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Abstract
In this paper, we use the notion of ideal convergence (I-convergence) to introduce Tribonacci I-convergent sequence spaces,

that is, cI
0
(T), cI(T) and lI∞(T) as a domain of regular Tribonacci matrix T = (tjn) (constructed by the Tribonacci sequence). We

also present few inclusion relations and prove some topological and algebraic properties based results with respect to these
spaces.
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1. Introduction

We use the notatios R, ω, N, l∞, c, and c0 to denote the set of real numbers, sequence space, set of
natural numbers, space of all bounded sequences, space of all convergent sequences, and space of all null
sequences, respectively.

Fast [7] and Steinhaus [24] introduced a generalization of usual convergence, known as statistical
convergence. After that in 1999, Kostyrko et al. [22] defined a generalization of statistical convergence,
known as I-convergence. Later, Ŝalát et al. [29, 30], Filipów and Tryba [9] and many others [17, 19] further
studied the notion of I-convergence and linked with the summability theory. Furthermore, some authors
also investigated it from the sequence space point of view. For more details on I-convergence, we refer to
[2, 11, 13, 14, 18, 25, 27, 33].

Suppose an infinite real matrix A = (ajn) and X & Y are two sequence spaces. Recalling, A be a matrix
mapping from X to Y if ∀z = (zn), the A-transform of z, (i.e., Az = {Ajz}

∞
j=1 ∈ Y), is

Ajz =
∑
n

ajnzn, j ∈N.

In [15], a different approach was defined to construct new sequence spaces as follows

λ(A) := {z = (zn) ∈ ω : Az ∈ λ}, where λ is any sequence space,

and known as the domain of matrix A in λ.
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Lemma 1.1 ([34]). Matrix A = (ajn)j,n∈N is said to be regular iff the following conditions hold:

(a) ∃M > 0 s.t
∑
n |ajn| 6M, ∀j ∈N;

(b) limj→∞ ajn = 0, ∀n ∈N;
(c) limj→∞∑n ajn = 1.

In 1963, Mark feinberg [8] was the first who initiated Tribobacci numbers at the age of 14 years. Define
the tribonacci sequence by third order recurrence relation

tj = tj−1 + tj−2 + tj−3, j > 4 with t1 = t2 = 1 and t3 = 2.

Some important properties of Tribonacci sequence are:

lim
j→∞

tj

tj+1
= 0.54368901 . . . ,

j∑
n=1

tn =
tj+2 + tj − 1

2
, j > 1.

Binet’s formula for Tribonacci sequence is given in [32]. For more details, some papers related to Tri-
bonacci sequence are [3–5, 8, 10, 20, 21, 23, 28, 31, 32, 35].

In this research paper, we use the triangle Tribonacci matrix T = (tjn) which is defined in [36], as
follows:

tjn =

{
2tn

tj+2+tj−1 , (1 6 n 6 j),

0, (n > j).
(1.1)

i.e.,

T =


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. . .


. (1.2)

It can be easily verifed that T is a regular matrix (from Lemma 1.1). By using the Tribonacci matrix (1.2)
and the notion of I-convergence, we define cI

0
(T), cI(T), and lI∞(T) as the space of all sequences whose

T -transform are in the spaces cI
0
, cI, and lI∞ , respectively. Sequence Tj(z), the T -transform of z = (zn), is

defined as

Tj(z) =

j∑
n=1

2tn
tj+2 + tj − 1

, j ∈N. (1.3)

Now, recalling few important definitions and lemmas which are used in this paper.

Definition 1.2 ([24]). Natural density of A = {a ∈ A : a 6 n} ⊆N is defined as

d(A) = lim
n→∞ 1

n
|A|, where |A| is the cardinality of set A,

whenever the limit exists.

Definition 1.3 ([7]). Statistically convergence of a sequence (zn) ∈ ω to a number k ∈ R is defined as if
∀ε > 0, the natural density of A(ε) is equal to zero, where

A(ε) = {n ∈N : |zn − k| > ε}.

Definition 1.4 ([12]). Let X be any set. I being a subset of P(X) is said to be an ideal if the following
conditions holds:
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a. ∅ ∈ I;
b. E∪ F ∈ I for all E,F ∈I;
c. ∀ E ∈I and F ⊂E, then F ∈I.

If I 6= 2X, then I is called non trivial ideal. If {{x} : x ∈ X} ⊂ I, then I is called admissible ideal.

