z Yelip(z Uk ab) o
n,r=0 q,1=0 q: q,1=0 q:

Now changing q by g —n, L by | —p and utilizing the lemma [34, p.100], we get

00 q,l t
(Z_X)nJrT () . ) td u
E E 7qu+l—n7r,B(X’y’k’ a’b’)(q—n)! (l—T)!

17!
q,1=0n,r=0 ner
0 1
_ (o) thu
- Z PYq+l,r5(Z’y’k ab)— q u’
q,1=0
which is the desired result (2.10). O

Corollary 2.4. Taking 1 = 0 in (2.10), we get the following result:

q
pYé‘rxﬁ)(Z’y"k’a'b) =) < :IL ) (z=x)"*T Yq ns(x,y;k,a,b).

n=0
Corollary 2.5. Replacing z by z+ x, we also obtain

q
pYé‘j‘B)(z+x,y;k,a,b) = Z ( ?1 >z“+T Yq nﬁ(x y;k,a,b).

n=0
Theorem 2.6. The following implicit summation formula
n
pYT(:g(X,y;k, a,b) = Z < :1 > YT(LDL)m,ﬁ(k, a,b)pm(x,y) (2.11)
m=0
is valid.

Proof. Using the definition (2.5), we have

o0

Zlfktk x t ((X) tm
(ﬁbet_ab> ol ) = ) pViluka bl Z p(ka,) .mew)

n=0

Using the Cauchy product and comparing the coefficients of t™, we attain the asserted formula (2.11). [

Theorem 2.7. The following summation formula holds:
n
pYﬁf‘é(Xﬂ,y;k, a,b) = Z ( 2 > z* Yﬂ spx Yk ab). (2.12)
s=0

Proof. Replacing y by y +u and x by x +z in (2.5) and then we get

tm z tS
=3 pVaptoyikab) Z

n=0 n=0

21—ktk x tTl.
(x+2z)t § )
<Bbet_ab) e oy fi (x+2zy;k a,b) n!

Utilizing the Cauchy product and comparing the coefficients of t™, we obtain the claimed formula (2.12).
O
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Theorem 2.8. The following formula

n
n
pYapluvkab) =3 ( ] ) Vi g (urk, a,b)ds(x) (2.13)
s=0
is valid.
Proof. By (2.5) to get
- vl (oc) th o s
ZP y,xkab Z s Uk a,b) 'Zd)s(x)—
Using the Cauchy product and comparing the coefficients of t™, we get the desired result (2.13). O

Theorem 2.9. The following implicit summation formula holds:

n

n

pYT(gé (x—2z,4;k a,b) = Z ( - > Yr(Loi)r,(s(_Zf' k, a,b)pr(x,y). (2.14)
=0

Proof. From (1.7) and (2.5), we attain

zlfktk & t S Dc tn S tT
(x—2z) § . E
(Bbet_ab) d)y/ OY Z,k,(l,b)a OpT(XIy)ﬁ/
n= T=

which gives

o0 oc) . tn
Z pVnp(X—2zYk q, b Z Z -z K, a,b)Pr(XIU)m~
n=0 n=0r=0
which means the asserted result (2.14). O

Here, we give some symmetry identities for the unified Gould-Hopper based Apostol type polynomials

pY( B (x,Y;k, a,b). The results derived in this section are extensions of the previous results given by Khan
[71, Ozarslan [24, 25] and Pathan and Khan [28, 30].

Theorem 2.10. The following symmetric identity

n
Z(;)dmn mYn mB(dX dy,kab) (CXCYkab)
R (2.15)

holds for o, k € No a,b € R/{0}; B € C,x,y s Randn >0
Proof. By (2.5), we observe that

_ dek22(17k)t2k N cdxt cdXt
0] (BPect —ab)(pPedt _ab) e ¢(y,cdt)e d(Y, cdt)

kp(1—K)gk \ % dko(1—K) gk \ &
(Y gty can (Y g

Bbect — gb (Bbedt —q
kn(l—k)sk \ & kn(l—k)sk \ &
(e = tot0w 0 (Grrgaray) = wievan
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We see that the expression @ is symmetric in ¢ and d. Therefore, we get

(dt)™

I (dx, dy; k, @, b) S v (X evik a,b
P an X/ y/ Ial ) | Zp m/[_’,(c IC Vi Ial )

ot

@ I
—= nt = m!
o n
()™ ™ ()™ [)"
:Z ZPY amﬁ (dx, dy,kab)ﬁpY (CX cY;k,a,b) Tl
n=0m=0
and similarly
v () , (A" — () ' (ct)™
® =) .Y slex,cy;k a,b) - D pYmpldX,dYik, a,b) ~
n=0 m=0
o0 n
(d)" (c )’“ m
:ZZ (cx, cy; K, ab)ﬁ]D (dX dY;k,a,b) .
which means the desired result (2.15). O