Definition 1.5 ([12]). Let F is the subset of power set of a set X, then F is called filter if

a. ∅ /∈ F;
b. E∩ F ∈ F for all E,F ∈ F;
c. ∀ E ∈ F and E ⊂F, then F ∈ F.

Definition 1.6 ([22]). Let I ⊂ P(N) is a non trivial ideal, I-convergence of a sequence (zn) ∈ ω to number
k ∈ R is defined as if ∀ ε > 0, set A(ε) ∈ I, where

A(ε) = {n ∈N :| zn − k |> ε},

we say that I– lim(zn)= k.

Definition 1.7 ([22]). Let I ⊂ P(N) is a non trivial ideal, a sequence (zn) ∈ ω is said to be I-Cauchy if ∀
ε > 0, there exists a K = K(ε) such that set A(ε) ∈ I, where

A(ε) = {n ∈N :| zn − zK |> ε}.

Definition 1.8 ([16]). Let I ⊂ P(N) is a non trivial ideal, a sequence (zn) ∈ ω is said to be I-bounded if
there exists M > 0 such that set A ∈ I, where

A = {n ∈N :| zn |> M}.

Definition 1.9 ([29]). Let I ⊂ P(N) is a non trivial ideal, for any two sequnces (yn) and (zn), we say
yn = zn for almost all n relative to I if {n ∈N : yn 6= zn} ∈ I.

Definition 1.10 ([29]). A sequence space X is said to be solid or normal, if (αnzn) ∈ X whenever (zn) ∈ X
and for any sequence of scalars (αn) ∈ ω with |αn| < 1, for every n ∈N.

Lemma 1.11 ([29]). Every solid space is monotone.

Lemma 1.12 ([29]). If I ⊂ P(N) is a maximal ideal, then for every K ⊂N we have either K ∈ I or N\K.

Definition 1.13 ([29]). Let K = {ni ∈ N : n1 < n2 < · · · } ⊆ N and X be a sequence space. A K-step space
of X is a sequence space

λXK = {(zni) ∈ ω : (zn) ∈ X}.
A canonical pre-image of a sequence (zni) ∈ λXK is a sequence (yn) ∈ ω defined as follows:

yn =

{
zn, if n ∈ K,
0, otherwise.

A canonical pre-image of a step space λXK is a set of canonical pre-images of all elements in λXK, i.e., y is in
canonical pre-image of λXK iff y is canonical pre-image of some element z ∈ λXK.

Definition 1.14 ([29]). A sequence space X is said to be monotone, if it contains the canonical pre-images
of its step space, (i.e., if for all infinite K ⊆N and (zn) ∈ X the sequence (αnzn), where αn = 1 for n ∈ K
and αn = 0 otherwise, belongs to X).

Definition 1.15 ([29]). A sequence space X is said to be convergence free, if (zn) ∈ X whenever (yn) ∈ X
and (yn) = 0 implies that (zn) = 0 for all n ∈N.

Definition 1.16. A map h defined on a domain D ⊂ X, i.e., h : D ⊂ X −→ R is said to satisfy Lipschitz
condition if |h(y) − h(z)| 6M|y− z|, where M is known as the Lipschitz constant.
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2. Main results

By the domain of regular tribonacci matrix (1.1), we define sequence spaces cI
0
(T), cI(T), and lI∞(T),

i.e.,

cI
0
(T) := {z = (zn) ∈ ω : {j ∈N : |Tj(z)| > ε} ∈ I},

cI(T) := {z = (zn) ∈ ω : {j ∈N : |Tj(z) − k| > ε, for some k ∈ R} ∈ I},
lI∞(T) := {z = (zn) ∈ ω : there exist M > 0 such that {j ∈N : |Tj(z)| >M} ∈ I},
l∞(T) := {z = (zn) ∈ ω : sup

j

|Tj(z)| <∞}.

We denote cI
0
(T) ∩ l∞(T) and cI(T) ∩ l∞(T) by sI

0
(T) and sI(T), respectively. We also present topological

properties of these spaces and derive some results such as inclusion relations etc. Throughout this research
paper, we assume that I be an admissible ideal in N and relation between the sequence z = (zn) ∈ ω and
Tj(z) is same as given in equation (1.3).

Definition 2.1. A sequence z = (zn) ∈ ω is said to be Tribonacci I-convergent to k ∈ R if for every ε > 0,
the set A belongs to I, where

A = {j ∈N : |Tj(z) − k| > ε}.

Definition 2.2. A sequence z = (zn) ∈ ω is said to be Tribonacci I-Cauchy if for every ε > 0, there exists
K = K(ε) ∈N such that the set A belongs to I, where

A = {j ∈N : |Tj(z) − TK(z)| > ε}

Definition 2.3. A sequence z = (zn) ∈ ω is said to be Tribonacci I-bounded if there exists M > 0 such
that the set A belongs to I, where

A = {j ∈N : |Tj(z)| > M}.

Example 2.1. cIf(T) = c(T), where If = {Y ⊆ N : Y is finite} is an admissible ideal in N, where c(T)
denotes the space of all Tribonacci convergent sequences.

Example 2.2. cId(T) = S(T), where Id = {Y ⊆ N : d(Y) = 0} is an admissible ideal in N, where d(Y)
denotes the natural density of set Y and S(T) denotes the space of all Tribonacci statistically convergent
sequences, i.e.,

S(T) = {z = (zn) ∈ ω : d(j ∈N : |Tj(z) − k| > ε}) = 0, for some k ∈ R}.

Remark 2.4. Tribonacci convergence =⇒ Tribonacci statistically convergence since natural density of all
finite subsets of N is zero. But the converse may not be hold.

Example 2.3. Let z = (zn) ∈ ω such that

Tj(z) =

{
5, if j is a prime,
0, otherwise .

Let k = 0 then clearly Tj(z) is not convergent but it is Tj(z) is statistically convergent to 0 as the natural
density of set prime numbers is zero, i.e., d({j ∈ N : |Tj(z) − k| > ε}) = 0. Hence (zn) ∈ S(T) but
(zn) /∈ c(T).

Theorem 2.5. The sequence spaces cI
0
(T), cI(T), lI∞(T), sI0 (T), and sI(T) are linear spaces over R.
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Proof. Suppose that a,b are scalars and y = (yn), z = (zn) ∈ cI(T), then for every ε > 0, there exists
k1,k2 ∈ R such that{

j ∈N : |Tj(y) − k1| >
ε

2

}
∈ I and

{
j ∈N : |Tj(z) − k2| >

ε

2

}
∈ I.

And let

L1 =

{
j ∈N : |Tj(y) − k1| <

ε

2|a|

}
∈ F(I) and L2 =

{
j ∈N : |Tj(z) − k2| <

ε

2|b|

}
∈ F(I),

be such that Lc
1
,Lc

2
∈ I. Then

L3 = {j ∈N : |Tj(ay+ bz) − (ak1 + bk2)| < ε}

⊇
{
j ∈N : |Tj(y) − k1| <

ε

2|a|

}
∩
{
j ∈N : |Tj(z) − k2| <

ε

2|b|

}
.

As in the above equation, the set on the right hand-side belongs to F(I). So Lc
3
∈ I, which implies that

(ay+ bz) ∈ cI(T). Hence, cI(T) is linear space. Similarly, we can prove for remaining given spaces.

Theorem 2.6. A sequence z = (zn) ∈ ω is Tribonacci I-convergent iff for each ε > 0, ∃K = K(ε) ∈N such that

{j ∈N : |Tj(z) − TK(z)| < ε} ∈ F(I). (2.1)

Proof. Let z = (zn) is Tribonacci I-convergent to k ∈ R, so for ε > 0, the set

Lε =

{
j ∈N : |Tj(z) − k| <

ε

2

}
∈ F(I).

We fix a natural number K = K(ε) ∈ Lε. Then, for all j ∈ Lε

|Tj(z) − TK(z)| 6 |Tj(z) − k|+ |k− TK(z)| <
ε

2
+
ε

2
= ε.

Hence, (2.1) holds. Conversely, let for all ε > 0, (2.1) holds, then

Mε = {j ∈N : Tj(z) ∈ [Tj(z) − ε, Tj(z) + ε]} ∈ F(I), ∀ ε > 0.

Let Pε = [Tj(z) − ε, Tj(z) + ε]. Fixing ε > 0, then Mε ∈ F(I) and Mε
2
∈ F(I). Thus Mε ∩Mε

2
∈ F(I), which

implies that
P = Pε ∩ Pε2 6= ∅,

i.e.,
{j ∈N : Tj(z) ∈ P} ∈ F(I).

Thus,

diam(P) 6
1
2

diam(Pε),

where diam(P) is the length of interval P. Proceeding in this way, by induction we get a sequence of
closed intervals Pε = I0 ⊇ I1 ⊇ · · · ⊇ Ij ⊇ · · · such that

diam(Ij) 6
1
2

diam(Ij−1), for j = (2, 3, 4, . . .)

and
{j ∈N : Tj(z) ∈ Ij} ∈ F(I).