Theorem 2.11. The following symmetric identity

n c—1d-1
n _ (o) d. . . () .
Z ( m > Z Z M mA™ Y Y <dx+ El—i—),dy,k, a,b> pYm p(cX, cY;k, a,b)

m=0 i=0 j=0
d—1c—1 c (2.16)
Z < >chmdn moyl (cx—l—ai—l—j,cy;k,a,b) YL (dX, dY;k, a,b)
i=0 j=0

is valid for o,k € Np;c,d € R/{0};, B € Candx,y € Randn >0
Proof. From (2.5), we see that

y_ 22(1-k) ok gk42k
- (BbeCt _ ab)(Bbedt _

x dt 2
Cdxt (ec - 1)
2(1—k)cktk & dxt ecdt -1 2 1—k)dktk & axt ecdt -1
((Bbe” = ab) T ly cay < eet—1 ) (usbedt = ab> Y edy ( et 1 )

: dxt < dti 2(17k)dktk * dXt .

cax 1 C C

(fsbect—ab) e“ ™o (dy,ct) )_e ((Bbedt_ab) e« Xip(ey, dt) ) e
i=0

j=0

eCIXth(Y, cdt)

c—1d—1 « 0
2 (1—k) kik a. (dt)™
_ (dx+di+j)ct (o
— Z Z ((Bbec’ﬂ—ab) ¢(dy, ct)e i+j)e Z pY s(cX,cY;k a,b) -
i=0 j=0 m=0
o n n c—1d-1 d tn
-y ¥ < n > Sy emmam v (dx+ci+j,dy;k, a,b) Vg (€X, Yk, a,b)
n=0m=0 i=0 j=0
and similarly, we get
o n d—1c—1 i
v=>y 3 ( )ZZd“ ™y, B(cx—l—al—i-),cy,kab) Yof)ﬁ(dX,dY;k,a,b)$,
n=0 m=0 i=0 j=0
which gives the desired result (2.16). O

We now give another symmetric formula for unified Gould-Hopper based Apostol type polynomials
as follows.
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Theorem 2.12. The following identity

n n c—1d-1 e (e d
> > > emmamy dx+ 1, dy;k,a,b Lyl B(CX+a],cYkab)

m=0 m i=0 j=0
n d—1lc—1 (217)
— — d
= Z ( 21 > Z Z Cmdnfmprioi)m,B (cx—i— %i, cy; k, a,b> prﬁf?s(dX—i- Ej' dY;k,a,b)
m=0 i=0 j=0

holds for each pair of integers c and d and n. > 0.

Proof. Similar to the proof of the previous theorem, we obtain

o m c—1d—-1
d.
Y = Z Z < :1 > Z Z c“_mdmpY (dx+ —1i,dy; k, qa, b) ?S(CX+ dj,cY;k, a,b)t"

n=0 m=0 i=0 j=0
and
00 d-1lc—1 S N a . N
\y:TLZ_()m_()( )%JZOC an Y (x4 Sheyik a,b) pYiR (X + 5, dYik @, b)t
which provides the asserted result (2.17). O

We lastly provide the following theorem.
Theorem 2.13. The following symmetric identity

n m
n _ m
Z < m >Cn mderlp\(T(l"i)m’[3 (dx, dy;k, a,b) E ( i Si (c—l;(ﬁ)b) pYig—)i,[s(CX'CY"kf a,b)

m=0 i=0

(2.18)

Sy (M) emrignem v oy (™ Vs (amnBP) v ax avika b

= c Pln—m,p (CX/CUI , Q, )Z i i - /(E) P mfirﬁ( 7 ;K Q, )
i=0

m
m=0

is valid for all integers ¢ >0, d > 0andn > 0

Proof. By (1.17) and (2.5), we see that

(221—K)ckgkg2kyxpedxt gy cdt)(RPecdt — gb)ecdXtp(Y, cdt)
(BPect —aP)X(BPedt —ab)a

2( ktk dxt Bbecdt o ab 2(17k)dktk o ixe
(Bbect ) e q)(y’Cdt) ( Bbedt_ab > ((Bbedt—ab> e d)(Y,cdt)
3 By
;pv *) (dx, dy;k, ( )

and similarly

(=)
—

t n
Z o cX,cY;k,a,b)(d')

3

c v , (A" & B) )" = , (ct)™
Z=) pYoplexcyik a,b) — > Sn d—1,(a)b i Y pYa(dX,dv;k, a,b)
n=0 n=0 n=0

which yields the desired result (2.18). O
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3. Conclusions

In the presented paper, we have considered unified Gould-Hopper based Apostol type polynomials
and have investigated some of their properties including several implicit summation formulae and some
symmetric identities by the series manipulation method. Moreover, we have acquired several new results
for unified Gould-Hopper based Apostol type polynomials by means of appropriate operational rules.
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