Hence, ∃ a number k ∈ ∩j∈N Ij and it is common work to check that k = I-lim Tj(z). Hence, z = (zn) is
Tribonacci I-convergent sequence.
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Theorem 2.7. The inclusions cI
0
(T) ⊂ cI(T) ⊂ lI∞(T) are strict.

Proof. It can be easily seen that cI
0
(T) ⊂ cI(T). For strictness, take any constant sequence say z = (zn) = α

for all n, where α is any non-zero constant. Then Tj(z) = α for all j. Hence, it is obvious that Tj(z) ∈ cI
but Tj(z) /∈ cI0 , i.e., z ∈ cI(T) but z /∈ cI

0
(T). Let z = (zn) ∈ cI(T). Then there exists k ∈ R such that

{j ∈N : |Tj(z) − k| > ε} ∈ I.

We have
|Tj(z)| = |Tj(z) − k+ k| 6 |Tj(z) − k|+ |k|.

Hence, it can be easily seen that the sequence (zn) ∈ lI∞(T). For strictness, take the sequence z = (zn) ∈ ω
such that

Tj(z) =


√
j, if j = i2, for i ∈N,

1, if j is odd non-square,
0, if j is even non-square .

Hence, it is clear that Tj(z) ∈ lI∞ but Tj(z) /∈ cI, i.e., z ∈ lI∞(T) but z /∈ cI(T). This completes the proof.

Remark 2.8. A Tribonacci bounded sequence is obviously Tribonacci I-bounded as ∅ ∈ I. But converse part
is not always true. For example, let z = (zn) ∈ ω such that

Tj(z) =

{
j2, if j is prime,
0, otherwise .

As {j ∈ N : |Tj(z)| > 3} ∈ I. Hence, (zn) is Tribonacci I-bounded but clearly, Tj(z) is not a bounded
sequence. Thus z ∈ lI∞(T) but z /∈ l∞(T).
Remark 2.9. Tribonacci convergent sequence is obviously Tribonacci I-convergent as If is a non-trivial
admissible ideal But the converse part may not be always true. Let z = (zn) ∈ ω such that

Tj(z) =

{√
j, if j = i2, for i ∈N

0, otherwise.

Hence, (zn) is Tribonacci Id-convergent but not a Tribonacci convergent sequence as Tj(z) is not conver-
gent.

Theorem 2.10. The sequence spaces sI(T) and sI
0
(T) are Banach spaces normed by

||z||A(T) = sup
j

|Tj(z)|, where A ∈ {sI, sI
0
}.

Proof. Take a Cauchy sequence (z(i)
n

) in sI(T) ⊂ l∞(T). Then (z(i)
n

) is convergent in l∞(T) and
limi→∞ T (i)j

(z) = Tj(z). Assume I-lim T (i)
j

(z) = ki for all i ∈ N. Now if we prove that (1) (ki) → k

for some k ∈ R; (2) I-lim Tj(z) = k, then the theorem will be proved.

(1) Since (z(i)
n

) is a Cauchy sequence, then for every ε > 0 there exists j0 ∈N such that

|T (i)
j

(z) − T (m)
j

(z)| <
ε

3
, for all i,m > j0. (2.2)

Now, suppose that Li and Lm are the under-mentioned sets in I:

Li =

{
j ∈N : |T (i)

j
(z) − ki| >

ε

3

}
(2.3)
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and

Lm =

{
j ∈N : |T (m)

j
(z) − km| >

ε

3

}
. (2.4)

Suppose that i,m > j0 and j /∈ Li ∩ Lm. By (2.2), (2.3), and (2.4) we have

|ki − km| 6 |T (i)
j

(z) − ki|+ |T (m)
j

(z) − km|+ |T (i)
j

(z) − T (m)
j

(z)| < ε.

Hence, (ki) is a Cauchy sequence in R and thus convergent say to k, that is, limi→∞ ki = k.

(2) Suppose ζ > 0, then we can get r0 such that

|ki − k| <
ζ

3
, for all i > r0. (2.5)

We have (z(i)
n

)→ (zn) as i→∞. Thus

|T (i)
j

(z) − T
j
(z)| <

ζ

3
, for all i > r0. (2.6)

Since T (m)
j

(z) is I-convergent to km, there exists U ∈ I such that for all j /∈ U, we have

|T (m)
j

(z) − km| <
ζ

3
. (2.7)

Without loss of generality, suppose m > r0, then for each j /∈ U, we have

|Tj(z) − k| 6 |Tj(z) − T
(m)
j

(z)|+ |T (m)
j

(z) − km|+ |km − k| < ζ

by (2.5), (2.6), and (2.7). Thus (zn) is Trinonacci I-convergent to k. Hence the space sI(T) is a Banach
space. Similarly, the other case can be proved.

By Theorem 2.10, we have the following Theorem.

Theorem 2.11. The spaces sI(T) and sI
0
(T) are closed subspaces of l∞(T).

As sI(T) ⊂ l∞(T) and sI
0
(T) ⊂ l∞(T) are strict and by Theorem 2.11, it is obvious to have following

theorem.

Theorem 2.12. The spaces sI(T) and sI
0
(T) are nowhere dense subsets of l∞(T).

Theorem 2.13. Let z = (zn) ∈ ω. If there exists a sequence y = (yn) ∈ cI(T) such that Tj(z) = Tj(y) for almost
all j relative to I, then z ∈ cI(T).

Proof. As we have given that Tj(z) = Tj(y) for almost all j relative to I, that is,

{j ∈N : Tj(z) 6= Tj(y)} ∈ I.

And suppose (yn) ∈ cI(T) and Tribonacci I–lim yn = k. Then, ∀ε > 0, the set

{j ∈N : |Tj(y) − k| > ε} ∈ I.

As I is an admissible ideal, we have

{j ∈N : |Tj(z) − k| > ε} ⊆ {j ∈N : Tj(z) 6= Tj(y)}∪ {j ∈N : |Tj(y) − k| > ε}.

Hence, the result is proved.

Theorem 2.14. If I is not maximal ideal, then the space cI(T) is neither solid nor monotone.
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Proof. Consider a sequence z = (zn) ∈ ω such that Tj(z) = 1 for all j ∈N, then (zn) ∈ cI(T). Since I is not
maximal, by Lemma 1.12 there exists a subset K ⊂ N such that K /∈ I and Kc /∈ I. Now, define y = (yn)
by

yn =

{
zn, if n ∈ L,
0, otherwise.

Then (yn) belongs to the canonical pre-image of the K-step space of cI(T). But (yn) /∈ cI(T). Thus cI(T)
is not monotone. Hence, by Lemma 1.11 cI(T) is not solid.

Theorem 2.15. The spaces cI0(T) and sI0(T) are solid and monotone.

Proof. For cI0(T), let z = (zn) ∈ cI0(T). Then, for ε > 0, we have{
j ∈N :

∣∣Tj(z)∣∣ > ε} ∈ I. (2.8)

Let α = (αn) be a sequence of scalars with |α| 6 1, ∀n ∈N. Then∣∣Tj(αz)∣∣ = ∣∣αTj(z)∣∣ 6 |α|
∣∣Tj(z)∣∣ 6 ∣∣Tj(z)∣∣ , for all j ∈N.

Thus, from the above inequality and (2.8) we have{
j ∈N :

∣∣Tj(αz)∣∣ > ε} ⊆ {j ∈N :
∣∣Tj(z)∣∣ > ε} ∈ I

implies that {
j ∈N :

∣∣Tj(αz)∣∣ > ε} ∈ I.
Hence, (αzn) ∈ cI0(T). Therefore, the space cI0(T) is solid, and hence by Lemma 1.11 the space cI0(T) is
monotone. Similarly, the remaining part can be proved.

Theorem 2.16. The sequence spaces cI(T) and cI
0
(T) are not convergence free.

Proof. Following example will be the proof of this theorem.

Example 2.4. Let I = Id. Consider (zn),(yn) ∈ ω such that Tj(z) = 1
n and Tj(y) = n, ∀ j ∈ N. Then (zn)

belongs to cI(T) and cI0(T), but (yn) does not belongs to cI(T) and cI0(T). Hence the given spaces are not
convergence free.

Theorem 2.17. The sequence spaces cI
0
(T) and cI(T) are sequence algebras.

Proof. For cI
0
(T), consider (zn), (yn) ∈ cI0 (T). Then

I– lim Tj(y) = 0, I– lim Tj(z) = 0.

Thus,
I– lim Tj(y · z) = 0,

which implies that (yn · zn) ∈ cI0 (T). Hence cI
0
(T) is sequence algebra. Similarly, the remaining part can

be established.

Theorem 2.18. The function g : sI(T) → R defined by g(z) =
∣∣I– lim Tj(z)

∣∣ , where sI(T) = l∞(T) ∩ cI(T), is a
Lipschitz function and hence uniformly continuous.

Proof. Firstly, we prove that the function is well defined. Let y, z ∈ sI(T) , such that

y = z⇒ I– lim Tj(y) = I– lim Tj(z)⇒ |I– lim Tj(y)| = |I– lim Tj(z)|⇒ g(y) = g(z).

Thus, g is well defined. Next, let y = (yn), z = (zn) ∈ sI(Tj), y 6= z. Then
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B1 =
{
j ∈N :

∣∣Tj(y) − g(y)∣∣ > |y− z|∗
}
∈ I,

B2 =
{
j ∈N :

∣∣Tj(z) − g(z)∣∣ > |y− z|∗
}
∈ I,

where |y− z|∗ = sup
j

∣∣Tj(y) − Tj(z)∣∣. Thus

C1 =
{
j ∈N :

∣∣Tj(y) − g(y)∣∣ < |y− z|∗
}
∈ F(I)

and
C2 =

{
j ∈N :

∣∣Tj(z) − g(z)∣∣ < |y− z|∗
}
∈ F(I).

Hence C = C1 ∩C2 ∈ F(I), so that C is non-empty set. Therefore choosing j ∈ B, we have

|g(y) − g(z)| 6
∣∣g(y) − Tj(y)∣∣+ ∣∣Tj(y) − Tj(z)∣∣+ ∣∣Tj(z) − g(z)∣∣ 6 3|y− z|∗.

Thus, g is Lipschitz function and hence it is uniformly continuous.

Theorem 2.19. If y = (yn), z = (zn) ∈ sI(T) with Tj(y · z) = Tj(y) · Tj(z), then (y · z) ∈ sI(T) and g(y · z) =
g(y) · g(z), where g : sI(T)→ R is defined by g(x) =

∣∣I– lim Tj(x)
∣∣.

Proof. For ε > 0,
A =

{
j ∈N :

∣∣Tj(y) − g(y)∣∣ < ε} ∈ F(I), (2.9)

and
B =
{
j ∈N :

∣∣Tj(z) − g(z)∣∣ < ε} ∈ F(I), (2.10)

where ε = |y− z|∗ = sup
j

∣∣Tj(y) − Tj(z)∣∣. Now, we have

∣∣Tj(y · z) − g(y)g(z)∣∣ = ∣∣Tj(y)Tj(z) − Tj(y)g(z) + Tj(y)g(z) − g(y)g(z)∣∣
6
∣∣Tj(y)∣∣ ∣∣Tj(z) − g(z)∣∣+ |g(z)|

∣∣Tj(y) − g(y)∣∣ . (2.11)

As sI(T) ⊆ l∞(T), there exists an M ∈ R such that |Tj(y)| < M. Therefore, from the equations (2.9), (2.10),
and (2.11), we have∣∣Tj(y · z) − g(y)g(z)∣∣ = ∣∣Tj(y) · Tj(z) − g(y)g(z)∣∣ 6Mε+ |g(z)|ε = ε1, (say)

for all j ∈ A∩B ∈ F(I). Hence (y · z) ∈ sI(T) and g(y · z) = g(y) · g(z).
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[22] P. Kostyrko, M. Macaj, T. Ŝalát, Statistical convergence and I-convergence, Real Anal. Exch., (1999). 1, 1.6, 1.7
[23] A. Scott, T. Delaney, V. Hoggatt JR, The Tribonacci sequence, Fibonacci Quart., 15 (1977), 193–200. 1
[24] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2 (1951), 73–74. 1, 1.2
[25] N. Subramanian, A. Esi, On Triple sequence of Bernstein operator of weighted rough Iλ-convergence, J. Class. Anal., 13

(2018), 45–62. 1
[26] N. Subramanian, A. Esi, Triple Pascal Sequence Spaces, Asian J. Math. Phys., 3 (2019), 13–22.
[27] N. Subramanian, A. Esi, V. A. Khan, The Rough Intuitionistic Fuzzy Zweier Lacunary Ideal Convergence of Triple

Sequence spaces, J. Math. Stat., 14 (2018), 72–78. 1
[28] S. Pethe, Some identities for Tribonacci sequences, Fibonacci Quart., 26 (1988), 144–151. 1
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